Skip to main content
Top

2008 | OriginalPaper | Chapter

7. Force Control

Authors : Luigi Villani, Prof, Joris De Schutter, PhD

Published in: Springer Handbook of Robotics

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A fundamental requirement for the success of a manipulation task is the capability to handle the physical contact between a robot and the environment. Pure motion control turns out to be inadequate because the unavoidable modeling errors and uncertainties may cause a rise of the contact force, ultimately leading to an unstable behavior during the interaction, especially in the presence of rigid environments. Force feedback and force control becomes mandatory to achieve a robust and versatile behavior of a robotic system in poorly structured environments as well as safe and dependable operation in the presence of humans. This chapter starts from the analysis of indirect force control strategies, conceived to keep the contact forces limited by ensuring a suitable compliant behavior to the end effector, without requiring an accurate model of the environment. Then the problem of interaction tasks modeling is analyzed, considering both the case of a rigid environment and the case of a compliant environment. For the specification of an interaction task, natural constraints set by the task geometry and artificial constraints set by the control strategy are established, with respect to suitable task frames. This formulation is the essential premise to the synthesis of hybrid force/motion control schemes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
7.1.
go back to reference T.L. De Fazio, D.S. Seltzer, D.E. Whitney: The instrumented remote center of compliance, Ind. Robot 11(4), 238–242 (1984) T.L. De Fazio, D.S. Seltzer, D.E. Whitney: The instrumented remote center of compliance, Ind. Robot 11(4), 238–242 (1984)
7.2.
go back to reference J. De Schutter, H. Van Brussel: Compliant robot motion II. A control approach based on external control loops, Int. J. Robot. Res. 7(4), 18–33 (1988)CrossRef J. De Schutter, H. Van Brussel: Compliant robot motion II. A control approach based on external control loops, Int. J. Robot. Res. 7(4), 18–33 (1988)CrossRef
7.3.
go back to reference I. Nevins, D.E. Whitney: The force vector assembler concept, First CISM-IFToMM Symp. Theory Pract. Robot. Manip. (Udine 1973) I. Nevins, D.E. Whitney: The force vector assembler concept, First CISM-IFToMM Symp. Theory Pract. Robot. Manip. (Udine 1973)
7.4.
go back to reference M.T. Mason, J.K. Salisbury: Robot Hands and Mechanics of Manipulation (MIT Press, Cambridge 1985) M.T. Mason, J.K. Salisbury: Robot Hands and Mechanics of Manipulation (MIT Press, Cambridge 1985)
7.5.
go back to reference J.Y.S. Luh, W.D. Fisher, R.P.C. Paul: Joint torque control by direct feedback for industrial robots, IEEE Trans. Autom. Contr. 28, 153–161 (1983)CrossRefMATH J.Y.S. Luh, W.D. Fisher, R.P.C. Paul: Joint torque control by direct feedback for industrial robots, IEEE Trans. Autom. Contr. 28, 153–161 (1983)CrossRefMATH
7.6.
go back to reference G. Hirzinger, N. Sporer, A. Albu-Shäffer, M. Hähnle, R. Krenn, A. Pascucci, R. Schedl: DLRʼs torque-controlled light weight robot III – are we reaching the technological limits now?, IEEE Int. Conf. Robot. Autom. (Washington 2002) pp. 1710–1716 G. Hirzinger, N. Sporer, A. Albu-Shäffer, M. Hähnle, R. Krenn, A. Pascucci, R. Schedl: DLRʼs torque-controlled light weight robot III – are we reaching the technological limits now?, IEEE Int. Conf. Robot. Autom. (Washington 2002) pp. 1710–1716
7.7.
go back to reference N. Hogan: Impedance control: an approach to manipulation: parts I–III, ASME J. Dyn. Syst. Meas. Contr. 107, 1–24 (1985)CrossRefMATH N. Hogan: Impedance control: an approach to manipulation: parts I–III, ASME J. Dyn. Syst. Meas. Contr. 107, 1–24 (1985)CrossRefMATH
7.8.
