Skip to main content
Top
Published in: 3D Research 4/2015

01-12-2015 | 3DR Express

Focal Image Plane Detection Based on Central Coordinate Point Spectral Value in Off-Axis Digital Particle Holography

Authors: Peizhen Qiu, Lijun Deng, Wenhui Lu

Published in: 3D Research | Issue 4/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A method to detect the focal image plane from a single off-axis digital particle hologram is proposed. This method utilizes the central coordinate point spectral value of the reconstructed particle image as focusing criterion to detect the focal image plane. It is found that the central coordinate point spectral values come into maximum when the reconstruction distance is equal to the actual distance that was used in experiment of hologram acquisition. Numerical simulations are given to validate the feasibility and effectiveness of the proposed method. The proposed method is a potential and better option for studying three dimensional particles by using digital holography.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Schnars, U., & Jüptner, W. (1994). Direct recording of holograms by a CCD target and numerical reconstruction. Applied Optics, 33(2), 179–181.CrossRef Schnars, U., & Jüptner, W. (1994). Direct recording of holograms by a CCD target and numerical reconstruction. Applied Optics, 33(2), 179–181.CrossRef
2.
go back to reference Osten, W., Faridian, A., Gao, P., Körner, K., Naik, D., Pedrini, G., et al. (2014). Recent advances in digital holography. Applied Optics, 53(27), G44–G63.CrossRef Osten, W., Faridian, A., Gao, P., Körner, K., Naik, D., Pedrini, G., et al. (2014). Recent advances in digital holography. Applied Optics, 53(27), G44–G63.CrossRef
3.
go back to reference Memmolo, P., Bianco, V., Merola, F., Miccio, L., Paturzo, M., & Ferraro, P. (2014). Breakthrough in photonics 2013: Holographic imaging. IEEE Photonics Journal, 6(2), 0701106.CrossRef Memmolo, P., Bianco, V., Merola, F., Miccio, L., Paturzo, M., & Ferraro, P. (2014). Breakthrough in photonics 2013: Holographic imaging. IEEE Photonics Journal, 6(2), 0701106.CrossRef
4.
go back to reference Pedrini, G., Fröning, P., Tiziani, H., & Mendoza Santoyo, F. (1999). Shape measurement of microscopic structures using digital holograms. Optics Communication, 164(4), 257–268.CrossRef Pedrini, G., Fröning, P., Tiziani, H., & Mendoza Santoyo, F. (1999). Shape measurement of microscopic structures using digital holograms. Optics Communication, 164(4), 257–268.CrossRef
5.
go back to reference Yamaguchi, I., Ohta, S., & Kato, J. (2001). Surface contouring by phase-shifting digital holography. Journal of Optics and Lasers in Engineering, 36(5), 417–428.CrossRef Yamaguchi, I., Ohta, S., & Kato, J. (2001). Surface contouring by phase-shifting digital holography. Journal of Optics and Lasers in Engineering, 36(5), 417–428.CrossRef
6.
go back to reference Marquet, P., Rappaz, B., Magistretti, P. J., Cuche, E., Emery, Y., Colomb, T., & Depeursinge, C. (2005). Digital holographic microscopy: A noninvasive contrast imaging technique allowing quantitative visualization of living cells with sub-wavelength axial accuracy. Optics Letters, 30(5), 468–470.CrossRef Marquet, P., Rappaz, B., Magistretti, P. J., Cuche, E., Emery, Y., Colomb, T., & Depeursinge, C. (2005). Digital holographic microscopy: A noninvasive contrast imaging technique allowing quantitative visualization of living cells with sub-wavelength axial accuracy. Optics Letters, 30(5), 468–470.CrossRef
7.
go back to reference Kemper, B., & Von, Bally G. (2008). Digital holographic microscopy for live cell applications and technical inspection. Applied Optics, 47(4), A52–A61.CrossRef Kemper, B., & Von, Bally G. (2008). Digital holographic microscopy for live cell applications and technical inspection. Applied Optics, 47(4), A52–A61.CrossRef
8.
