Skip to main content
Top

2019 | OriginalPaper | Chapter

6. Flight in Non-spherical Gravity Fields

Author : Ashish Tewari

Published in: Optimal Space Flight Navigation

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Spaceflight involving orbital transfers around irregularly shaped bodies or in the gravity field of several large bodies is fundamentally different from the flight in the gravity field of a single spherical body, which was covered in the previous chapters. The primary reason for this difference is that the spacecraft is no longer in a time-invariant gravity field of the two-body problem, but instead encounters a time-dependent field due to the relative motion of the multiple large bodies with respect to one another, or due to the changing position of the spacecraft relative to a rotating, non-spherical body.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
A different state-space representation is obtained by replacing the generalized momentum vector, p, with the velocity, \(\dot {\mathbf {q}}\):
$$\displaystyle \begin{aligned} \mathbf{f}(\mathbf{X})=\left\{\begin{array}{c}\dot{\mathbf{q}}\\\ddot{\mathbf{q}} \end{array}\right\}=\left\{\begin{array}{c}\dot{\mathbf{q}}\\{\mathbf{K}}^T\mathbf{K}\mathbf{q}-\nabla_q(U)+2\mathbf{K}\dot{\mathbf{q}} \end{array}\right\} \end{aligned}$$
whose Jacobian is given by
$$\displaystyle \begin{aligned} {\mathbf{f}}^{\prime}(\mathbf{X})=\left(\begin{array}{cccc}\mathbf{0} &&& \mathbf{I}\\\varOmega_{\mathbf{qq}} &&& 2\mathbf{K} \end{array}\right) \end{aligned}$$
 
Literature
1.
go back to reference Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1974)MATH Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1974)MATH
2.
go back to reference Anderson, R.L., Lo, M.W.: Role of invariant manifolds in low-thrust trajectory design. J. Guid. Control. Dyn. 32, 1921–1930 (2009)CrossRef Anderson, R.L., Lo, M.W.: Role of invariant manifolds in low-thrust trajectory design. J. Guid. Control. Dyn. 32, 1921–1930 (2009)CrossRef
5.
go back to reference Bai, X., Junkins, J.L.: Modified Chebyshev-Picard iteration methods for station-keeping of translunar halo orbits. Math. Probl. Eng. 2012, 1–18 (2012)MathSciNetMATH Bai, X., Junkins, J.L.: Modified Chebyshev-Picard iteration methods for station-keeping of translunar halo orbits. Math. Probl. Eng. 2012, 1–18 (2012)MathSciNetMATH
6.
go back to reference Bando, M., Scheeres, D.J.: Attractive sets to unstable orbits using optimal feedback control. J. Guid. Control. Dyn. 39, 2725–2739 (2016)CrossRef Bando, M., Scheeres, D.J.: Attractive sets to unstable orbits using optimal feedback control. J. Guid. Control. Dyn. 39, 2725–2739 (2016)CrossRef
8.
go back to reference Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics. AIAA Education Series, Reston (1999) Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics. AIAA Education Series, Reston (1999)
18.
go back to reference Breakwell, J.V., Kamel, A.A., Ratner, M.J.: Station-keeping for a translunar communication station. Celest. Mech. 10, 357–373 (1974)MathSciNetCrossRef Breakwell, J.V., Kamel, A.A., Ratner, M.J.: Station-keeping for a translunar communication station. Celest. Mech. 10, 357–373 (1974)MathSciNetCrossRef
20.
go back to reference Byrnes, D.V.: Application of the pseudostate theory to the three-body lambert problem. J. Astronaut. Sci. 37, 221–232 (1989)MathSciNet Byrnes, D.V.: Application of the pseudostate theory to the three-body lambert problem. J. Astronaut. Sci. 37, 221–232 (1989)MathSciNet
22.
go back to reference Celletti, A., Pucacco, G., Stella, D.: Lissajous and halo orbits in the restricted three-body problem. J. Nonlinear Sci. 25, 343–370 (2015)MathSciNetCrossRef Celletti, A., Pucacco, G., Stella, D.: Lissajous and halo orbits in the restricted three-body problem. J. Nonlinear Sci. 25, 343–370 (2015)MathSciNetCrossRef
25.