go back to reference H. Kazerooni, T.B. Sheridan, P.K. Houpt: Robust compliant motion for manipulators. Part I: the fundamental concepts of compliant motion, IEEE J. Robot. Autom. 2, 83–92 (1986) H. Kazerooni, T.B. Sheridan, P.K. Houpt: Robust compliant motion for manipulators. Part I: the fundamental concepts of compliant motion, IEEE J. Robot. Autom. 2, 83–92 (1986)
7.9.
go back to reference J.K. Salisbury: Active stiffness control of a manipulator in Cartesian coordinates, 19th IEEE Conf. Decis. Contr. (Albuquerque, 1980) pp. 95–100 J.K. Salisbury: Active stiffness control of a manipulator in Cartesian coordinates, 19th IEEE Conf. Decis. Contr. (Albuquerque, 1980) pp. 95–100
7.10.
go back to reference D.E. Whitney: Force feedback control of manipulator fine motions, ASME J. Dyn. Syst. Meas. Contr. 99, 91–97 (1977)CrossRef D.E. Whitney: Force feedback control of manipulator fine motions, ASME J. Dyn. Syst. Meas. Contr. 99, 91–97 (1977)CrossRef
7.11.
go back to reference M.T. Mason: Compliance and force control for computer controlled manipulators, IEEE Trans. Syst. Man Cybern. 11, 418–432 (1981)CrossRef M.T. Mason: Compliance and force control for computer controlled manipulators, IEEE Trans. Syst. Man Cybern. 11, 418–432 (1981)CrossRef
7.12.
go back to reference J. De Schutter, H. Van Brussel: Compliant robot motion I. A formalism for specifying compliant motion tasks, Int. J. Robot. Res. 7(4), 3–17 (1988)CrossRef J. De Schutter, H. Van Brussel: Compliant robot motion I. A formalism for specifying compliant motion tasks, Int. J. Robot. Res. 7(4), 3–17 (1988)CrossRef
7.13.
go back to reference M.H. Raibert, J.J. Craig: Hybrid position/force control of manipulators, ASME J. Dyn. Syst. Meas. Contr. 103, 126–133 (1981)CrossRef M.H. Raibert, J.J. Craig: Hybrid position/force control of manipulators, ASME J. Dyn. Syst. Meas. Contr. 103, 126–133 (1981)CrossRef
7.14.
go back to reference T. Yoshikawa: Dynamic hybrid position/force control of robot manipulators – description of hand constraints and calculation of joint driving force, IEEE J. Robot. Autom. 3, 386–392 (1987)CrossRef T. Yoshikawa: Dynamic hybrid position/force control of robot manipulators – description of hand constraints and calculation of joint driving force, IEEE J. Robot. Autom. 3, 386–392 (1987)CrossRef
7.15.
go back to reference N.H. McClamroch, D. Wang: Feedback stabilization and tracking of constrained robots, IEEE Trans. Autom. Contr. 33, 419–426 (1988)CrossRefMATHMathSciNet N.H. McClamroch, D. Wang: Feedback stabilization and tracking of constrained robots, IEEE Trans. Autom. Contr. 33, 419–426 (1988)CrossRefMATHMathSciNet
7.16.
go back to reference J.K. Mills, A.A. Goldenberg: Force and position control of manipulators during constrained motion tasks, IEEE Trans. Robot. Autom. 5, 30–46 (1989)CrossRef J.K. Mills, A.A. Goldenberg: Force and position control of manipulators during constrained motion tasks, IEEE Trans. Robot. Autom. 5, 30–46 (1989)CrossRef
7.17.
go back to reference O. Khatib: A unified approach for motion and force control of robot manipulators: the operational space formulation, IEEE J. Robot. Autom. 3, 43–53 (1987)CrossRef O. Khatib: A unified approach for motion and force control of robot manipulators: the operational space formulation, IEEE J. Robot. Autom. 3, 43–53 (1987)CrossRef
7.18.
