Skip to main content
Top
Published in: Journal of Material Cycles and Waste Management 2/2023

10-12-2022 | ORIGINAL ARTICLE

Flotation kinetics of aluminum powders derived from waste crystalline silicon solar cells and its comparison between batch, continuous and column flotation practices

Authors: Yoshiei Kato, Sho Harada, Noriko Nishimura, Md. Azhar Uddin, Yu-ichi Uchida

Published in: Journal of Material Cycles and Waste Management | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, floatability rate of aluminum (Al) powders was analyzed for the purpose of separating valuable resources from residual materials in waste photovoltaic (PV) solar cells, and equations for flotation recovery were developed for various flotation types according to the rate-determining steps of the gas flowrate and feed rate. The flotation rate became a zero-order reaction at the rate-determining step of the gas flow rate and had the same form between a batch and continuous typed practices by substituting residence time with real time. Under the rate-determining step of the feed rate, the flotation rate was expressed by the linear combination of the first-order reaction of an even group material. The flotation recovery rate of Al powders was analyzed by the data of a batch floatability experiment and indicated by the linear expression of the first-order reaction of two groups due to the rate-determining step of the feed rate. The calculated separation recovery of n-cell type device increased as the number of cells increased and approached that of the batch and column types.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Union E (2012) Directive 2012/19/EU of the European parliament and of the Council of 4 July 2012 on waste electrical and electronic equipment (WEEE). Off J Eur Union 197:38–71 Union E (2012) Directive 2012/19/EU of the European parliament and of the Council of 4 July 2012 on waste electrical and electronic equipment (WEEE). Off J Eur Union 197:38–71
2.
go back to reference Dias P, Schmidt L, Gomes LB, Bettanin A, Veit H, Bernardes AM (2018) Recycling waste crystalline silicon photovoltaic modules by electrostatic separation. J Sustain Metall 4(2):176–186CrossRef Dias P, Schmidt L, Gomes LB, Bettanin A, Veit H, Bernardes AM (2018) Recycling waste crystalline silicon photovoltaic modules by electrostatic separation. J Sustain Metall 4(2):176–186CrossRef
4.
go back to reference Doi T, Tsuda I, Unagida H, Murata A, Sakuta K, Kurokawa K (2001) Experimental study on PV module recycling with organic solvent. Sol Energy Mater Sol Cells 67(1–4):397–403CrossRef Doi T, Tsuda I, Unagida H, Murata A, Sakuta K, Kurokawa K (2001) Experimental study on PV module recycling with organic solvent. Sol Energy Mater Sol Cells 67(1–4):397–403CrossRef
6.
go back to reference Matsubara T, Uddin MA, Kato Y, Kawanishi T, Hayashi Y (2018) Chemical treatment of copper and aluminum derived from waste crystalline silicon solar cell modules by mixed acids of HNO3 and HCl. J Sustain Metall 4:378–387CrossRef Matsubara T, Uddin MA, Kato Y, Kawanishi T, Hayashi Y (2018) Chemical treatment of copper and aluminum derived from waste crystalline silicon solar cell modules by mixed acids of HNO3 and HCl. J Sustain Metall 4:378–387CrossRef
7.
go back to reference Takami K, Kobashi M, Shiraga Y, Uddin MA, Kato Y, Wu S (2015) Effect of HF and HNO3 concentration on etching rate of each component in waste crystalline silicon solar cells. Mater Trans 56(12):2047–2052CrossRef Takami K, Kobashi M, Shiraga Y, Uddin MA, Kato Y, Wu S (2015) Effect of HF and HNO3 concentration on etching rate of each component in waste crystalline silicon solar cells. Mater Trans 56(12):2047–2052CrossRef
8.
go back to reference Klugmann-Radziemska E, Ostrowski P (2010) Chemical treatment of crystalline silicon solar cells as a method of recovering pure silicon from photovoltaic modules. Renew Energ 35(8):1751–1759CrossRef Klugmann-Radziemska E, Ostrowski P (2010) Chemical treatment of crystalline silicon solar cells as a method of recovering pure silicon from photovoltaic modules. Renew Energ 35(8):1751–1759CrossRef
9.
