Skip to main content
Top

2018 | OriginalPaper | Chapter

Flood Assessment of Lolab Valley from Watershed Characterization Using Remote Sensing and GIS Techniques

Authors : Mannan Bashir Wani, Syed Ahmad Ali, Umair Ali

Published in: Hydrologic Modeling

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The estimation of basin characteristics from the morphometric parameters assists in understanding the physical behavior of the watershed with respect to flooding. The remote sensing and geographical information system (GIS) are used for extraction of drainage boundary and order using ASTER digital elevation model (DEM), to evaluate the drainage characteristics. Additionally, sub-watershed-wise drainage parameters were analyzed to delineate the major influencing catchments with respect to flooding. The morphometric analysis for all the twelve sub-watersheds of the Lolab basin reveals that the sub-watersheds LSB 2, 4, 5, 10, 11 and LSB 12 are having the greater tendency to peak discharge in a short period of time because of high relief ratio (Rh), high ruggedness number, and less time of concentration (Tc). The sub-watersheds LSB1 and LSB11 having the highest drainage density (Dd), stream frequency (Fs), mean bifurcation ratio (Rbm), and infiltration number (If) cause greater runoff influence on the mainstream in the catchment. The LSB 3, 6 and LSB 7 sub-watersheds having higher form factor (Ff), medium drainage density (Dd), texture ratio (T), relief ratio (Rh), and time of concentration (Tc) cause moderate runoff influence toward mainstream. The study points out that DEM used in GIS environment for systematic analysis of drainage parameters offers valuable information about Lolab Basin with regard to flood assessment. This work will help in mitigating the hazard caused by flooding with respect to nature and human society. Thus, drainage characterization using remote sensing and GIS has made substantial contribution in flood monitoring and damage assessment.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Agarwal A, Narayan S (1991) State of India’s environment: floods. New Delhi: Center for Science and Environment Agarwal A, Narayan S (1991) State of India’s environment: floods. New Delhi: Center for Science and Environment
go back to reference Ahmed SA, Chandrashekarappa KN, Raj SK, Nischitha V, Kavitha G (2010) Evaluation of morphometric parameters derived from ASTER and SRTM DEM—a study on Bandihole sub-watershed basin in Karnataka. J Indian Soc Remote Sens 38:227–238 Ahmed SA, Chandrashekarappa KN, Raj SK, Nischitha V, Kavitha G (2010) Evaluation of morphometric parameters derived from ASTER and SRTM DEM—a study on Bandihole sub-watershed basin in Karnataka. J Indian Soc Remote Sens 38:227–238
go back to reference Alexander GN (1972) Effect of catchment area on flood magnitude. J Hydrol 16:225–240CrossRef Alexander GN (1972) Effect of catchment area on flood magnitude. J Hydrol 16:225–240CrossRef
go back to reference Ali SA, Alhamed M, Ali U (2016) Morphometric analysis of Abdan Basin, Almahfid basement rock, Yemen: using remote sensing and GIS. Int J Adv Remote Sens GIS 5(3):1605–1617 Ali SA, Alhamed M, Ali U (2016) Morphometric analysis of Abdan Basin, Almahfid basement rock, Yemen: using remote sensing and GIS. Int J Adv Remote Sens GIS 5(3):1605–1617
go back to reference Ali U, Ali SA (2014) Analysis of drainage morphometry and watershed prioritization of Romushi—Sasar catchment, Kashmir Valley, India using remote sensing and GIS technology. I Jour Adv Res 2(12):5–23 Ali U, Ali SA (2014) Analysis of drainage morphometry and watershed prioritization of Romushi—Sasar catchment, Kashmir Valley, India using remote sensing and GIS technology. I Jour Adv Res 2(12):5–23
go back to reference Altin TB, Altin BN (2011) Drainage morphometry and its influence on landforms in volcanic terrain, Central Anatolia, Turkey. Procedia Soc Behav Sci 19:732–740 Altin TB, Altin BN (2011) Drainage morphometry and its influence on landforms in volcanic terrain, Central Anatolia, Turkey. Procedia Soc Behav Sci 19:732–740