go back to reference L. Villani, C. Canudas de Wit, B. Brogliato: An exponentially stable adaptive control for force and position tracking of robot manipulators, IEEE Trans. Autom. Contr. 44, 798–802 (1999)CrossRefMATHMathSciNet L. Villani, C. Canudas de Wit, B. Brogliato: An exponentially stable adaptive control for force and position tracking of robot manipulators, IEEE Trans. Autom. Contr. 44, 798–802 (1999)CrossRefMATHMathSciNet
7.19.
go back to reference S. Chiaverini, L. Sciavicco: The parallel approach to force/position control of robotic manipulators, IEEE Trans. Robot. Autom. 9, 361–373 (1993)CrossRef S. Chiaverini, L. Sciavicco: The parallel approach to force/position control of robotic manipulators, IEEE Trans. Robot. Autom. 9, 361–373 (1993)CrossRef
7.20.
go back to reference D.E. Whitney: Historical perspective and state of the art in robot force control, Int. J. Robot. Res. 6(1), 3–14 (1987)CrossRef D.E. Whitney: Historical perspective and state of the art in robot force control, Int. J. Robot. Res. 6(1), 3–14 (1987)CrossRef
7.21.
go back to reference M. Vukobratović, Y. Nakamura: Force and contact control in robotic systems., Tutorial IEEE Int. Conf. Robot. Autom. (Atlanta 1993) M. Vukobratović, Y. Nakamura: Force and contact control in robotic systems., Tutorial IEEE Int. Conf. Robot. Autom. (Atlanta 1993)
7.22.
go back to reference J. De Schutter, H. Bruyninckx, W.H. Zhu, M.W. Spong: Force control: a birdʼs eye view. In: Control Problems in Robotics and Automation, ed. by K.P. Valavanis, B. Siciliano (Springer, Berlin, Heidelberg 1998) pp. 1–17CrossRef J. De Schutter, H. Bruyninckx, W.H. Zhu, M.W. Spong: Force control: a birdʼs eye view. In: Control Problems in Robotics and Automation, ed. by K.P. Valavanis, B. Siciliano (Springer, Berlin, Heidelberg 1998) pp. 1–17CrossRef
7.23.
go back to reference D.M. Gorinevski, A.M. Formalsky, A.Yu. Schneider: Force Control of Robotics Systems (CRC Press, Boca Raton 1997) D.M. Gorinevski, A.M. Formalsky, A.Yu. Schneider: Force Control of Robotics Systems (CRC Press, Boca Raton 1997)
7.24.
go back to reference B. Siciliano, L. Villani: Robot Force Control (Kluwer Academic Publishers, Boston 1999)MATH B. Siciliano, L. Villani: Robot Force Control (Kluwer Academic Publishers, Boston 1999)MATH
7.25.
go back to reference D.E. Whitney: Quasi-static assembly of compliantly supported rigid parts, ASME J. Dyn. Syst. Meas. Contr. 104, 65–77 (1982)CrossRefMATH D.E. Whitney: Quasi-static assembly of compliantly supported rigid parts, ASME J. Dyn. Syst. Meas. Contr. 104, 65–77 (1982)CrossRefMATH
7.26.
go back to reference N. Hogan: On the stability of manipulators performing contact tasks, IEEE J. Robot. Autom. 4, 677–686 (1988)CrossRef N. Hogan: On the stability of manipulators performing contact tasks, IEEE J. Robot. Autom. 4, 677–686 (1988)CrossRef
7.27.
go back to reference H. Kazerooni: Contact instability of the direct drive robot when constrained by a rigid environment, IEEE Trans. Autom. Contr. 35, 710–714 (1990)CrossRefMATH H. Kazerooni: Contact instability of the direct drive robot when constrained by a rigid environment, IEEE Trans. Autom. Contr. 35, 710–714 (1990)CrossRefMATH
7.28.
go back to reference R. Kelly, R. Carelli, M. Amestegui, R. Ortega: Adaptive impedance control of robot manipulators, IASTED Int. J. Robot. Autom. 4(3), 134–141 (1989) R. Kelly, R. Carelli, M. Amestegui, R. Ortega: Adaptive impedance control of robot manipulators, IASTED Int. J. Robot. Autom. 4(3), 134–141 (1989)
7.29.