go back to reference Conway, B.A. (ed.): Spacecraft Trajectory Optimization. Cambridge University Press, New York (2010) Conway, B.A. (ed.): Spacecraft Trajectory Optimization. Cambridge University Press, New York (2010)
27.
go back to reference Dunham, D.W., Davis, S.A.: Optimization of a multiple Lunar-Swingby trajectory sequence. J. Astronaut. Sci. 33, 275–288 (1985) Dunham, D.W., Davis, S.A.: Optimization of a multiple Lunar-Swingby trajectory sequence. J. Astronaut. Sci. 33, 275–288 (1985)
29.
go back to reference Farquhar, R.W.: The control and use of libration-point satellites. Goddard space flight center, Tech. Rep. NASA TR R-346 (September 1970) Farquhar, R.W.: The control and use of libration-point satellites. Goddard space flight center, Tech. Rep. NASA TR R-346 (September 1970)
30.
go back to reference Farquhar, R.W., Kamel, A.A.: Quasi-periodic orbits about the translunar libration point. Celest. Mech. 7, 458–473 (1973)CrossRef Farquhar, R.W., Kamel, A.A.: Quasi-periodic orbits about the translunar libration point. Celest. Mech. 7, 458–473 (1973)CrossRef
33.
go back to reference Ghorbani, M., Assadian, N.: Optimal station-keeping near Earth-Moon collinear libration points using continuous and impulsive maneuvers. Adv. Space Res. 52, 2067–2079 (2013)CrossRef Ghorbani, M., Assadian, N.: Optimal station-keeping near Earth-Moon collinear libration points using continuous and impulsive maneuvers. Adv. Space Res. 52, 2067–2079 (2013)CrossRef
35.
go back to reference Gomez, G., Howell, K.C., Simo, C., Masdemont, J.: Station-keeping strategies for translunar libration point orbits. In: Proceedings of AAS/AIAA Spaceflight Mechanics Meeting, AAS Paper 98-168, Monterey (1998) Gomez, G., Howell, K.C., Simo, C., Masdemont, J.: Station-keeping strategies for translunar libration point orbits. In: Proceedings of AAS/AIAA Spaceflight Mechanics Meeting, AAS Paper 98-168, Monterey (1998)
36.
go back to reference Gomez, G., Masdemont, J., Simo, C.: Quasihalo orbits associated with libration points. J. Astronaut. Sci. 46, 135–176 (1998)MathSciNet Gomez, G., Masdemont, J., Simo, C.: Quasihalo orbits associated with libration points. J. Astronaut. Sci. 46, 135–176 (1998)MathSciNet
37.
go back to reference Gomez, G., Koon, W.S., Lo, M.W., Marsden, J.E., Masdemont, J., Ross, S.D.: Connecting orbits and invariant manifolds in the spatial restricted three-body problem. Nonlinearity 17, 1571–1606 (2004)MathSciNetCrossRef Gomez, G., Koon, W.S., Lo, M.W., Marsden, J.E., Masdemont, J., Ross, S.D.: Connecting orbits and invariant manifolds in the spatial restricted three-body problem. Nonlinearity 17, 1571–1606 (2004)MathSciNetCrossRef
38.
go back to reference Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)CrossRef Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)CrossRef
41.
go back to reference Howell, K., Barden, B., Lo, M.: Application of dynamical systems theory to trajectory design for a libration point mission. J. Astronaut. Sci. 45, 161–178 (1997)MathSciNet Howell, K., Barden, B., Lo, M.: Application of dynamical systems theory to trajectory design for a libration point mission. J. Astronaut. Sci. 45, 161–178 (1997)MathSciNet
43.
go back to reference Jones, B.L., Bishop, R.L.: H 2 optimal halo orbit guidance. J. Guid. Control. Dyn. 16, 1118–1124 (1993)CrossRef Jones, B.L., Bishop, R.L.: H 2 optimal halo orbit guidance. J. Guid. Control. Dyn. 16, 1118–1124 (1993)CrossRef
48.