go back to reference Truc NTT, Lee B-K (2016) Sustainable and selective separation of PVC and ABS from a WEEE plastic mixture using microwave and/or mild-heat treatment with froth flotation. Environ Sci Technol 50:10580–10587CrossRef Truc NTT, Lee B-K (2016) Sustainable and selective separation of PVC and ABS from a WEEE plastic mixture using microwave and/or mild-heat treatment with froth flotation. Environ Sci Technol 50:10580–10587CrossRef
10.
go back to reference Mallampati SR, Lee C-H, Park MH, Lee B-K (2018) Processing plastics from ASR/ESR waste: separation of poly vinyl chloride (PVC) by froth flotation after microwave-assisted surface modification. J Mater Cycles Waste Manag 20:91–99CrossRef Mallampati SR, Lee C-H, Park MH, Lee B-K (2018) Processing plastics from ASR/ESR waste: separation of poly vinyl chloride (PVC) by froth flotation after microwave-assisted surface modification. J Mater Cycles Waste Manag 20:91–99CrossRef
11.
go back to reference Qu YH, Li YP, Zou XT, Xu KW, Xue YT (2021) Microwave treatment combined with wetting agent for an efficient flotation separation of acrylonitrile butadiene styrene (ABS). J Mater Cycles Waste Manag 23:96–106CrossRef Qu YH, Li YP, Zou XT, Xu KW, Xue YT (2021) Microwave treatment combined with wetting agent for an efficient flotation separation of acrylonitrile butadiene styrene (ABS). J Mater Cycles Waste Manag 23:96–106CrossRef
12.
go back to reference Wang C, Wang H, Fu J, Zhang L, Luo C, Liu Y (2015) Flotation separation of polyvinyl chloride and polyethylene terephthalate plastics combined with surface modification for recycling. Waste Manag 45:112–117CrossRef Wang C, Wang H, Fu J, Zhang L, Luo C, Liu Y (2015) Flotation separation of polyvinyl chloride and polyethylene terephthalate plastics combined with surface modification for recycling. Waste Manag 45:112–117CrossRef
13.
go back to reference Wang J, Wang H, Wang C, Zhang L, Wang T, Zhang L (2017) A novel process for separation of hazardous poly (vinyl chloride) from mixed plastic wastes by froth flotation. Waste Manag 69:59–65CrossRef Wang J, Wang H, Wang C, Zhang L, Wang T, Zhang L (2017) A novel process for separation of hazardous poly (vinyl chloride) from mixed plastic wastes by froth flotation. Waste Manag 69:59–65CrossRef
14.
go back to reference Li W, Li Y (2022) Selective flotation separation of polycarbonate from plastic mixtures based on Fenton treatment combined with ultrasonic. J Mater Cycles Waste Manag 24:917–926CrossRef Li W, Li Y (2022) Selective flotation separation of polycarbonate from plastic mixtures based on Fenton treatment combined with ultrasonic. J Mater Cycles Waste Manag 24:917–926CrossRef
15.
go back to reference Ito M, Takeuchi M, Saito A, Murase N, Phengsaart T, Tabelin CB, Hiroyosshi N, Tsunekawa M (2019) Improvement of hybrid jig separation efficiency using wetting agents for the recycling of mixed-plastic wastes. J Mater Cycles Waste Manag 21:1376–1383CrossRef Ito M, Takeuchi M, Saito A, Murase N, Phengsaart T, Tabelin CB, Hiroyosshi N, Tsunekawa M (2019) Improvement of hybrid jig separation efficiency using wetting agents for the recycling of mixed-plastic wastes. J Mater Cycles Waste Manag 21:1376–1383CrossRef
16.
go back to reference Ito M, Saito A, Murase N, Phengsaart T, Kimura S, Kitajima N, Takeuchi M, Tabelin CB, Hiroyosshi N (2020) Estimation of hybrid jig separation efficiency using a modified concentration criterion based on apparent densities of plastic particles with attached bubbles. J Mater Cycles Waste Manag 20:2071–2080CrossRef Ito M, Saito A, Murase N, Phengsaart T, Kimura S, Kitajima N, Takeuchi M, Tabelin CB, Hiroyosshi N (2020) Estimation of hybrid jig separation efficiency using a modified concentration criterion based on apparent densities of plastic particles with attached bubbles. J Mater Cycles Waste Manag 20:2071–2080CrossRef
17.