go back to reference Amee KT, Dhiman SD (2007) Morphometric analysis and prioritization of mini watersheds in Mohr watershed, Gujarat using remote sensing and GIS techniques. J Indian Soc Remote Sens 35:313–321 Amee KT, Dhiman SD (2007) Morphometric analysis and prioritization of mini watersheds in Mohr watershed, Gujarat using remote sensing and GIS techniques. J Indian Soc Remote Sens 35:313–321
go back to reference Angillieri MYE (2008) Morphometric analysis of Colangüil river basin and flash flood hazard, San Juan, Argentina. Environ Geol 55:107–111CrossRef Angillieri MYE (2008) Morphometric analysis of Colangüil river basin and flash flood hazard, San Juan, Argentina. Environ Geol 55:107–111CrossRef
go back to reference Bertolo F (2000) Catchment delineation and characterisation, catchment characterisation and modelling Euro landscape project. Ispra: Space Application Institute, Joint Research Center Bertolo F (2000) Catchment delineation and characterisation, catchment characterisation and modelling Euro landscape project. Ispra: Space Application Institute, Joint Research Center
go back to reference Bhatt S, Ahmed SA (2014) Morphometric analysis to determine floods in the upper Krishna basin using Cartosat DEM. Geocarto Int 29(8):878–894CrossRef Bhatt S, Ahmed SA (2014) Morphometric analysis to determine floods in the upper Krishna basin using Cartosat DEM. Geocarto Int 29(8):878–894CrossRef
go back to reference Chopra R, Dhiman RD, Sharma PK (2005) Morphometric analysis of sub-watersheds in Gurdaspur district, Punjab using remote sensing and GIS techniques. J Indian Soc Remote Sens 33:531–539 Chopra R, Dhiman RD, Sharma PK (2005) Morphometric analysis of sub-watersheds in Gurdaspur district, Punjab using remote sensing and GIS techniques. J Indian Soc Remote Sens 33:531–539
go back to reference Chorley RJ (1969) Introduction tofluvial processes. Methuen and Co., Limited, London, p 588 Chorley RJ (1969) Introduction tofluvial processes. Methuen and Co., Limited, London, p 588
go back to reference Dornkamp JC, King CAM (1971) Numerical analyses in geomorphology: an introduction. New York: St Martins, p 372 Dornkamp JC, King CAM (1971) Numerical analyses in geomorphology: an introduction. New York: St Martins, p 372
go back to reference Eze BE, Efiong J (2010) Morphometric parameters of the Calabar River basin: implication forhydrologic processes. J Geogr Geol 2:18–26 Eze BE, Efiong J (2010) Morphometric parameters of the Calabar River basin: implication forhydrologic processes. J Geogr Geol 2:18–26
go back to reference Fairfiled J, Leymarie P (1991) Drainage network from grid digital elevation models. Water Resour Res 30:1681–1692 Fairfiled J, Leymarie P (1991) Drainage network from grid digital elevation models. Water Resour Res 30:1681–1692
go back to reference Faniran A (1968) The index of drainage intensity–a provisional new drainage factor. Aust J Sci 31:328–330 Faniran A (1968) The index of drainage intensity–a provisional new drainage factor. Aust J Sci 31:328–330
go back to reference Garbrecht J, Martz LW (1999) Digital elevation model issues in water resources modeling. Proceedings of the 19th Esri Users Conference; San Diego (CA) Garbrecht J, Martz LW (1999) Digital elevation model issues in water resources modeling. Proceedings of the 19th Esri Users Conference; San Diego (CA)
go back to reference Gregory KJ, Walling DE (1973) Drainage form and process: a geomorphological approach. New York (NY): Wiley, p 456 Gregory KJ, Walling DE (1973) Drainage form and process: a geomorphological approach. New York (NY): Wiley, p 456
go back to reference Grohmann CH (2004) Morphometric analysis in geographic information systems: applications of free software GRASS and R. Comput & Geosci 30(9–10):1055–1067 Grohmann CH (2004) Morphometric analysis in geographic information systems: applications of free software GRASS and R. Comput & Geosci 30(9–10):1055–1067
go back to reference Hlaing TK, Haruyama S, Aye MM (2008) Using GIS-based distributed soil loss modeling and morphometric analysis to prioritize watershed for soil conservation in Bago river basin of lower Myanmar Front. Earth Sci China 2:465–478 Hlaing TK, Haruyama S, Aye MM (2008) Using GIS-based distributed soil loss modeling and morphometric analysis to prioritize watershed for soil conservation in Bago river basin of lower Myanmar Front. Earth Sci China 2:465–478
