Skip to main content
Top
Published in:
Cover of the book

2017 | OriginalPaper | Chapter

Flash Sintering of Ceramics: A Short Review

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

“Flash sintering” occurs when an electrical potential difference is applied across a ceramic powder compact and is characterised by an electrical power surge at a specific combination of electric field and temperature, accompanied by extremely rapid densification. The phenomenon is easy to reproduce but the mechanisms responsible remain controversial. This paper reviews the evidence available and examines the thermo-electrical response and densification at high heating rates, concentrating mainly on 3YSZ, which was the first ceramic to be sintered in this way and on which most research has been conducted. The mechanisms which may be responsible for the phenomenon are discussed and areas requiring further investigation are highlighted.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Hill, M.E. Taylor, G.S. Mikhalapov, E.G. Touceda, C.L. Clark, W.V. Knopp, J.D. Shaw, Production of cermets by flash sintering process, WADC Technical Report 52–106 (1952) M. Hill, M.E. Taylor, G.S. Mikhalapov, E.G. Touceda, C.L. Clark, W.V. Knopp, J.D. Shaw, Production of cermets by flash sintering process, WADC Technical Report 52–106 (1952)
2.
go back to reference M. Cologna, B. Rashkova, R. Raj, Flash sintering of nanograin zirconia in <5 s at 850 °C. J. Am. Ceram. Soc. 93, 3556–3559 (2010)CrossRef M. Cologna, B. Rashkova, R. Raj, Flash sintering of nanograin zirconia in <5 s at 850 °C. J. Am. Ceram. Soc. 93, 3556–3559 (2010)CrossRef
3.
go back to reference M. Cologna, A.L.G. Prette, R. Raj, Flash-sintering of cubic yttria-stabilized zirconia at 750 °C for possible use in SOFC Manufacturing. J. Am. Ceram. Soc. 94, 316–319 (2011) M. Cologna, A.L.G. Prette, R. Raj, Flash-sintering of cubic yttria-stabilized zirconia at 750 °C for possible use in SOFC Manufacturing. J. Am. Ceram. Soc. 94, 316–319 (2011)
4.
go back to reference R. Muccillo, E.N.S. Muccillo, M. Kleitz, Densification and enhancement of the grain boundary conductivity of gadolinium-doped barium cerate by ultra fast flash grain welding. J. Eur. Ceram. Soc. 32, 2311–2316 (2012)CrossRef R. Muccillo, E.N.S. Muccillo, M. Kleitz, Densification and enhancement of the grain boundary conductivity of gadolinium-doped barium cerate by ultra fast flash grain welding. J. Eur. Ceram. Soc. 32, 2311–2316 (2012)CrossRef
5.
go back to reference A.L.G. Prette, M. Cologna, V. Sglavo, R. Raj, Flash-sintering of Co2MnO4 spinel for solid oxide fuel cell applications. J. Power Sources 196, 2061–2065 (2011)CrossRef A.L.G. Prette, M. Cologna, V. Sglavo, R. Raj, Flash-sintering of Co2MnO4 spinel for solid oxide fuel cell applications. J. Power Sources 196, 2061–2065 (2011)CrossRef
6.
go back to reference F. Trombin, R. Raj, Developing processing maps for implementing flash sintering into manufacture of whiteware ceramics. Am. Ceram. Soc. Bull. 93, 32–35 (2014) F. Trombin, R. Raj, Developing processing maps for implementing flash sintering into manufacture of whiteware ceramics. Am. Ceram. Soc. Bull. 93, 32–35 (2014)
7.
go back to reference E. Zapata-Solvas, S. Bonilla, P.R. Wilshaw, R.I. Todd, Preliminary investigation of flash sintering of SiC. J. Eur. Ceram. Soc. 33, 2811–2816 (2013)CrossRef E. Zapata-Solvas, S. Bonilla, P.R. Wilshaw, R.I. Todd, Preliminary investigation of flash sintering of SiC. J. Eur. Ceram. Soc. 33, 2811–2816 (2013)CrossRef
8.