go back to reference R. Colbaugh, H. Seraji, K. Glass: Direct adaptive impedance control of robot manipulators, J. Robot. Syst. 10, 217–248 (1993)CrossRefMATH R. Colbaugh, H. Seraji, K. Glass: Direct adaptive impedance control of robot manipulators, J. Robot. Syst. 10, 217–248 (1993)CrossRefMATH
7.30.
go back to reference Z. Lu, A.A. Goldenberg: Robust impedance control and force regulation: theory and experiments, Int. J. Robot. Res. 14, 225–254 (1995)CrossRef Z. Lu, A.A. Goldenberg: Robust impedance control and force regulation: theory and experiments, Int. J. Robot. Res. 14, 225–254 (1995)CrossRef
7.31.
go back to reference R.J. Anderson, M.W. Spong: Hybrid impedance control of robotic manipulators, IEEE J. Robot. Autom. 4, 549–556 (1988)CrossRef R.J. Anderson, M.W. Spong: Hybrid impedance control of robotic manipulators, IEEE J. Robot. Autom. 4, 549–556 (1988)CrossRef
7.32.
go back to reference J. Lončarić: Normal forms of stiffness and compliance matrices, IEEE J. Robot. Autom. 3, 567–572 (1987)CrossRef J. Lončarić: Normal forms of stiffness and compliance matrices, IEEE J. Robot. Autom. 3, 567–572 (1987)CrossRef
7.33.
go back to reference T. Patterson, H. Lipkin: Structure of robot compliance, ASME J. Mech. Design 115, 576–580 (1993)CrossRef T. Patterson, H. Lipkin: Structure of robot compliance, ASME J. Mech. Design 115, 576–580 (1993)CrossRef
7.34.
go back to reference E.D. Fasse, P.C. Breedveld: Modelling of elastically coupled bodies: part I – General theory and geometric potential function method, ASME J. Dyn. Syst. Meas. Contr. 120, 496–500 (1998)CrossRef E.D. Fasse, P.C. Breedveld: Modelling of elastically coupled bodies: part I – General theory and geometric potential function method, ASME J. Dyn. Syst. Meas. Contr. 120, 496–500 (1998)CrossRef
7.35.
go back to reference E.D. Fasse, P.C. Breedveld: Modelling of elastically coupled bodies: part II – Exponential and generalized coordinate method, ASME J. Dyn. Syst. Meas. Contr. 120, 501–506 (1998)CrossRef E.D. Fasse, P.C. Breedveld: Modelling of elastically coupled bodies: part II – Exponential and generalized coordinate method, ASME J. Dyn. Syst. Meas. Contr. 120, 501–506 (1998)CrossRef
7.36.
go back to reference R.L. Hollis, S.E. Salcudean, A.P. Allan: A six-degree-of-freedom magnetically levitated variable compliance fine-motion wrist: design, modeling and control, IEEE Trans. Robot. Autom. 7, 320–333 (1991)CrossRef R.L. Hollis, S.E. Salcudean, A.P. Allan: A six-degree-of-freedom magnetically levitated variable compliance fine-motion wrist: design, modeling and control, IEEE Trans. Robot. Autom. 7, 320–333 (1991)CrossRef
7.37.
go back to reference M.A. Peshkin: Programmed compliance for error corrective assembly, IEEE Trans. Robot. Autom. 6, 473–482 (1990)CrossRef M.A. Peshkin: Programmed compliance for error corrective assembly, IEEE Trans. Robot. Autom. 6, 473–482 (1990)CrossRef
7.38.
go back to reference J.M. Shimmels, M.A. Peshkin: Admittance matrix design for force-guided assembly, IEEE Trans. Robot. Autom. 8, 213–227 (1992)CrossRef J.M. Shimmels, M.A. Peshkin: Admittance matrix design for force-guided assembly, IEEE Trans. Robot. Autom. 8, 213–227 (1992)CrossRef
7.39.
