Skip to main content
Top
Published in: Flow, Turbulence and Combustion 4/2017

24-12-2016

Flame-Flow Interaction in Premixed Turbulent Flames During Transient Head-On Quenching

Authors: Martin Rißmann, Christopher Jainski, Markus Mann, Andreas Dreizler

Published in: Flow, Turbulence and Combustion | Issue 4/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper reports on experimental investigations of turbulent flame-wall interaction (FWI) during transient head-on quenching (HOQ) of premixed flames. The entire process, including flame-wall approach and flame quenching, was analyzed using high repetition rate particle image velocimetry (PIV) and simultaneous flame front tracking based on laser-induced fluorescence (LIF) of the OH molecule. The influence of convection upon flame structures and flow fields was analyzed qualitatively and quantitatively for the fuels methane (CH4) and ethylene (C2H4) at ϕ = 1. For this transient FWI, flames were initialized by laser spark ignition 5 mm above the burner nozzle. Subsequently, flames propagated against a steel wall, located 32 mm above the burner nozzle, where they were eventually quenched in the HOQ regime due to enthalpy losses. Twenty ignition events were recorded and analyzed for each fuel. Quenching distances were 179 μm for CH4 and 159 μm for C2H4, which lead by nondimensionalization with flame thickness to Peclet numbers of 3.1 and 5.5, respectively. Flame wrinkling and fresh gas velocity fluctuations proved flame and flow laminarization during wall approach. Velocity fluctuations cause flame wrinkling, which is higher for CH4 than C2H4 despite lower velocity fluctuations. Lewis number effects explained this phenomenon. Results from flame propagation showed that convection dominates propagation far from the wall and differences in flame propagation are related to the different laminar flame speeds of the fuels. Close to the wall flames of both fuels propagate similarly, but experimental results clearly indicate a decrease in intrinsic flame speed. In general, the experimental results are in good agreement with other experimental studies and several numerical studies, which are mainly based on direct numerical simulations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Alkidas, A.C.: Combustion-chamber crevices: the major source of engine-out hydrocarbon emissions under fully warmed conditions. Prog. Energ. Combust. 25, 253–273 (1999)CrossRef Alkidas, A.C.: Combustion-chamber crevices: the major source of engine-out hydrocarbon emissions under fully warmed conditions. Prog. Energ. Combust. 25, 253–273 (1999)CrossRef
2.
go back to reference Roberts, A., Brooks, R., Shipway, P.: Internal combustion engine cold-start efficiency: a review of the problem, causes and potential solutions. Energ. Convers. Manage. 82, 327–350 (2014)CrossRef Roberts, A., Brooks, R., Shipway, P.: Internal combustion engine cold-start efficiency: a review of the problem, causes and potential solutions. Energ. Convers. Manage. 82, 327–350 (2014)CrossRef
3.
go back to reference Dreizler, A., Böhm, B.: Advanced laser diagnostics for an improved understanding of premixed flame-wall interactions. Proc. Combust. Inst. 35, 37–64 (2015)CrossRef Dreizler, A., Böhm, B.: Advanced laser diagnostics for an improved understanding of premixed flame-wall interactions. Proc. Combust. Inst. 35, 37–64 (2015)CrossRef
4.
go back to reference Foucher, F., Burnel, S., Mounaïm-Rousselle, C., Boukhalfa, M., Renou, B., Trinité, M.: Flame wall interaction: effect of stretch. Exp. Therm. Fluid Sci. 27, 431–437 (2003)CrossRef Foucher, F., Burnel, S., Mounaïm-Rousselle, C., Boukhalfa, M., Renou, B., Trinité, M.: Flame wall interaction: effect of stretch. Exp. Therm. Fluid Sci. 27, 431–437 (2003)CrossRef
5.
go back to reference Mann, M.: Laserbasierte Untersuchung Der Flamme-Wand-Interaktion. Göttingen, Optimus-Verlag (2013) Mann, M.: Laserbasierte Untersuchung Der Flamme-Wand-Interaktion. Göttingen, Optimus-Verlag (2013)
6.
go back to reference Mann, M., Jainski, C., Euler, M., Böhm, B., Dreizler, A.: Transient flame–wall interactions: experimental analysis using spectroscopic temperature and CO concentration measurements. Combust. Flame 161, 2371–2386 (2014)CrossRef Mann, M., Jainski, C., Euler, M., Böhm, B., Dreizler, A.: Transient flame–wall interactions: experimental analysis using spectroscopic temperature and CO concentration measurements. Combust. Flame 161, 2371–2386 (2014)CrossRef
7.