go back to reference Kulkarni, J.E., Campbell, M.E., Dullerud, G.E.: Stabilization of spacecraft flight in halo orbits: an H ∞ approach. IEEE Trans. Control Syst. Technol. 14, 572–578 (2006)CrossRef Kulkarni, J.E., Campbell, M.E., Dullerud, G.E.: Stabilization of spacecraft flight in halo orbits: an H approach. IEEE Trans. Control Syst. Technol. 14, 572–578 (2006)CrossRef
54.
go back to reference Li, C., Liu, G., Huang, J., Gao, T., Guo, Y.: Stationkeeping control for libration point orbits using NMPC. In: Proceedings of AAS/AIAA Astrodynamics Specialist Conference, AAS Paper 15-692, Vail (2015) Li, C., Liu, G., Huang, J., Gao, T., Guo, Y.: Stationkeeping control for libration point orbits using NMPC. In: Proceedings of AAS/AIAA Astrodynamics Specialist Conference, AAS Paper 15-692, Vail (2015)
55.
go back to reference Lian, Y., Gomez, G., Masdemont, J.J., Tang, G.: Station keeping of real Earth-Moon libration point orbits using discrete-time sliding mode approach. Commun. Nonlinear Sci. Numer. Simul. 19, 3792–3807 (2014)MathSciNetCrossRef Lian, Y., Gomez, G., Masdemont, J.J., Tang, G.: Station keeping of real Earth-Moon libration point orbits using discrete-time sliding mode approach. Commun. Nonlinear Sci. Numer. Simul. 19, 3792–3807 (2014)MathSciNetCrossRef
56.
go back to reference Macdonald, M., McInnes, C.R.: Analytical control laws for planet-centred solar sailing. J. Guid. Control. Dyn. 28, 1038–1048 (2005)CrossRef Macdonald, M., McInnes, C.R.: Analytical control laws for planet-centred solar sailing. J. Guid. Control. Dyn. 28, 1038–1048 (2005)CrossRef
58.
go back to reference Marinca, V., Herisanu, N.: Nonlinear Dynamical Systems in Engineering. Springer, Berlin (2012)MATH Marinca, V., Herisanu, N.: Nonlinear Dynamical Systems in Engineering. Springer, Berlin (2012)MATH
60.
go back to reference Meyer, K.R., Hall, G.R.: Introduction to Hamiltonian Dynamical Systems and the N-body Problem. Springer, New York (1992)CrossRef Meyer, K.R., Hall, G.R.: Introduction to Hamiltonian Dynamical Systems and the N-body Problem. Springer, New York (1992)CrossRef
62.
go back to reference Moritz, H.: Advanced Physical Geodesy. Abacus Press, New York (1980) Moritz, H.: Advanced Physical Geodesy. Abacus Press, New York (1980)
63.
go back to reference Nazari, M., Anthony, W., Butcher, E.A.: Continuous thrust stationkeeping in Earth-Moon L 1 halo orbits based on LQR control and Floquet theory. In: Proceedings of AAS/AIAA Astrodynamics Specialist Conference, AIAA Paper 2014-4140, San Diego, CA (2014) Nazari, M., Anthony, W., Butcher, E.A.: Continuous thrust stationkeeping in Earth-Moon L 1 halo orbits based on LQR control and Floquet theory. In: Proceedings of AAS/AIAA Astrodynamics Specialist Conference, AIAA Paper 2014-4140, San Diego, CA (2014)
64.
go back to reference Otten, M., McInnes, C.R.: Near minimum-time trajectories for solar sails. J. Guid. Control. Dyn. 24, 632–634 (2001)CrossRef Otten, M., McInnes, C.R.: Near minimum-time trajectories for solar sails. J. Guid. Control. Dyn. 24, 632–634 (2001)CrossRef
66.
go back to reference Pavlak, T.A., Howell, K.C.: Strategy for optimal, long-term stationkeeping of libration point orbits in the Earth-Moon system. In: Proceedings of AAS/AIAA Astrodynamics Specialist Conference, AIAA Paper 2012-4665, Minneapolis (2012) Pavlak, T.A., Howell, K.C.: Strategy for optimal, long-term stationkeeping of libration point orbits in the Earth-Moon system. In: Proceedings of AAS/AIAA Astrodynamics Specialist Conference, AIAA Paper 2012-4665, Minneapolis (2012)
69.