go back to reference R.I. Todd, E. Zapata-Solvas, R.S. Bonilla, T. Sneddon, P.R. Wilshaw, Electrical characteristics of flash sintering: thermal runaway of Joule heating. J. Eur. Ceram. Soc. 35, 1865–1877 (2015)CrossRef R.I. Todd, E. Zapata-Solvas, R.S. Bonilla, T. Sneddon, P.R. Wilshaw, Electrical characteristics of flash sintering: thermal runaway of Joule heating. J. Eur. Ceram. Soc. 35, 1865–1877 (2015)CrossRef
9.
go back to reference Y. Zhang, J.-I. Jung, J. Luo, Thermal runaway, flash sintering and asymmetrical microstructural development of ZnO and ZnO-Bi2O3 under direct currents. Acta Mater. 94, 87–100 (2015)CrossRef Y. Zhang, J.-I. Jung, J. Luo, Thermal runaway, flash sintering and asymmetrical microstructural development of ZnO and ZnO-Bi2O3 under direct currents. Acta Mater. 94, 87–100 (2015)CrossRef
10.
go back to reference E. Zapata-Solvas, D. Gomez-Garcıa, A. Dominguez-Rodriguez, R.I. Todd, Ultra-fast and energy-efficient sintering of ceramics by electric current concentration. Sci. Rep. 5 (2015) article no. 8513. doi:10.1038/srep08513 E. Zapata-Solvas, D. Gomez-Garcıa, A. Dominguez-Rodriguez, R.I. Todd, Ultra-fast and energy-efficient sintering of ceramics by electric current concentration. Sci. Rep. 5 (2015) article no. 8513. doi:10.​1038/​srep08513
11.
go back to reference S. Grasso, T. Saunders, H. Porwal, O. Cedillos-Barraza, D.D. Jayaseelan, W.E. Lee et al., Flash spark plasma sintering (FSPS) of pure ZrB2. J. Am. Ceram. Soc. 97, 2405–2408 (2014)CrossRef S. Grasso, T. Saunders, H. Porwal, O. Cedillos-Barraza, D.D. Jayaseelan, W.E. Lee et al., Flash spark plasma sintering (FSPS) of pure ZrB2. J. Am. Ceram. Soc. 97, 2405–2408 (2014)CrossRef
12.
go back to reference R. Raj, Joule heating during flash-sintering. J. Eur. Ceram. Soc. 32, 2293–2301 (2012)CrossRef R. Raj, Joule heating during flash-sintering. J. Eur. Ceram. Soc. 32, 2293–2301 (2012)CrossRef
13.
go back to reference K. Terauds, J.M. Lebrun, H.H. Lee, T.Y. Jeon, S.H. Lee, J.H. Je, R. Raj, Electroluminescence and the measurement of temperature during stage III of flash sintering experiments. J. Eur. Ceram. Soc. 35, 3195–3199 (2015) K. Terauds, J.M. Lebrun, H.H. Lee, T.Y. Jeon, S.H. Lee, J.H. Je, R. Raj, Electroluminescence and the measurement of temperature during stage III of flash sintering experiments. J. Eur. Ceram. Soc. 35, 3195–3199 (2015)
14.
go back to reference R. Muccillo, E.N.S. Muccillo, Shrinkage control of yttria-stabilized zirconia during ac electric field-assisted sintering. J. Eur. Ceram. Soc. 34, 3871–3877 (2014)CrossRef R. Muccillo, E.N.S. Muccillo, Shrinkage control of yttria-stabilized zirconia during ac electric field-assisted sintering. J. Eur. Ceram. Soc. 34, 3871–3877 (2014)CrossRef
15.
go back to reference L.B. Caliman, R. Bouchet, D. Gouvea, P. Soudant, M. Steil, Flash sintering of ionic conductors: the need of a reversible electrochemical reaction. J. Eur. Ceram. Soc. 36, 1253–1260 (2016)CrossRef L.B. Caliman, R. Bouchet, D. Gouvea, P. Soudant, M. Steil, Flash sintering of ionic conductors: the need of a reversible electrochemical reaction. J. Eur. Ceram. Soc. 36, 1253–1260 (2016)CrossRef
16.