go back to reference Horton RE (1932) Drainage basin characteristics. Trans Am Geophys Union 13:350–361CrossRef Horton RE (1932) Drainage basin characteristics. Trans Am Geophys Union 13:350–361CrossRef
go back to reference Horton RE (1945) Erosional development of streams and their drainage basins: hydro physical approach to quantitative morphology. Bull GeolSoc Am 56:276–370 Horton RE (1945) Erosional development of streams and their drainage basins: hydro physical approach to quantitative morphology. Bull GeolSoc Am 56:276–370
go back to reference Jain V, Sinha R (2003) Evaluation of geomorphic control on flood hazard through geomorphic instantaneous unit hydrograph. Curr Sci 85:1596–1600 Jain V, Sinha R (2003) Evaluation of geomorphic control on flood hazard through geomorphic instantaneous unit hydrograph. Curr Sci 85:1596–1600
go back to reference Korkalainen THJ, Lauren AM, Kokkonen TS (2007) A GIS based analysis of catchment properties within a drumlin field. Boreal Environ Res 12:489–500 Korkalainen THJ, Lauren AM, Kokkonen TS (2007) A GIS based analysis of catchment properties within a drumlin field. Boreal Environ Res 12:489–500
go back to reference Kumar R, Kumar S, Lohani AK, Nema RK, Singh RD (2000) Evaluation of geomorphological characteristics of a catchment using GIS. GIS India 9:13–17 Kumar R, Kumar S, Lohani AK, Nema RK, Singh RD (2000) Evaluation of geomorphological characteristics of a catchment using GIS. GIS India 9:13–17
go back to reference Lattif AA, Sherief Y (2012) Morphometric analysis andflash floods of WadiSudr and WadiWardan, Gulf of Suez, Egypt: using digital elevation model. Arab J Geosci 5:181–195CrossRef Lattif AA, Sherief Y (2012) Morphometric analysis andflash floods of WadiSudr and WadiWardan, Gulf of Suez, Egypt: using digital elevation model. Arab J Geosci 5:181–195CrossRef
go back to reference Magesh NS, Chandrasekar N, Soundranayagam JP (2011) Morphometric evaluation of Papanasam and Manimuthar watersheds, parts of Western Ghats, Tirunelveli district, Tamil Nadu, India: a GIS approach. J Indian Soc Remote Sens 64:373–381 Magesh NS, Chandrasekar N, Soundranayagam JP (2011) Morphometric evaluation of Papanasam and Manimuthar watersheds, parts of Western Ghats, Tirunelveli district, Tamil Nadu, India: a GIS approach. J Indian Soc Remote Sens 64:373–381
go back to reference Maidment DR (2002) Arc Hydro: GIS for water resources. Redlands (CA): ESRI Press Maidment DR (2002) Arc Hydro: GIS for water resources. Redlands (CA): ESRI Press
go back to reference Mark DM (1983) Relations between field-surveyed channel networks and map-based geomorphometric measures, Inez, Kentucky. Ann Assoc Am Geogr 73:358–372CrossRef Mark DM (1983) Relations between field-surveyed channel networks and map-based geomorphometric measures, Inez, Kentucky. Ann Assoc Am Geogr 73:358–372CrossRef
go back to reference Miller VC (1953) A quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain area. Virginia and Tennessee, Proj. NR 389-402, Technical report 3, Columbia University, Department of Geology, ONR, New York (NY) Miller VC (1953) A quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain area. Virginia and Tennessee, Proj. NR 389-402, Technical report 3, Columbia University, Department of Geology, ONR, New York (NY)
go back to reference Nag SK (1998) Morphometric analysis using remote sensing techniques in the Chaka sub-basin, Purulia district, West Bengal. J Indian Soc Remote Sens 26:69–76CrossRef Nag SK (1998) Morphometric analysis using remote sensing techniques in the Chaka sub-basin, Purulia district, West Bengal. J Indian Soc Remote Sens 26:69–76CrossRef
go back to reference Nag SK, Chakraborty S (2003) Influence of rock types and structures in the development of drainage network in hard rock area. J Indian Soc Remote Sens 31:25–35CrossRef Nag SK, Chakraborty S (2003) Influence of rock types and structures in the development of drainage network in hard rock area. J Indian Soc Remote Sens 31:25–35CrossRef
go back to reference Ozdemir H, Bird D (2009) Evaluation of morphometric parameters of drainage networks derived from topographic maps and DEM in point of floods. Environ Geol 56:1405–1415CrossRef Ozdemir H, Bird D (2009) Evaluation of morphometric parameters of drainage networks derived from topographic maps and DEM in point of floods. Environ Geol 56:1405–1415CrossRef