go back to reference Jiang H, Zhang Y, Bian K, Wang H, Wang C (2022) Insight into the effects of aqueous species on microplastics removal by froth flotation: kinetics and mechanism. J Environ Chem Eng 10:107834CrossRef Jiang H, Zhang Y, Bian K, Wang H, Wang C (2022) Insight into the effects of aqueous species on microplastics removal by froth flotation: kinetics and mechanism. J Environ Chem Eng 10:107834CrossRef
18.
go back to reference Zhang Y, Jiang H, Bian K, Wang H, Wang C (2021) A critical review of control and removal strategies for microplastics from aquatic environments. J Environ Chem Eng 9:105463CrossRef Zhang Y, Jiang H, Bian K, Wang H, Wang C (2021) A critical review of control and removal strategies for microplastics from aquatic environments. J Environ Chem Eng 9:105463CrossRef
19.
go back to reference Eivazihollagh A, Tejera J, Svanedal I, Edlund H, Blanco A (2017) Removal of Cd2+, Zn2+, and Sr2+ by ion flotation, using a surface-active derivative of DTPA (C12-DTPA). Ind Eng Chem Res 56:10605–10614CrossRef Eivazihollagh A, Tejera J, Svanedal I, Edlund H, Blanco A (2017) Removal of Cd2+, Zn2+, and Sr2+ by ion flotation, using a surface-active derivative of DTPA (C12-DTPA). Ind Eng Chem Res 56:10605–10614CrossRef
20.
go back to reference Cao D, Xu X, Jiang S (2021) Ultrasound-electrochemistry enhanced flotation and desulfurization for fine coal. Sep Purif Technol 258:117968CrossRef Cao D, Xu X, Jiang S (2021) Ultrasound-electrochemistry enhanced flotation and desulfurization for fine coal. Sep Purif Technol 258:117968CrossRef
21.
go back to reference Jatav PP, Tajane SP, Mandavgane SA, Gaidhani SB (2019) A process of carbon enrichment of bottom slag ash for value-added applications. J Mater Cycles Waste Manag 21:539–546CrossRef Jatav PP, Tajane SP, Mandavgane SA, Gaidhani SB (2019) A process of carbon enrichment of bottom slag ash for value-added applications. J Mater Cycles Waste Manag 21:539–546CrossRef
23.
go back to reference Altansukh B, Burmaa G, Nyamdelger S, Ariunbolor N, Shibayama A, Haga K (2014) Gold recovery from its flotation concentrate using acidic thiourea leaching and organosilicon polymer. Int J Soc Mater Eng Resour 20:29–34CrossRef Altansukh B, Burmaa G, Nyamdelger S, Ariunbolor N, Shibayama A, Haga K (2014) Gold recovery from its flotation concentrate using acidic thiourea leaching and organosilicon polymer. Int J Soc Mater Eng Resour 20:29–34CrossRef
24.
go back to reference Burat F, Demirag A, Safak MC (2020) Recovery of noble metals from floor sweeping jewelry waste by flotation-cyanide leaching. J Mater Cycles Waste Manag 22:907–915CrossRef Burat F, Demirag A, Safak MC (2020) Recovery of noble metals from floor sweeping jewelry waste by flotation-cyanide leaching. J Mater Cycles Waste Manag 22:907–915CrossRef
25.
go back to reference Dinc NI, Tosun AU, Basturkcu OM, Burat F (2022) Recovery of valuable metals from WPCB fines by centrifugal gravity separation and froth flotation. J Mater Cycles Waste Manag 24:224–236CrossRef Dinc NI, Tosun AU, Basturkcu OM, Burat F (2022) Recovery of valuable metals from WPCB fines by centrifugal gravity separation and froth flotation. J Mater Cycles Waste Manag 24:224–236CrossRef
26.
