Skip to main content
Top
Published in: International Journal of Material Forming 2/2016

05-03-2015 | Original Research

Flow modeling of linear and nonlinear fluids in two and three scale fibrous fabrics

Authors: Elena Lopez, Emmanuelle Abisset-Chavanne, François Lebel, Ram Upadhyay, Sébastien Comas, Christophe Binetruy, Francisco Chinesta

Published in: International Journal of Material Forming | Issue 2/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A crucial step in many composites manufacturing processes is the impregnation of fibrous medium with the resin. The fundamental property needed to quantify the flow is the permeability of the fibrous medium. Process models require the permeability as input data to predict flow patterns and pressure fields. Image-based computation can offer a good alternative to provide input data for subsequent analysis. However, digital images contain a huge amount of information that is difficult to handle in numerical models. Then efficient numerical techniques are needed to solve homogenization problems with geometrical data coming from high-resolution images, involving two or three scales and linear and non-linear fluids. Within this framework, this work addresses three main questions: (i) how to define an equivalent macroscopic Darcy’s model from a microscopic description consisting of a viscous fluid flow model defined in a two and three scales porous medium?; (ii) the discussion on the existence of an intrinsic geometrical permeability tensor in the general case of non Newtonian rheothining fluid models, and (iii) the proposal of a constructive multi-scale strategy for performing micro-macro simulations in both the linear and the nonlinear case.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Aghighi S, Ammar A, Metivier C, Normandin M, Chinesta F (2013) Non incremental transient solution of the Rayleigh-Bénard convection model using the PGD. J Non-Newtonian Fluid Mech 200:65–78CrossRef Aghighi S, Ammar A, Metivier C, Normandin M, Chinesta F (2013) Non incremental transient solution of the Rayleigh-Bénard convection model using the PGD. J Non-Newtonian Fluid Mech 200:65–78CrossRef
2.
go back to reference Aghighi MS, Ammar A, Metivier C, Chinesta F Parametric solution of the Rayleigh-Bénard convection model by using the PGD: Application to nanofluids. International Journal of Numerical Methods for Heat and Fluid Flows. In press Aghighi MS, Ammar A, Metivier C, Chinesta F Parametric solution of the Rayleigh-Bénard convection model by using the PGD: Application to nanofluids. International Journal of Numerical Methods for Heat and Fluid Flows. In press
3.
go back to reference Chinesta F, Torres R, Ramon A, Rodrigo MC, Rodrigo M (2002) Homogenized thermal conduction model for particulate foods. Int J Thermal Sci 41:1141–1150CrossRef Chinesta F, Torres R, Ramon A, Rodrigo MC, Rodrigo M (2002) Homogenized thermal conduction model for particulate foods. Int J Thermal Sci 41:1141–1150CrossRef
4.
go back to reference Chinesta F, Ammar A, Lamarchand F, Beauchene P, Boust F (2008) Alleviating mesh constraints: Model reduction, parallel time integration and high resolution homogenization. Comput Methods Appl Mech Eng 197:400–413MathSciNetCrossRefMATH Chinesta F, Ammar A, Lamarchand F, Beauchene P, Boust F (2008) Alleviating mesh constraints: Model reduction, parallel time integration and high resolution homogenization. Comput Methods Appl Mech Eng 197:400–413MathSciNetCrossRefMATH
5.