go back to reference Pallard B, Castellarin A, Montanar A (2009) A look at the links between drainage density and flood statistics. Hydrol Earth Syst Sci 13:1019–1029CrossRef Pallard B, Castellarin A, Montanar A (2009) A look at the links between drainage density and flood statistics. Hydrol Earth Syst Sci 13:1019–1029CrossRef
go back to reference Pankaj A, Kumar P (2009) GIS based morphometric analysis of five major sub-watershed of Song River, Dehradun district, Uttarakhand with special reference to landslide incidences. J Indian Soc Remote Sens 37:157–166 Pankaj A, Kumar P (2009) GIS based morphometric analysis of five major sub-watershed of Song River, Dehradun district, Uttarakhand with special reference to landslide incidences. J Indian Soc Remote Sens 37:157–166
go back to reference Patel DP, Dholakia MB, Naresh N, Srivastava PK (2012) Water harvesting structure positioning by using geo-visualization concept and prioritization of mini-watersheds through morphometric analysis in the lower Tapi basin. J Indian Soc Remote Sens 40:299–312 Patel DP, Dholakia MB, Naresh N, Srivastava PK (2012) Water harvesting structure positioning by using geo-visualization concept and prioritization of mini-watersheds through morphometric analysis in the lower Tapi basin. J Indian Soc Remote Sens 40:299–312
go back to reference Patton PC, Baker VR (1976) Morphometry andfloods in small drainage basins subject to diverse hydrogeomorphic controls. Water Resour Res 12:941–952CrossRef Patton PC, Baker VR (1976) Morphometry andfloods in small drainage basins subject to diverse hydrogeomorphic controls. Water Resour Res 12:941–952CrossRef
go back to reference Patton PC (1988) Drainage basin morphometry andfloods. In: Baker VR, Kochel RC, Patton PC (eds) Flood geomorphology. Wiley, New York, pp 51–65 Patton PC (1988) Drainage basin morphometry andfloods. In: Baker VR, Kochel RC, Patton PC (eds) Flood geomorphology. Wiley, New York, pp 51–65
go back to reference Reddy GPO, Maji AK, Gajbhiye KS (2004) Drainage morphometry and its influence on landform characteristics in a basaltic terrain, Central India—a remote sensing and GIS approach. Int J Appl Earth Obs Geoinf 6:1–16 Reddy GPO, Maji AK, Gajbhiye KS (2004) Drainage morphometry and its influence on landform characteristics in a basaltic terrain, Central India—a remote sensing and GIS approach. Int J Appl Earth Obs Geoinf 6:1–16
go back to reference Romshoo SA, Bhat SA, Rashid I (2012) Geoinformatics for assessing the morphometric controlon hydrological response at watershed scale in the Upper Indus basin. J Earth Syst Sci 121:659–686CrossRef Romshoo SA, Bhat SA, Rashid I (2012) Geoinformatics for assessing the morphometric controlon hydrological response at watershed scale in the Upper Indus basin. J Earth Syst Sci 121:659–686CrossRef
go back to reference Roughani M, Ghafouri M, Tabatabaei M (2007) An innovative methodology for the prioritization of sub-catchments for flood control. Int J Appl Earth Obs Geoinf 9:79–87 Roughani M, Ghafouri M, Tabatabaei M (2007) An innovative methodology for the prioritization of sub-catchments for flood control. Int J Appl Earth Obs Geoinf 9:79–87
go back to reference Roy PS, Bhanumurthy V, Murthy CS, Kiran Chand T (2008) Space for disaster management: lessons and perspectives. J South Asia Disaster Stud 1:157–177 Roy PS, Bhanumurthy V, Murthy CS, Kiran Chand T (2008) Space for disaster management: lessons and perspectives. J South Asia Disaster Stud 1:157–177
go back to reference Schumm SA (1956) Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geol Soc Am Bull 67:597–646CrossRef Schumm SA (1956) Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geol Soc Am Bull 67:597–646CrossRef
go back to reference Schumm SA (1963) Sinuosity of Alluvial Rivers on the Great Plains. Geol Soc Am Bull 74(9):1089 Schumm SA (1963) Sinuosity of Alluvial Rivers on the Great Plains. Geol Soc Am Bull 74(9):1089
go back to reference Shaban A, Khawlie MM, Abdallah C, Awad M (2005) Hydrological and watershed characteristics of the El-Kabir River, North Lebanon. Lakes and Reservoirs: Res Manage 10(2):93–101 Shaban A, Khawlie MM, Abdallah C, Awad M (2005) Hydrological and watershed characteristics of the El-Kabir River, North Lebanon. Lakes and Reservoirs: Res Manage 10(2):93–101