go back to reference E.D. Fasse, J.F. Broenink: A spatial impedance controller for robotic manipulation, IEEE Trans. Robot. Autom. 13, 546–556 (1997)CrossRef E.D. Fasse, J.F. Broenink: A spatial impedance controller for robotic manipulation, IEEE Trans. Robot. Autom. 13, 546–556 (1997)CrossRef
7.40.
go back to reference F. Caccavale, C. Natale, B. Siciliano, L. Villani: Six-DOF impedance control based on angle/axis representations, IEEE Trans. Robot. Autom. 15, 289–300 (1999)CrossRef F. Caccavale, C. Natale, B. Siciliano, L. Villani: Six-DOF impedance control based on angle/axis representations, IEEE Trans. Robot. Autom. 15, 289–300 (1999)CrossRef
7.41.
go back to reference F. Caccavale, C. Natale, B. Siciliano, L. Villani: Robot impedance control with nondiagonal stiffness, IEEE Trans. Autom. Contr. 44, 1943–1946 (1999)CrossRefMATH F. Caccavale, C. Natale, B. Siciliano, L. Villani: Robot impedance control with nondiagonal stiffness, IEEE Trans. Autom. Contr. 44, 1943–1946 (1999)CrossRefMATH
7.42.
go back to reference S. Stramigioli: Modeling and IPC Control of Interactive Mechanical Systems – A Coordinate Free Approach, Lecture Notes in Control and Information Sciences (Springer, London 2001)MATH S. Stramigioli: Modeling and IPC Control of Interactive Mechanical Systems – A Coordinate Free Approach, Lecture Notes in Control and Information Sciences (Springer, London 2001)MATH
7.43.
go back to reference H. Bruyninckx, J. De Schutter: Specification of Force-controlled actions in the “task frame formalism” – a synthesis, IEEE Trans. Robot. Autom. 12, 581–589 (1996)CrossRef H. Bruyninckx, J. De Schutter: Specification of Force-controlled actions in the “task frame formalism” – a synthesis, IEEE Trans. Robot. Autom. 12, 581–589 (1996)CrossRef
7.44.
go back to reference H. Lipkin, J. Duffy: Hybrid twist and wrench control for a robotic manipulator, ASME J. Mech. Trans. Autom. Des. 110, 138–144 (1988)CrossRef H. Lipkin, J. Duffy: Hybrid twist and wrench control for a robotic manipulator, ASME J. Mech. Trans. Autom. Des. 110, 138–144 (1988)CrossRef
7.45.
go back to reference J. Duffy: The fallacy of modern hybrid control theory that is based on ‘orthogonal complements’ of twist and wrench spaces, J. Robot. Syst. 7, 139–144 (1990)CrossRef J. Duffy: The fallacy of modern hybrid control theory that is based on ‘orthogonal complements’ of twist and wrench spaces, J. Robot. Syst. 7, 139–144 (1990)CrossRef
7.46.
go back to reference K.L. Doty, C. Melchiorri, C. Bonivento: A theory of generalized inverses applied to robotics, Int. J. Robot. Res. 12, 1–19 (1993)CrossRef K.L. Doty, C. Melchiorri, C. Bonivento: A theory of generalized inverses applied to robotics, Int. J. Robot. Res. 12, 1–19 (1993)CrossRef
7.47.
go back to reference T. Patterson, H. Lipkin: Duality of constrained elastic manipulation, IEEE Conf. Robot. Autom. (Sacramento 1991) pp. 2820–2825 T. Patterson, H. Lipkin: Duality of constrained elastic manipulation, IEEE Conf. Robot. Autom. (Sacramento 1991) pp. 2820–2825
7.48.
go back to reference J. De Schutter, H. Bruyninckx, S. Dutré, J. De Geeter, J. Katupitiya, S. Demey, T. Lefebvre: Estimation first-order geometric parameters and monitoring contact transitions during force-controlled compliant motions, Int. J. Robot. Res. 18(12), 1161–1184 (1999)CrossRef J. De Schutter, H. Bruyninckx, S. Dutré, J. De Geeter, J. Katupitiya, S. Demey, T. Lefebvre: Estimation first-order geometric parameters and monitoring contact transitions during force-controlled compliant motions, Int. J. Robot. Res. 18(12), 1161–1184 (1999)CrossRef
7.49.