go back to reference Chinesta F, Leygue A, Bordeu F, Aguado JV, Cueto E, Gonzalez D, Alfaro I, Ammar A, Huerta A (2013) A. PGD-based computational vademecum for efficient design, optimization and control. Archives Comput Methods Eng 20(/1):31–59MathSciNetCrossRef Chinesta F, Leygue A, Bordeu F, Aguado JV, Cueto E, Gonzalez D, Alfaro I, Ammar A, Huerta A (2013) A. PGD-based computational vademecum for efficient design, optimization and control. Archives Comput Methods Eng 20(/1):31–59MathSciNetCrossRef
6.
go back to reference Comas-Cardona S, Cosson B, Bickerton S, Binetruy C (2014) An optically-based inverse method to measure in-plane permeability fields of fibrous reinforcements. Compos Part A: Appl Sci Manuf 57:41–48CrossRef Comas-Cardona S, Cosson B, Bickerton S, Binetruy C (2014) An optically-based inverse method to measure in-plane permeability fields of fibrous reinforcements. Compos Part A: Appl Sci Manuf 57:41–48CrossRef
7.
go back to reference Donea J, Huerta A (2003) Finite element methods for flow problems. Wiley Donea J, Huerta A (2003) Finite element methods for flow problems. Wiley
8.
go back to reference Du X, Ostoja-Starzewski M (2006) On the size of representative volume element for Darcy law in random media. Proc R Soc A 462:2949–2963MathSciNetCrossRefMATH Du X, Ostoja-Starzewski M (2006) On the size of representative volume element for Darcy law in random media. Proc R Soc A 462:2949–2963MathSciNetCrossRefMATH
9.
go back to reference Geers MGD, Kouznetsova VG, Brekelmans WAM (2010) Multi-scale computational homogenization: Trends and challenges. J Comput Appl Math 234(7):2175–2182CrossRefMATH Geers MGD, Kouznetsova VG, Brekelmans WAM (2010) Multi-scale computational homogenization: Trends and challenges. J Comput Appl Math 234(7):2175–2182CrossRefMATH
10.
go back to reference Ghnatios Ch., Chinesta F., Binetruy Ch. The squeeze flow of composite laminates. International Journal of Material Forming, In press. Ghnatios Ch., Chinesta F., Binetruy Ch. The squeeze flow of composite laminates. International Journal of Material Forming, In press.
11.
go back to reference Idris Z, Orgéas L, Geindreau C, Bloch J-F., Auriault J-L. (2004) Microstructural effects on the flow law of power-law fluids through fibrous media. Model Simul Mater Sci Eng 12:995–1015CrossRef Idris Z, Orgéas L, Geindreau C, Bloch J-F., Auriault J-L. (2004) Microstructural effects on the flow law of power-law fluids through fibrous media. Model Simul Mater Sci Eng 12:995–1015CrossRef
12.
go back to reference Jiang M, Jasiuk I, Ostoja-Starzewski M (2002) Apparent thermal conductivity of periodic two-dimensional composites. Comput Mater Sci 25(3):329–338CrossRefMATH Jiang M, Jasiuk I, Ostoja-Starzewski M (2002) Apparent thermal conductivity of periodic two-dimensional composites. Comput Mater Sci 25(3):329–338CrossRefMATH
13.
go back to reference Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Sol Struct 40(13-14):3647–3679CrossRefMATH Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Sol Struct 40(13-14):3647–3679CrossRefMATH
14.
go back to reference Kanit T, N’Guyen F, Forest S, Jeulin D, Reed M, Singleton S (2006) Apparent and effective physical properties of heterogeneous materials: representativity of samples of two materials from food industry. Comput Methods Appl Mech Eng 195(33–36):3960–3982CrossRefMATH Kanit T, N’Guyen F, Forest S, Jeulin D, Reed M, Singleton S (2006) Apparent and effective physical properties of heterogeneous materials: representativity of samples of two materials from food industry. Comput Methods Appl Mech Eng 195(33–36):3960–3982CrossRefMATH
15.
go back to reference Kozeny J (1927) Uber kapillare leitung des wassers im boden. Sitz. Akad. Wissensch. 136:271–306 Kozeny J (1927) Uber kapillare leitung des wassers im boden. Sitz. Akad. Wissensch. 136:271–306