go back to reference Richardson, D.L.: Analytic construction of periodic orbits about the collinear points. Celest. Mech. 22, 241–253 (1980)MathSciNetCrossRef Richardson, D.L.: Analytic construction of periodic orbits about the collinear points. Celest. Mech. 22, 241–253 (1980)MathSciNetCrossRef
70.
go back to reference Richardson, D.L.: Halo orbit formulation for the ISEE-3 mission. J. Guid. Control. Dyn. 3, 543–548 (1980)CrossRef Richardson, D.L.: Halo orbit formulation for the ISEE-3 mission. J. Guid. Control. Dyn. 3, 543–548 (1980)CrossRef
73.
go back to reference Shirobokov, M., Trofimov, S., Ovchinnikov, M.: Survey of station-keeping techniques for libration point orbits. J. Guid. Control. Dyn. 40, 1085–1105 (2017)CrossRef Shirobokov, M., Trofimov, S., Ovchinnikov, M.: Survey of station-keeping techniques for libration point orbits. J. Guid. Control. Dyn. 40, 1085–1105 (2017)CrossRef
74.
go back to reference Slotine, J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs (1991)MATH Slotine, J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs (1991)MATH
78.
go back to reference Szebehely, V.: Theory of Orbits: The Restricted Problem of Three Bodies. Academic, New York (1967)MATH Szebehely, V.: Theory of Orbits: The Restricted Problem of Three Bodies. Academic, New York (1967)MATH
79.
go back to reference Tewari, A.: Modern Control Design with MATLAB and Simulink. Wiley, Chichester (2002) Tewari, A.: Modern Control Design with MATLAB and Simulink. Wiley, Chichester (2002)
80.
go back to reference Tewari, A.: Atmospheric and Space Flight Dynamics–Modeling and Simulation with MATLAB and Simulink. Birkhäuser, Boston (2006)MATH Tewari, A.: Atmospheric and Space Flight Dynamics–Modeling and Simulation with MATLAB and Simulink. Birkhäuser, Boston (2006)MATH
82.
go back to reference Thurman, R., Worfolk, P.A.: Geometry of halo orbits in the circular restricted three-body problem. Technical Report GCG95, University of Minnesota, Minneapolis (1996) Thurman, R., Worfolk, P.A.: Geometry of halo orbits in the circular restricted three-body problem. Technical Report GCG95, University of Minnesota, Minneapolis (1996)
84.
go back to reference Werner, R.A., Scheeres, D.J.: Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 CASTALIA. Celest. Mech. Dyn. Astron. 65, 313–344 (1996)MATH Werner, R.A., Scheeres, D.J.: Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 CASTALIA. Celest. Mech. Dyn. Astron. 65, 313–344 (1996)MATH
85.
go back to reference Wertz, J.R. (ed.): Spacecraft Attitude Determination and Control. Kluwer Academic Publishers, Dordrecht (1978) Wertz, J.R. (ed.): Spacecraft Attitude Determination and Control. Kluwer Academic Publishers, Dordrecht (1978)
87.
go back to reference Yang, H., Bai, X., Baoyin, H.: Rapid generation of time-optimal trajectories for asteroid landing via convex optimization. J. Guid. Control. Dyn. 40, 628–641 (2017)CrossRef Yang, H., Bai, X., Baoyin, H.: Rapid generation of time-optimal trajectories for asteroid landing via convex optimization. J. Guid. Control. Dyn. 40, 628–641 (2017)CrossRef
88.
go back to reference Zhang, C., Zhao, Y.: Low-thrust minimum-fuel optimization in the circular restricted three-body problem. J. Guid. Control. Dyn. 38, 1501–1509 (2015)CrossRef Zhang, C., Zhao, Y.: Low-thrust minimum-fuel optimization in the circular restricted three-body problem. J. Guid. Control. Dyn. 38, 1501–1509 (2015)CrossRef
Metadata
Title
Flight in Non-spherical Gravity Fields
Author
Ashish Tewari
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-03789-5_6