go back to reference T. Lefebvre, H. Bruyninckx, J. De Schutter: Polyedral contact formation identification for auntonomous compliant motion, IEEE Trans. Robot. Autom. 19, 26–41 (2007)CrossRef T. Lefebvre, H. Bruyninckx, J. De Schutter: Polyedral contact formation identification for auntonomous compliant motion, IEEE Trans. Robot. Autom. 19, 26–41 (2007)CrossRef
7.50.
go back to reference J. De Schutter, T. De Laet, J. Rutgeerts, W. Decré, R. Smits, E. Aerbeliën, K. Claes, H. Bruyninckx: Constraint-based task specification and estimation for sensor-based robot systems in the presence of geometric uncertainty, Int. J. Robot. Res. 26(5), 433–455 (2007)CrossRef J. De Schutter, T. De Laet, J. Rutgeerts, W. Decré, R. Smits, E. Aerbeliën, K. Claes, H. Bruyninckx: Constraint-based task specification and estimation for sensor-based robot systems in the presence of geometric uncertainty, Int. J. Robot. Res. 26(5), 433–455 (2007)CrossRef
7.51.
go back to reference A. De Luca, C. Manes: Modeling robots in contact with a dynamic environment, IEEE Trans. Robot. Autom. 10, 542–548 (1994)CrossRef A. De Luca, C. Manes: Modeling robots in contact with a dynamic environment, IEEE Trans. Robot. Autom. 10, 542–548 (1994)CrossRef
7.52.
go back to reference T. Yoshikawa, T. Sugie, N. Tanaka: Dynamic hybrid position/force control of robot manipulators – controller design and experiment, IEEE J. Robot. Autom. 4, 699–705 (1988)CrossRef T. Yoshikawa, T. Sugie, N. Tanaka: Dynamic hybrid position/force control of robot manipulators – controller design and experiment, IEEE J. Robot. Autom. 4, 699–705 (1988)CrossRef
7.53.
go back to reference J. De Schutter, D. Torfs, H. Bruyninckx, S. Dutré: Invariant hybrid force/position control of a velocity controlled robot with compliant end effector using modal decoupling, Int. J. Robot. Res. 16(3), 340–356 (1997)CrossRef J. De Schutter, D. Torfs, H. Bruyninckx, S. Dutré: Invariant hybrid force/position control of a velocity controlled robot with compliant end effector using modal decoupling, Int. J. Robot. Res. 16(3), 340–356 (1997)CrossRef
7.54.
go back to reference R. Lozano, B. Brogliato: Adaptive hybrid force-position control for redundant manipulators, IEEE Trans. Autom. Contr. 37, 1501–1505 (1992)CrossRefMATHMathSciNet R. Lozano, B. Brogliato: Adaptive hybrid force-position control for redundant manipulators, IEEE Trans. Autom. Contr. 37, 1501–1505 (1992)CrossRefMATHMathSciNet
7.55.
go back to reference L.L. Whitcomb, S. Arimoto, T. Naniwa, F. Ozaki: Adaptive model-based hybrid control if geometrically constrained robots, IEEE Trans. Robot. Autom. 13, 105–116 (1997)CrossRef L.L. Whitcomb, S. Arimoto, T. Naniwa, F. Ozaki: Adaptive model-based hybrid control if geometrically constrained robots, IEEE Trans. Robot. Autom. 13, 105–116 (1997)CrossRef
7.56.
go back to reference B. Yao, S.P. Chan, D. Wang: Unified formulation of variable structure control schemes for robot manipulators, IEEE Trans. Autom. Contr. 39, 371–376 (1992)MathSciNet B. Yao, S.P. Chan, D. Wang: Unified formulation of variable structure control schemes for robot manipulators, IEEE Trans. Autom. Contr. 39, 371–376 (1992)MathSciNet
7.57.
go back to reference S. Chiaverini, B. Siciliano, L. Villani: Force/position regulation of compliant robot manipulators, IEEE Trans. Autom. Contr. 39, 647–652 (1994)CrossRefMATH S. Chiaverini, B. Siciliano, L. Villani: Force/position regulation of compliant robot manipulators, IEEE Trans. Autom. Contr. 39, 647–652 (1994)CrossRefMATH
7.58.