go back to reference M. Biesuz, V.M. Sglavo, Flash sintering of alumina: effect of different operating conditions on densification. J. Eur. Ceram. Soc. 36, 2535–2542 (2016)CrossRef M. Biesuz, V.M. Sglavo, Flash sintering of alumina: effect of different operating conditions on densification. J. Eur. Ceram. Soc. 36, 2535–2542 (2016)CrossRef
17.
go back to reference S. Ghosh, A.H. Chokshi, P. Lee, R. Raj, A huge effect of weak dc electrical fields on grain growth in zirconia. J. Am. Ceram. Soc. 92, 1856–1859 (2009)CrossRef S. Ghosh, A.H. Chokshi, P. Lee, R. Raj, A huge effect of weak dc electrical fields on grain growth in zirconia. J. Am. Ceram. Soc. 92, 1856–1859 (2009)CrossRef
18.
go back to reference D. Yang, R. Raj, H. Conrad, Enhanced sintering rate of zirconia (3Y-TZP) through the effect of a weak dc electric field on grain growth. J. Am. Ceram. Soc. 93, 2935–2937 (2010)CrossRef D. Yang, R. Raj, H. Conrad, Enhanced sintering rate of zirconia (3Y-TZP) through the effect of a weak dc electric field on grain growth. J. Am. Ceram. Soc. 93, 2935–2937 (2010)CrossRef
19.
go back to reference R. Chaim, Liquid film capillary mechanism for densification of ceramic powders during flash sintering. Materials 9 (2016) article no. 280 R. Chaim, Liquid film capillary mechanism for densification of ceramic powders during flash sintering. Materials 9 (2016) article no. 280
20.
go back to reference R. Raj, M. Cologna, J.S. Francis, Influence of externally imposed and internally generated electrical fields on grain growth, diffusional creep, sintering and related phenomena in ceramics. J. Am. Ceram. Soc. 94, 1941–1965 (2011)CrossRef R. Raj, M. Cologna, J.S. Francis, Influence of externally imposed and internally generated electrical fields on grain growth, diffusional creep, sintering and related phenomena in ceramics. J. Am. Ceram. Soc. 94, 1941–1965 (2011)CrossRef
21.
go back to reference K.S. Naik, V.M. Sglavo, R. Raj, Flash sintering as a nucleation phenomenon and a model thereof. J. Eur. Ceram. Soc. 34, 4063–4067 (2014)CrossRef K.S. Naik, V.M. Sglavo, R. Raj, Flash sintering as a nucleation phenomenon and a model thereof. J. Eur. Ceram. Soc. 34, 4063–4067 (2014)CrossRef
22.
go back to reference Y.Y. Zhang, J.I. Jung, J. Luo, Thermal runaway, flash sintering and asymmetrical microstructural development of ZnO and ZnO-Bi2O3 under direct currents. Acta Mater. 94, 87–100 (2015)CrossRef Y.Y. Zhang, J.I. Jung, J. Luo, Thermal runaway, flash sintering and asymmetrical microstructural development of ZnO and ZnO-Bi2O3 under direct currents. Acta Mater. 94, 87–100 (2015)CrossRef
23.
go back to reference E. Bichaud, J.M. Chaix, C. Carry, M. Kleitz, M.C. Steil, Flash sintering incubation in Al2O3/TZP composites. J. Eur. Ceram. Soc. 35, 2587–2592 (2015)CrossRef E. Bichaud, J.M. Chaix, C. Carry, M. Kleitz, M.C. Steil, Flash sintering incubation in Al2O3/TZP composites. J. Eur. Ceram. Soc. 35, 2587–2592 (2015)CrossRef
24.