go back to reference Mann, C., Yu, L., Lo, C. M., & Kim, M. (2005). High-resolution quantitative phase-contrast microscopy by digital holography. Optics Express, 13(22), 8693–8698.CrossRef Mann, C., Yu, L., Lo, C. M., & Kim, M. (2005). High-resolution quantitative phase-contrast microscopy by digital holography. Optics Express, 13(22), 8693–8698.CrossRef
9.
go back to reference Pan, G., & Meng, H. (2003). Digital holography of particle fields: Reconstruction by use of complex amplitude. Applied Optics, 42(5), 827–833.CrossRef Pan, G., & Meng, H. (2003). Digital holography of particle fields: Reconstruction by use of complex amplitude. Applied Optics, 42(5), 827–833.CrossRef
10.
go back to reference Sheng, J., Malkiel, E., & Katz, J. (2006). Digital holographic microscope for measuring three-dimensional particle distributions and motions. Applied Optics, 45(16), 3893–3901.CrossRef Sheng, J., Malkiel, E., & Katz, J. (2006). Digital holographic microscope for measuring three-dimensional particle distributions and motions. Applied Optics, 45(16), 3893–3901.CrossRef
11.
go back to reference Cheong, F. C., Krishnatreya, B. J., & Grier, D. G. (2010). Strategies for three-dimensional particle tracking with holographic video microscopy. Optics Express, 18(13), 13563–13573.CrossRef Cheong, F. C., Krishnatreya, B. J., & Grier, D. G. (2010). Strategies for three-dimensional particle tracking with holographic video microscopy. Optics Express, 18(13), 13563–13573.CrossRef
12.
go back to reference Memmolo, P., Miccio, L., Finizio, A., Netti, P. A., & Ferraro, P. (2014). Holographic tracking of living cells by three-dimensional reconstructed complex wavefronts alignment. Optics Letters, 39(9), 2759–2762.CrossRef Memmolo, P., Miccio, L., Finizio, A., Netti, P. A., & Ferraro, P. (2014). Holographic tracking of living cells by three-dimensional reconstructed complex wavefronts alignment. Optics Letters, 39(9), 2759–2762.CrossRef
13.
go back to reference Javidi, B., & Nomura, T. (2000). Securing information by use of digital holography. Optics Letters, 25(1), 28–30.CrossRef Javidi, B., & Nomura, T. (2000). Securing information by use of digital holography. Optics Letters, 25(1), 28–30.CrossRef
14.
go back to reference Tajahuerce, E., & Javidi, B. (2000). Encrypting three-dimensional information with digital holography. Applied Optics, 39(35), 6595–6601.CrossRef Tajahuerce, E., & Javidi, B. (2000). Encrypting three-dimensional information with digital holography. Applied Optics, 39(35), 6595–6601.CrossRef
15.
go back to reference Nomura, T., & Javidi, B. (2007). Object recognition by use of polarimetric phase-shifting digital holography. Optics Letters, 32(15), 2146–2148.CrossRef Nomura, T., & Javidi, B. (2007). Object recognition by use of polarimetric phase-shifting digital holography. Optics Letters, 32(15), 2146–2148.CrossRef
16.
go back to reference Seelamantula, C. S., Pavillon, N., Depeursinge, C., & Unser, M. (2011). Exact complex-wave reconstruction in digital holography. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 28(6), 983–992.CrossRef Seelamantula, C. S., Pavillon, N., Depeursinge, C., & Unser, M. (2011). Exact complex-wave reconstruction in digital holography. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 28(6), 983–992.CrossRef
17.
go back to reference Langehanenberg, P., Von Bally, G., & Kemper, B. (2011). Autofocusing in digital holographic microscopy. 3D. Research, 2(1), 1–11. Langehanenberg, P., Von Bally, G., & Kemper, B. (2011). Autofocusing in digital holographic microscopy. 3D. Research, 2(1), 1–11.
18.
go back to reference Dubois, F., Schockaert, C., Callens, N., & Yourassowsky, C. (2006). Focus plane detection criteria in digital holography microscopy by amplitude analysis. Optics Express, 14(13), 5895–5908.CrossRef Dubois, F., Schockaert, C., Callens, N., & Yourassowsky, C. (2006). Focus plane detection criteria in digital holography microscopy by amplitude analysis. Optics Express, 14(13), 5895–5908.CrossRef