go back to reference J.T.-Y. Wen, S. Murphy: Stability analysis of position and force control for robot arms, IEEE Trans. Autom. Contr. 36, 365–371 (1991)CrossRefMATHMathSciNet J.T.-Y. Wen, S. Murphy: Stability analysis of position and force control for robot arms, IEEE Trans. Autom. Contr. 36, 365–371 (1991)CrossRefMATHMathSciNet
7.59.
go back to reference R. Volpe, P. Khosla: A theoretical and experimental investigation of explicit force control strategies for manipulators, IEEE Trans. Autom. Contr. 38, 1634–1650 (1993)CrossRefMathSciNet R. Volpe, P. Khosla: A theoretical and experimental investigation of explicit force control strategies for manipulators, IEEE Trans. Autom. Contr. 38, 1634–1650 (1993)CrossRefMathSciNet
7.60.
go back to reference L.S. Wilfinger, J.T. Wen, S.H. Murphy: Integral force control with robustness enhancement, IEEE Contr. Syst. Mag. 14(1), 31–40 (1994)CrossRef L.S. Wilfinger, J.T. Wen, S.H. Murphy: Integral force control with robustness enhancement, IEEE Contr. Syst. Mag. 14(1), 31–40 (1994)CrossRef
7.61.
go back to reference S.D. Eppinger, W.P. Seering: Introduction to dynamic models for robot force control, IEEE Contr. Syst. Mag. 7(2), 48–52 (1987)CrossRef S.D. Eppinger, W.P. Seering: Introduction to dynamic models for robot force control, IEEE Contr. Syst. Mag. 7(2), 48–52 (1987)CrossRef
7.62.
go back to reference C.H. An, J.M. Hollerbach: The role of dynamic models in Cartesian force control of manipulators, Int. J. Robot. Res. 8(4), 51–72 (1989)CrossRef C.H. An, J.M. Hollerbach: The role of dynamic models in Cartesian force control of manipulators, Int. J. Robot. Res. 8(4), 51–72 (1989)CrossRef
7.63.
go back to reference R. Volpe, P. Khosla: A theoretical and experimental investigation of impact control for manipulators, Int. J. Robot. Res. 12, 351–365 (1993)CrossRef R. Volpe, P. Khosla: A theoretical and experimental investigation of impact control for manipulators, Int. J. Robot. Res. 12, 351–365 (1993)CrossRef
7.64.
go back to reference J.K. Mills, D.M. Lokhorst: Control of robotic manipulators during general task execution: a discontinuous control approach, Int. J. Robot. Res. 12, 146–163 (1993)CrossRef J.K. Mills, D.M. Lokhorst: Control of robotic manipulators during general task execution: a discontinuous control approach, Int. J. Robot. Res. 12, 146–163 (1993)CrossRef
7.65.
go back to reference T.-J. Tarn, Y. Wu, N. Xi, A. Isidori: Force regulation and contact transition control, IEEE Contr. Syst. Mag. 16(1), 32–40 (1996)CrossRef T.-J. Tarn, Y. Wu, N. Xi, A. Isidori: Force regulation and contact transition control, IEEE Contr. Syst. Mag. 16(1), 32–40 (1996)CrossRef
7.66.
go back to reference B. Brogliato, S. Niculescu, P. Orhant: On the control of finite dimensional mechanical systems with unilateral constraints, IEEE Trans. Autom. Contr. 42, 200–215 (1997)CrossRefMATHMathSciNet B. Brogliato, S. Niculescu, P. Orhant: On the control of finite dimensional mechanical systems with unilateral constraints, IEEE Trans. Autom. Contr. 42, 200–215 (1997)CrossRefMATHMathSciNet
Metadata
Title
Force Control
Authors
Luigi Villani, Prof
Joris De Schutter, PhD
Copyright Year
2008
DOI
https://doi.org/10.1007/978-3-540-30301-5_8