go back to reference Singh S, Singh MC (1997) Morphometric analysis of Kanhar river basin. Nat Geogr J India 43(1):31–43 Singh S, Singh MC (1997) Morphometric analysis of Kanhar river basin. Nat Geogr J India 43(1):31–43
go back to reference Smith KG (1950) Standards for grading texture of erosional topography. Am J Sci 248:655–668CrossRef Smith KG (1950) Standards for grading texture of erosional topography. Am J Sci 248:655–668CrossRef
go back to reference Sreedevi PD, Owais S, Khan HH, Ahmed S (2009) Morphometric analysis of a watershed of south India using SRTM data and GIS. J GeolSoc India 73:543–552CrossRef Sreedevi PD, Owais S, Khan HH, Ahmed S (2009) Morphometric analysis of a watershed of south India using SRTM data and GIS. J GeolSoc India 73:543–552CrossRef
go back to reference Sreedevi PD, Sreekanth PD, Khan HH, Ahmed S (2013) Drainage morphometry and its influence on hydrology in an semi arid region: using SRTM data and GIS. Environ Earth Sci 70(2):839–848 Sreedevi PD, Sreekanth PD, Khan HH, Ahmed S (2013) Drainage morphometry and its influence on hydrology in an semi arid region: using SRTM data and GIS. Environ Earth Sci 70(2):839–848
go back to reference Sreedevi PD, Subrahmanyam K, Ahmed S (2005) Integrated approach for delineating potential zones to explore for groundwater in the Pageru River basin, Cuddapah District, Andhra Pradesh, India. Hydrogeol J 13(3):534–543 Sreedevi PD, Subrahmanyam K, Ahmed S (2005) Integrated approach for delineating potential zones to explore for groundwater in the Pageru River basin, Cuddapah District, Andhra Pradesh, India. Hydrogeol J 13(3):534–543
go back to reference Strahler AN (1952) Hypsometric (area-altitude) analysis of erosional topography. Geol Soc Am Bull 63: 1117–1141 Strahler AN (1952) Hypsometric (area-altitude) analysis of erosional topography. Geol Soc Am Bull 63: 1117–1141
go back to reference Strahler AN (1957) Quantitative analysis of watershed geomorphology. Trans Am Geophys Union 38:913CrossRef Strahler AN (1957) Quantitative analysis of watershed geomorphology. Trans Am Geophys Union 38:913CrossRef
go back to reference Strahler AN (1964) Quantitative geomorphology of drainage basins and channel networks. In: Chow VT (ed) Handbook of applied hydrology. McGraw Hill, New York, pp 4–76 Strahler AN (1964) Quantitative geomorphology of drainage basins and channel networks. In: Chow VT (ed) Handbook of applied hydrology. McGraw Hill, New York, pp 4–76
go back to reference Thomas J, Joseph S, Thrivikramji K, Abe G, Kannan N (2012) Morphometrical analysis of two tropical mountain river basins of contrasting environmental settings, the southern Western Ghats India. Environ Earth Sci 66(8):2353–2366 Thomas J, Joseph S, Thrivikramji K, Abe G, Kannan N (2012) Morphometrical analysis of two tropical mountain river basins of contrasting environmental settings, the southern Western Ghats India. Environ Earth Sci 66(8):2353–2366
go back to reference Verstappen HTH (1983) Applied geomorphology-geomorphological surveys for environmental development. New York (NY): Elsevier, pp 57–83 Verstappen HTH (1983) Applied geomorphology-geomorphological surveys for environmental development. New York (NY): Elsevier, pp 57–83
go back to reference Vittala SS, Govindaiah S, Gowda HH (2004) Morphometric analysis of sub-watersheds in the Pavagada area of Tumkur district, South India using remote sensing and GIS techniques. J Indian Soc Remote Sens 32:351–362CrossRef Vittala SS, Govindaiah S, Gowda HH (2004) Morphometric analysis of sub-watersheds in the Pavagada area of Tumkur district, South India using remote sensing and GIS techniques. J Indian Soc Remote Sens 32:351–362CrossRef
go back to reference Yildiz O (2004) An investigation of the effect of drainage density on hydrologic response. Turk J Eng Environ Sci 28:85–94 Yildiz O (2004) An investigation of the effect of drainage density on hydrologic response. Turk J Eng Environ Sci 28:85–94
Metadata
Title
Flood Assessment of Lolab Valley from Watershed Characterization Using Remote Sensing and GIS Techniques
Authors
Mannan Bashir Wani
Syed Ahmad Ali
Umair Ali
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-5801-1_26