16.
go back to reference Lamari H, Ammar A, Cartraud P, Legrain G, Jacquemin F., Chinesta F (2010) Routes for efficient computational homogenization of non-linear materials using the proper generalized decomposition. Archives Comput Methods Eng 17(4):373–391MathSciNetCrossRefMATH Lamari H, Ammar A, Cartraud P, Legrain G, Jacquemin F., Chinesta F (2010) Routes for efficient computational homogenization of non-linear materials using the proper generalized decomposition. Archives Comput Methods Eng 17(4):373–391MathSciNetCrossRefMATH
17.
go back to reference Liu HL, Hwang WR (2012) Permeability prediction of fibrous porous media with complex 3D architectures. Composites Part A 43:2030–2038CrossRef Liu HL, Hwang WR (2012) Permeability prediction of fibrous porous media with complex 3D architectures. Composites Part A 43:2030–2038CrossRef
18.
go back to reference Liu S, Masliyah JH (1999) Non-linear flows in porous media. J Non-Newtonian Fluid Mech 86:229–252CrossRefMATH Liu S, Masliyah JH (1999) Non-linear flows in porous media. J Non-Newtonian Fluid Mech 86:229–252CrossRefMATH
19.
go back to reference Luce T, Advani S, Howard J, Parnas R (1995) Permeability characterization. Part 2: flow behaviour in multi-layer preforms. Polym Compos 16:446–458CrossRef Luce T, Advani S, Howard J, Parnas R (1995) Permeability characterization. Part 2: flow behaviour in multi-layer preforms. Polym Compos 16:446–458CrossRef
20.
go back to reference Nabovati A, Llewellin EW, Sousa ACM (2010) Through-thickness permeability prediction of three-dimensional multifilament woven fabrics. Composites Part A 41:453–463CrossRef Nabovati A, Llewellin EW, Sousa ACM (2010) Through-thickness permeability prediction of three-dimensional multifilament woven fabrics. Composites Part A 41:453–463CrossRef
21.
go back to reference Nguyen VP, Stroeuen M, Sluys LJ (2011) Multiscale continous and discontinous modeling of heterogeneous materials: a review on recent developments. J. Multi Model 03:229CrossRef Nguyen VP, Stroeuen M, Sluys LJ (2011) Multiscale continous and discontinous modeling of heterogeneous materials: a review on recent developments. J. Multi Model 03:229CrossRef
22.
go back to reference Ostoja-Starzewski M (2006) Material spatial randomness: From statistical to representative volume element. Probab Eng Mech 21(2):112–132CrossRef Ostoja-Starzewski M (2006) Material spatial randomness: From statistical to representative volume element. Probab Eng Mech 21(2):112–132CrossRef
23.
go back to reference Ouagne P, Breard J (2010) Continuous transverse permeability of fibrous media. Composites Part A 41:22–28CrossRef Ouagne P, Breard J (2010) Continuous transverse permeability of fibrous media. Composites Part A 41:22–28CrossRef
24.
go back to reference Pearson JRA, Tardy PMJ (2002) Models for flow of non-Newtonian and complex fluids through porous media. J Non-Newtonian Fluid Mech 102:447–473CrossRefMATH Pearson JRA, Tardy PMJ (2002) Models for flow of non-Newtonian and complex fluids through porous media. J Non-Newtonian Fluid Mech 102:447–473CrossRefMATH
25.
go back to reference Phelan FR, Wise G (1996) Analysis of transverse flow in aligned fibrous porous media. Composites Part A 27(25–34) Phelan FR, Wise G (1996) Analysis of transverse flow in aligned fibrous porous media. Composites Part A 27(25–34)
26.
27.
go back to reference Ranganathan S, Phelan FR, Advani SG (1996) A generalized model for the transverse fluid permeability in unidirectional fibrous media. Polymer Composites, Wiley Subscription Services, Inc. A Wiley Company 17:222–230 Ranganathan S, Phelan FR, Advani SG (1996) A generalized model for the transverse fluid permeability in unidirectional fibrous media. Polymer Composites, Wiley Subscription Services, Inc. A Wiley Company 17:222–230