19.
go back to reference Yu, L., & Cai, L. (2001). Iterative algorithm with a constraint condition for numerical reconstruction of a three-dimensional object from its hologram. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 18(5), 1033–1045.CrossRef Yu, L., & Cai, L. (2001). Iterative algorithm with a constraint condition for numerical reconstruction of a three-dimensional object from its hologram. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 18(5), 1033–1045.CrossRef
20.
go back to reference Ma, L. H., Wang, H., Li, Y., & Jin, H. Z. (2004). Numerical reconstruction of digital holograms for three-dimensional shape measurement. Journal of Optics A: Pure and Applied Optics, 6(4), 396–400.CrossRef Ma, L. H., Wang, H., Li, Y., & Jin, H. Z. (2004). Numerical reconstruction of digital holograms for three-dimensional shape measurement. Journal of Optics A: Pure and Applied Optics, 6(4), 396–400.CrossRef
21.
go back to reference Liebling, M., & Unser, M. (2004). Autofocus for digital Fresnel holograms by use of a Fresnelet-sparsity criterion. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 21(12), 2424–2430.CrossRefMathSciNet Liebling, M., & Unser, M. (2004). Autofocus for digital Fresnel holograms by use of a Fresnelet-sparsity criterion. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 21(12), 2424–2430.CrossRefMathSciNet
22.
go back to reference Memmolo, P., Paturzo, M., Javidi, B., Netti, P. A., & Ferraro, P. (2014). Refocusing criterion via sparsity measurements in digital holography. Optics Letters, 39(16), 4719–4722.CrossRef Memmolo, P., Paturzo, M., Javidi, B., Netti, P. A., & Ferraro, P. (2014). Refocusing criterion via sparsity measurements in digital holography. Optics Letters, 39(16), 4719–4722.CrossRef
23.
go back to reference Gao, P., Yao, B., Min, J., Guo, R., Ma, B., Zheng, J., et al. (2012). Autofocusing of digital holographic microscopy based on off-axis illuminations. Optics Letters, 37(17), 3630–3632.CrossRef Gao, P., Yao, B., Min, J., Guo, R., Ma, B., Zheng, J., et al. (2012). Autofocusing of digital holographic microscopy based on off-axis illuminations. Optics Letters, 37(17), 3630–3632.CrossRef
24.
go back to reference Yang, Y., Kang, B., & Choo, Y. (2008). Application of the correlation coefficient method for determination of the focal plane to digital particle holography. Applied Optics, 47(6), 817–824.CrossRef Yang, Y., Kang, B., & Choo, Y. (2008). Application of the correlation coefficient method for determination of the focal plane to digital particle holography. Applied Optics, 47(6), 817–824.CrossRef
25.
go back to reference Langehanenberg, P., Kemper, B., Dirksen, D., & Von Bally, G. (2008). Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging. Applied Optics, 47(19), D176–D182.CrossRef Langehanenberg, P., Kemper, B., Dirksen, D., & Von Bally, G. (2008). Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging. Applied Optics, 47(19), D176–D182.CrossRef
26.
go back to reference Li, W., Loomis, N. C., Hu, Q., & Davis, C. S. (2007). Focus detection from digital in-line holograms based on spectral l 1 norms. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 24(10), 3054–3062.CrossRef Li, W., Loomis, N. C., Hu, Q., & Davis, C. S. (2007). Focus detection from digital in-line holograms based on spectral l 1 norms. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 24(10), 3054–3062.CrossRef
27.
go back to reference Lee, S., Lee, J. Y., Yang, W. Z., & Kim, D. Y. (2009). Autofocusing and edge detection schemes in cell volume measurements with quantitative phase microscopy. Optics Express, 17(8), 6476–6486.CrossRef Lee, S., Lee, J. Y., Yang, W. Z., & Kim, D. Y. (2009). Autofocusing and edge detection schemes in cell volume measurements with quantitative phase microscopy. Optics Express, 17(8), 6476–6486.CrossRef
28.