go back to reference J.G.P. da Silva, H.A. Al-Qureshi, F. Keil, R. Janssen, A dynamic bifurcation criterion for thermal runaway during the flash sintering of ceramics. J. Eur. Ceram. Soc. 36, 1261–1267 (2016)CrossRef J.G.P. da Silva, H.A. Al-Qureshi, F. Keil, R. Janssen, A dynamic bifurcation criterion for thermal runaway during the flash sintering of ceramics. J. Eur. Ceram. Soc. 36, 1261–1267 (2016)CrossRef
25.
go back to reference J.-M. Lebrun, T.G. Morrissey, J.S.C. Francis, K.C. Seymour, W.M. Kriven, R. Raj, Emergence and extinction of a new phase during on–off experiments related to flash sintering of 3YSZ. J. Am. Ceram. Soc. 98, 1493–1497 (2015)CrossRef J.-M. Lebrun, T.G. Morrissey, J.S.C. Francis, K.C. Seymour, W.M. Kriven, R. Raj, Emergence and extinction of a new phase during on–off experiments related to flash sintering of 3YSZ. J. Am. Ceram. Soc. 98, 1493–1497 (2015)CrossRef
26.
go back to reference S.K. Jha, J.M. Lebrun, R. Raj, Phase transformation in the alumina-titania system during flash sintering experiments. J. Eur. Ceram. Soc. 36, 733–739 (2016)CrossRef S.K. Jha, J.M. Lebrun, R. Raj, Phase transformation in the alumina-titania system during flash sintering experiments. J. Eur. Ceram. Soc. 36, 733–739 (2016)CrossRef
27.
go back to reference P. Vergnon, F. Juillet, S.J. Teichner, Influence de la vitesse de montée en temperature sur le frottage d’alumine pure en particules homodispersée. Rev. Hautes Tempér. et Réfract. 3, 409–419 (1966) P. Vergnon, F. Juillet, S.J. Teichner, Influence de la vitesse de montée en temperature sur le frottage d’alumine pure en particules homodispersée. Rev. Hautes Tempér. et Réfract. 3, 409–419 (1966)
28.
go back to reference I. Wynn-Jones, L.J. Miles, Production of β-Al2O3 electrolyte. Proc. Br. Ceram. Soc. 19, 161–178 (1971) I. Wynn-Jones, L.J. Miles, Production of β-Al2O3 electrolyte. Proc. Br. Ceram. Soc. 19, 161–178 (1971)
29.
go back to reference M.P. Harmer, E.W. Roberts, R.J. Brook, Rapid sintering of pure and doped α-Al2O3. Trans. Br. Ceram. Soc. 78, 22–25 (1979) M.P. Harmer, E.W. Roberts, R.J. Brook, Rapid sintering of pure and doped α-Al2O3. Trans. Br. Ceram. Soc. 78, 22–25 (1979)
30.
go back to reference E.L. Kemer, D.L. Johnson, Microwave plasma sintering of alumina. Am. Ceram. Soc. Bull. 64, 1132–1136 (1985) E.L. Kemer, D.L. Johnson, Microwave plasma sintering of alumina. Am. Ceram. Soc. Bull. 64, 1132–1136 (1985)
31.
go back to reference M.P. Harmer, R.J. Brook, Fast Firing: microstructural benefits. J. Brit. Ceram. Soc. 80, 147–148 (1981) M.P. Harmer, R.J. Brook, Fast Firing: microstructural benefits. J. Brit. Ceram. Soc. 80, 147–148 (1981)
32.
go back to reference J.Y. Zhang, F.C. Meng, R.I. Todd, Z.Y. Fu, The nature of grain boundaries in alumina fabricated by fast sintering. Scripta Mater. 62, 658–661 (2010)CrossRef J.Y. Zhang, F.C. Meng, R.I. Todd, Z.Y. Fu, The nature of grain boundaries in alumina fabricated by fast sintering. Scripta Mater. 62, 658–661 (2010)CrossRef
Metadata
Title
Flash Sintering of Ceramics: A Short Review
Author
R. I. Todd
Copyright Year
2017
Publisher
Atlantis Press
DOI
https://doi.org/10.2991/978-94-6239-213-7_1

Premium Partners