28.
go back to reference Rubinstein J, Torquato S (1989) Flow in random porous media: mathematical formulation, variational principles, and rigorous bounds. J Fluid Mech 206:25–46MathSciNetCrossRefMATH Rubinstein J, Torquato S (1989) Flow in random porous media: mathematical formulation, variational principles, and rigorous bounds. J Fluid Mech 206:25–46MathSciNetCrossRefMATH
29.
go back to reference Sab K (1992) On the homogenization and the simulation of random materials. Eur J Mech A/Solids 11 (/5):585– 607MathSciNetMATH Sab K (1992) On the homogenization and the simulation of random materials. Eur J Mech A/Solids 11 (/5):585– 607MathSciNetMATH
30.
go back to reference Slattery JC (1967) Flow of viscoelastic fluids through porous media. AIChE J 13:1066–1071CrossRef Slattery JC (1967) Flow of viscoelastic fluids through porous media. AIChE J 13:1066–1071CrossRef
31.
go back to reference Slattery JC (1969) Single-phase flow through porous media. AIChE J 15(6):866–872CrossRef Slattery JC (1969) Single-phase flow through porous media. AIChE J 15(6):866–872CrossRef
32.
go back to reference Terada K, Miura T, Kikuchi N (1997) Digital image-based modeling applied to the homogenization analysis of composite materials. Comput Mech 20:331–346CrossRefMATH Terada K, Miura T, Kikuchi N (1997) Digital image-based modeling applied to the homogenization analysis of composite materials. Comput Mech 20:331–346CrossRefMATH
33.
go back to reference Verleye B, Lomov SV, Long A, Verpoest I, Roose D (2010) Permeability prediction for the meso-macro coupling in the simulation of the impregnation stage of resin transfer moulding. Composites Part A 4(1):29–35CrossRef Verleye B, Lomov SV, Long A, Verpoest I, Roose D (2010) Permeability prediction for the meso-macro coupling in the simulation of the impregnation stage of resin transfer moulding. Composites Part A 4(1):29–35CrossRef
34.
go back to reference Whitaker S (1966) The equations of motion in porous media. Chem Eng Sci 21:291–300CrossRef Whitaker S (1966) The equations of motion in porous media. Chem Eng Sci 21:291–300CrossRef
35.
go back to reference Wong CC, Long AC, Sherburn M, Robitaille F, Harrison P, Rudd CD (2006) Comparisons of novel and efficient approaches for permeability prediction based on the fabric architecture. Composites Part A 37:847–857CrossRef Wong CC, Long AC, Sherburn M, Robitaille F, Harrison P, Rudd CD (2006) Comparisons of novel and efficient approaches for permeability prediction based on the fabric architecture. Composites Part A 37:847–857CrossRef
36.
go back to reference Zhang F, Comas-Cardona S, Binetruy C (2012) Statistical modeling of in-plane permeability of non-woven random fibrous reinforcement. Composites Sci Technol 72(/12):1368–1379CrossRef Zhang F, Comas-Cardona S, Binetruy C (2012) Statistical modeling of in-plane permeability of non-woven random fibrous reinforcement. Composites Sci Technol 72(/12):1368–1379CrossRef
Metadata
Title
Flow modeling of linear and nonlinear fluids in two and three scale fibrous fabrics
Authors
Elena Lopez
Emmanuelle Abisset-Chavanne
François Lebel
Ram Upadhyay
Sébastien Comas
Christophe Binetruy
Francisco Chinesta
Publication date
05-03-2015
Publisher
Springer Paris
Published in
International Journal of Material Forming / Issue 2/2016
Print ISSN: 1960-6206
Electronic ISSN: 1960-6214
DOI
https://doi.org/10.1007/s12289-015-1224-0

Other articles of this Issue 2/2016

International Journal of Material Forming 2/2016 Go to the issue

Premium Partners