go back to reference Bohlin, A., Mann, M., Patterson, B.D., Dreizler, A., Kliewer, C.J.: Development of two-beam femtosecond/picosecond one-dimensional rotational coherent anti-Stokes Raman spectroscopy. Time-resolved probing of flame wall interactions. Proc. Combust. Inst. 35, 3723–3730 (2015)CrossRef Bohlin, A., Mann, M., Patterson, B.D., Dreizler, A., Kliewer, C.J.: Development of two-beam femtosecond/picosecond one-dimensional rotational coherent anti-Stokes Raman spectroscopy. Time-resolved probing of flame wall interactions. Proc. Combust. Inst. 35, 3723–3730 (2015)CrossRef
8.
go back to reference Wichman, I.S., Bruneaux, G.: Head-on quenching of a premixed flame by a cold wall. Combust. Flame 103, 296–310 (1995)CrossRef Wichman, I.S., Bruneaux, G.: Head-on quenching of a premixed flame by a cold wall. Combust. Flame 103, 296–310 (1995)CrossRef
9.
go back to reference Popp, P., Baum, M.: Analysis of wall heat fluxes, reaction mechanisms, and unburnt hydrocarbons during the head-on quenching of a laminar methane flame. Combust. Flame 108, 327–348 (1997)CrossRef Popp, P., Baum, M.: Analysis of wall heat fluxes, reaction mechanisms, and unburnt hydrocarbons during the head-on quenching of a laminar methane flame. Combust. Flame 108, 327–348 (1997)CrossRef
10.
go back to reference Poinsot, T., Haworth, D., Bruneaux, G.: Direct simulation and modeling of flame-wall interaction for premixed turbulent combustion. Combust. Flame 95, 118–132 (1993)CrossRef Poinsot, T., Haworth, D., Bruneaux, G.: Direct simulation and modeling of flame-wall interaction for premixed turbulent combustion. Combust. Flame 95, 118–132 (1993)CrossRef
11.
go back to reference Lai, J., Chakraborty, N.: Effects of lewis number on head on quenching of turbulent premixed flames: a direct numerical simulation analysis. Flow Turbul. Combust. 96(2), 279–308 (2015)CrossRef Lai, J., Chakraborty, N.: Effects of lewis number on head on quenching of turbulent premixed flames: a direct numerical simulation analysis. Flow Turbul. Combust. 96(2), 279–308 (2015)CrossRef
12.
go back to reference Popp, P., Smooke, M., Baum, M.: Heterogeneous/homogeneous reaction and transport coupling during flame-wall interaction. Symp. Int. Combust. Proc. 26, 2693–2700 (1996)CrossRef Popp, P., Smooke, M., Baum, M.: Heterogeneous/homogeneous reaction and transport coupling during flame-wall interaction. Symp. Int. Combust. Proc. 26, 2693–2700 (1996)CrossRef
13.
go back to reference Westbrook, C.K., Adamczyk, A.A., Lavoie, G.A.: A numerical study of laminar flame wall quenching. Combust. Flame 40, 81–99 (1981)CrossRef Westbrook, C.K., Adamczyk, A.A., Lavoie, G.A.: A numerical study of laminar flame wall quenching. Combust. Flame 40, 81–99 (1981)CrossRef
14.
go back to reference Laget, O., Muller, L., Truffin, K., Kashdan, J., Kumar, R., Sotton, J., Boust, B., Bellenoue, M.: Experiments and modeling of flame/wall interaction in Spark-Ignition (SI) engine conditions SAE technical paper 2013-01-1121 (2013) Laget, O., Muller, L., Truffin, K., Kashdan, J., Kumar, R., Sotton, J., Boust, B., Bellenoue, M.: Experiments and modeling of flame/wall interaction in Spark-Ignition (SI) engine conditions SAE technical paper 2013-01-1121 (2013)
15.
go back to reference Boust, B., Sotton, J., Bellenoue, M.: Unsteady heat transfer during the turbulent combustion of a lean premixed methane–air flame: effect of pressure and gas dynamics. Proc. Combust. Inst. 31, 1411–1418 (2007)CrossRef Boust, B., Sotton, J., Bellenoue, M.: Unsteady heat transfer during the turbulent combustion of a lean premixed methane–air flame: effect of pressure and gas dynamics. Proc. Combust. Inst. 31, 1411–1418 (2007)CrossRef
16.
go back to reference Boust, B., Sotton, J., Bellenoue, M.: Experimental study by high-speed particle image velocimetry of unsteady flame-wall inteaction in turbulent combustion. In: The International Symposia on Applications of Laser Techniques to Fluid Mechanics 13 (2006) Boust, B., Sotton, J., Bellenoue, M.: Experimental study by high-speed particle image velocimetry of unsteady flame-wall inteaction in turbulent combustion. In: The International Symposia on Applications of Laser Techniques to Fluid Mechanics 13 (2006)
17.
go back to reference Bruneaux, G., Akselvoll, K., Poinsot, T., Ferziger, J.H.: Flame-wall interaction simulation in a turbulent channel flow. Combust. Flame 107, 27–36 (1996)CrossRef Bruneaux, G., Akselvoll, K., Poinsot, T., Ferziger, J.H.: Flame-wall interaction simulation in a turbulent channel flow. Combust. Flame 107, 27–36 (1996)CrossRef
18.
go back to reference Jainski, C., Lu, L., Sick, V., Dreizler, A.: Laser imaging investigation of transient heat transfer processes in turbulent nitrogen jets impinging on a heated wall. Int. J. Heat Mass Tran. 74, 101–112 (2014)CrossRef Jainski, C., Lu, L., Sick, V., Dreizler, A.: Laser imaging investigation of transient heat transfer processes in turbulent nitrogen jets impinging on a heated wall. Int. J. Heat Mass Tran. 74, 101–112 (2014)CrossRef