go back to reference El Mallahi, A., & Dubois, F. (2011). Dependency and precision of the refocusing criterion based on amplitude analysis in digital holographic microscopy. Optics Express, 19(7), 6684–6698.CrossRef El Mallahi, A., & Dubois, F. (2011). Dependency and precision of the refocusing criterion based on amplitude analysis in digital holographic microscopy. Optics Express, 19(7), 6684–6698.CrossRef
29.
go back to reference Leith, E. N., & Upatnieks, J. (1962). Reconstructed wavefronts and communication theory. Journal of the Optical Society of America, 52(10), 1123–1128.CrossRef Leith, E. N., & Upatnieks, J. (1962). Reconstructed wavefronts and communication theory. Journal of the Optical Society of America, 52(10), 1123–1128.CrossRef
30.
go back to reference Cuche, E., Marquet, P., & Depeursinge, C. (1999). Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms. Applied Optics, 38(34), 6994–7001.CrossRef Cuche, E., Marquet, P., & Depeursinge, C. (1999). Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms. Applied Optics, 38(34), 6994–7001.CrossRef
31.
go back to reference Liebling, M., Blu, T., & Unser, M. (2004). Complex-wave retrieval from a single off-axis hologram. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 21(3), 367–377.CrossRef Liebling, M., Blu, T., & Unser, M. (2004). Complex-wave retrieval from a single off-axis hologram. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 21(3), 367–377.CrossRef
32.
go back to reference Singh, V. R., Gopalkrishna, H., & Anand, A. (2009). Particle field imaging using digital in-line holography. Current Science, 96(3), 391–397. Singh, V. R., Gopalkrishna, H., & Anand, A. (2009). Particle field imaging using digital in-line holography. Current Science, 96(3), 391–397.
33.
go back to reference Ferraro, P., De Nicola, S., Coppola, G., Finizio, A., Alfieri, D., & Pierattini, G. (2004). Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms. Optics Letters, 29(8), 854–856.CrossRef Ferraro, P., De Nicola, S., Coppola, G., Finizio, A., Alfieri, D., & Pierattini, G. (2004). Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms. Optics Letters, 29(8), 854–856.CrossRef
34.
go back to reference Murata, S., & Yasuda, N. (2000). Potential of digital holography in particle measurement. Optics & Laser Technology, 32(7), 567–574.CrossRef Murata, S., & Yasuda, N. (2000). Potential of digital holography in particle measurement. Optics & Laser Technology, 32(7), 567–574.CrossRef
35.
go back to reference El Mallahi, A., & Dubois, F. (2013). Separation of overlapped particles in digital holographic microscopy. Optics Express, 21(5), 6466–6479.CrossRef El Mallahi, A., & Dubois, F. (2013). Separation of overlapped particles in digital holographic microscopy. Optics Express, 21(5), 6466–6479.CrossRef
36.
go back to reference Goodman, J. W. (1996). Introduction to Fourier Optics (2nd ed., pp. 76–77). New York: McGraw-Hill. Goodman, J. W. (1996). Introduction to Fourier Optics (2nd ed., pp. 76–77). New York: McGraw-Hill.
37.
go back to reference Memmolo, P., Distante, C., Paturzo, M., Finizio, A., Ferraro, P., & Javidi, B. (2011). Automatic focusing in digital holography and its application to stretched holograms. Optics Letters, 36(10), 1945–1947.CrossRef Memmolo, P., Distante, C., Paturzo, M., Finizio, A., Ferraro, P., & Javidi, B. (2011). Automatic focusing in digital holography and its application to stretched holograms. Optics Letters, 36(10), 1945–1947.CrossRef
Metadata
Title
Focal Image Plane Detection Based on Central Coordinate Point Spectral Value in Off-Axis Digital Particle Holography
Authors
Peizhen Qiu
Lijun Deng
Wenhui Lu
Publication date
01-12-2015
Publisher
3D Display Research Center
Published in
3D Research / Issue 4/2015
Electronic ISSN: 2092-6731
DOI
https://doi.org/10.1007/s13319-015-0071-6

Other articles of this Issue 4/2015

3D Research 4/2015 Go to the issue

Premium Partner