go back to reference Harada S, Uddin MA, Kato Y, Kawanishi T, Hayashi Y (2019) Separation between silicon and aluminum powders contained within pulverized scraped silicon-based waste solar cells by flotation method. J Sustain Metall 5:551–560CrossRef Harada S, Uddin MA, Kato Y, Kawanishi T, Hayashi Y (2019) Separation between silicon and aluminum powders contained within pulverized scraped silicon-based waste solar cells by flotation method. J Sustain Metall 5:551–560CrossRef
27.
go back to reference Park C-H, Subasinghe N, Han O-H (2015) Amenability testing of fine coal beneficiation using laboratory flotation column. Mater Trans 56:766–773CrossRef Park C-H, Subasinghe N, Han O-H (2015) Amenability testing of fine coal beneficiation using laboratory flotation column. Mater Trans 56:766–773CrossRef
28.
go back to reference Vinett L, Waters KE (2020) Representation of kinetics models in batch flotation as distributed first-order reactions. Minerals 10:913CrossRef Vinett L, Waters KE (2020) Representation of kinetics models in batch flotation as distributed first-order reactions. Minerals 10:913CrossRef
29.
go back to reference Matsuoka H, Mitsuhashi K, Kawata M, Tokoro C (2020) Deviation of flotation kinetic model for activated and depresses copper sulfide minerals. Minerals 10:1027CrossRef Matsuoka H, Mitsuhashi K, Kawata M, Tokoro C (2020) Deviation of flotation kinetic model for activated and depresses copper sulfide minerals. Minerals 10:1027CrossRef
30.
go back to reference Javanovic I, Miljanovic I (2015) Modelling of flotation processes by classical mathematical methods- a review. Arch Min Sci 60:905–919 Javanovic I, Miljanovic I (2015) Modelling of flotation processes by classical mathematical methods- a review. Arch Min Sci 60:905–919
31.
go back to reference Gharai M, Venugopal R (2016) Modeling of flotation process – an overview of different approaches. Miner Process Extr Metall Rev 37:120–133 Gharai M, Venugopal R (2016) Modeling of flotation process – an overview of different approaches. Miner Process Extr Metall Rev 37:120–133
32.
go back to reference Wang L, Peng Y, Runge K, Bradshaw D (2015) A review of entrainment: mechanisms, contributing factors and modelling in flotation. Miner Eng 70:77–91CrossRef Wang L, Peng Y, Runge K, Bradshaw D (2015) A review of entrainment: mechanisms, contributing factors and modelling in flotation. Miner Eng 70:77–91CrossRef
33.
go back to reference Imaizumi T, Inoue T (1961) A study of flotation as a rate process. J Min Metall Inst Jpn 77:987–994 Imaizumi T, Inoue T (1961) A study of flotation as a rate process. J Min Metall Inst Jpn 77:987–994
34.
go back to reference Nguyen AV, Harvey PA, Jameson GJ (2003) Influence of gas flow rate and frothers on water recovery in a froth column. Miner Eng 16:1143–1147CrossRef Nguyen AV, Harvey PA, Jameson GJ (2003) Influence of gas flow rate and frothers on water recovery in a froth column. Miner Eng 16:1143–1147CrossRef
35.
go back to reference Takamori T, Fukami S (1970) New method for evaluation of the flotation characteristics of ore. Flotation 41:1–7CrossRef Takamori T, Fukami S (1970) New method for evaluation of the flotation characteristics of ore. Flotation 41:1–7CrossRef
Metadata
Title
Flotation kinetics of aluminum powders derived from waste crystalline silicon solar cells and its comparison between batch, continuous and column flotation practices
Authors
Yoshiei Kato
Sho Harada
Noriko Nishimura
Md. Azhar Uddin
Yu-ichi Uchida
Publication date
10-12-2022
Publisher
Springer Japan
Published in
Journal of Material Cycles and Waste Management / Issue 2/2023
Print ISSN: 1438-4957
Electronic ISSN: 1611-8227
DOI
https://doi.org/10.1007/s10163-022-01564-w

Other articles of this Issue 2/2023

Journal of Material Cycles and Waste Management 2/2023 Go to the issue