19.
go back to reference Borghi, R., Casci, C.: On the structure and morphology of turbulent premixed flames. Recent Advances in the Aerospace Sciences, 117–138 (1985) Borghi, R., Casci, C.: On the structure and morphology of turbulent premixed flames. Recent Advances in the Aerospace Sciences, 117–138 (1985)
20.
go back to reference Slavinskaya, N.A., Frank, P.: A modelling study of aromatic soot precursors formation in laminar methane and ethene flames. Combust. Flame 156, 1705–1722 (2009)CrossRef Slavinskaya, N.A., Frank, P.: A modelling study of aromatic soot precursors formation in laminar methane and ethene flames. Combust. Flame 156, 1705–1722 (2009)CrossRef
21.
go back to reference Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion. Self-Publishing, Bordeaux, France (2012) Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion. Self-Publishing, Bordeaux, France (2012)
22.
go back to reference Renou, B., Boukhalfa, A.: An experimental study of freely propagating premixed flames at various lewis numbers. Combust. Sci. Technol. 162, 347–370 (2001)CrossRef Renou, B., Boukhalfa, A.: An experimental study of freely propagating premixed flames at various lewis numbers. Combust. Sci. Technol. 162, 347–370 (2001)CrossRef
23.
go back to reference Kobayashi, H., Kawabata, Y., Maruta, K.: Experimental study on general correlation of turbulent burning velocity at high pressure. Symp. Int. Combust. Proc. 27, 941–948 (1998)CrossRef Kobayashi, H., Kawabata, Y., Maruta, K.: Experimental study on general correlation of turbulent burning velocity at high pressure. Symp. Int. Combust. Proc. 27, 941–948 (1998)CrossRef
24.
go back to reference Malm, H., Sparr, G., Hult, J., Kaminski, C.F.: Nonlinear diffusion filtering of images obtained by planar laser-induced fluorescence spectroscopy. J. Opt. Soc. Am. A 17, 2148 (2000)CrossRef Malm, H., Sparr, G., Hult, J., Kaminski, C.F.: Nonlinear diffusion filtering of images obtained by planar laser-induced fluorescence spectroscopy. J. Opt. Soc. Am. A 17, 2148 (2000)CrossRef
25.
go back to reference Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Machine Intell. 12, 629–639 (1990)CrossRef Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Machine Intell. 12, 629–639 (1990)CrossRef
26.
go back to reference Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698 (1986)CrossRef Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698 (1986)CrossRef
27.
go back to reference Jainski, C., Rißmann, M., Böhm, B., Dreizler, A.: Experimental investigation of flame surface density and mean reaction rate during flame–wall interaction. Proc. Combust. Inst. (2016, in press) Jainski, C., Rißmann, M., Böhm, B., Dreizler, A.: Experimental investigation of flame surface density and mean reaction rate during flame–wall interaction. Proc. Combust. Inst. (2016, in press)
28.
go back to reference Trouvé, A., Poinsot, T.: The evolution equation for the flame surface density in turbulent premixed combustion. J. Fluid Mech. 278, 1–31 (1994)MathSciNetCrossRefMATH Trouvé, A., Poinsot, T.: The evolution equation for the flame surface density in turbulent premixed combustion. J. Fluid Mech. 278, 1–31 (1994)MathSciNetCrossRefMATH
29.
go back to reference Muppala, S.R., Aluri, N.K., Dinkelacker, F., Leipertz, A.: Development of an algebraic reaction rate closure for the numerical calculation of turbulent premixed methane, ethylene, and propane/air flames for pressures up to 1.0 MPa. Combust. Flame 140, 257–266 (2005)CrossRef Muppala, S.R., Aluri, N.K., Dinkelacker, F., Leipertz, A.: Development of an algebraic reaction rate closure for the numerical calculation of turbulent premixed methane, ethylene, and propane/air flames for pressures up to 1.0 MPa. Combust. Flame 140, 257–266 (2005)CrossRef
30.
go back to reference Peterson, B., Baum, E., Böhm, B., Dreizler, A.: Early flame propagation in a spark-ignition engine measured with quasi 4D-diagnostics. Proc. Combust. Inst. 35, 3829–3837 (2015)CrossRef Peterson, B., Baum, E., Böhm, B., Dreizler, A.: Early flame propagation in a spark-ignition engine measured with quasi 4D-diagnostics. Proc. Combust. Inst. 35, 3829–3837 (2015)CrossRef
Metadata
Title
Flame-Flow Interaction in Premixed Turbulent Flames During Transient Head-On Quenching
Authors
Martin Rißmann
Christopher Jainski
Markus Mann
Andreas Dreizler
Publication date
24-12-2016
Publisher
Springer Netherlands
Published in
Flow, Turbulence and Combustion / Issue 4/2017
Print ISSN: 1386-6184
Electronic ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-016-9795-5

Other articles of this Issue 4/2017

Flow, Turbulence and Combustion 4/2017 Go to the issue

Premium Partners