Skip to main content
Top
Published in: Optical Memory and Neural Networks 1/2024

01-03-2024

Forecasting PM2.5 Concentration Using Gradient-Boosted Regression Tree with CNN Learning Model

Authors: A. Usha Ruby, J. George Chellin Chandran, Prasannavenkatesan Theerthagiri, Renuka Patil, B. N. Chaithanya, T. J. Swasthika Jain

Published in: Optical Memory and Neural Networks | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Air pollution imposed by particle matter (PM) made it a public health concern and hazard to humans and the environment. Reduced vision, allergic responses, pneumonia, asthma, cardiovascular disorders, lung cancer, and even mortality can result from prolonged exposure to the concentration of air’s small particulate matter. Air quality prediction can offer reliable information for future air pollution status to operate air pollution control effectively and make preventative plans. Tracking, predicting, and regulating emissions is crucial. Controlling PM2.5 is the key for enhancing air quality, and it can be accomplished by forecasting PM2.5 concentrations. This work develops a methodology for forecasting PM2.5 concentrations using a gradient-boosted regression tree with Convolutional Neural Network (CNN) and fuzzy K-nearest neighbour (fuzzy-KNN). The results of the proposed methodology have been comparatively analysed with multiple linear regression, stacked long short-term memory, bidirectional gated recurrent unit, and gradient-boosted regression tree. The Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) are evaluated, and it shows that the gradient-boosted regression tree model produces a reduced error with improved accuracy in forecasting air quality.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Pope Iii, C.A., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K., and Thurston, G.D., Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution, JAMA, 2002, vol. 287, no. 9, pp. 1132–1141.CrossRef Pope Iii, C.A., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K., and Thurston, G.D., Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution, JAMA, 2002, vol. 287, no. 9, pp. 1132–1141.CrossRef
2.
go back to reference Baker, K.R. and Foley, K.M., A nonlinear regression model estimating single source concentrations of primary and secondarily formed PM2. 5, Atmos. Environ., 2011, vol. 45, no. 22, pp. 3758–3767.CrossRef Baker, K.R. and Foley, K.M., A nonlinear regression model estimating single source concentrations of primary and secondarily formed PM2. 5, Atmos. Environ., 2011, vol. 45, no. 22, pp. 3758–3767.CrossRef
3.
go back to reference Zhang, Y., He, Y., and Zhu, J., Research on forecasting problem based on multiple linear regression model PM2. 5, J. Anhui Sci. Technol. Univ., 2016, vol. 30, no. 3, pp. 92–97. Zhang, Y., He, Y., and Zhu, J., Research on forecasting problem based on multiple linear regression model PM2. 5, J. Anhui Sci. Technol. Univ., 2016, vol. 30, no. 3, pp. 92–97.
4.
go back to reference Wang, Z. and Long, Z., Pm2. 5 prediction based on neural network, in 2018 11th International Conference on Intelligent Computation Technology and Automation (ICICTA), IEEE, 2018, pp. 44–47. Wang, Z. and Long, Z., Pm2. 5 prediction based on neural network, in 2018 11th International Conference on Intelligent Computation Technology and Automation (ICICTA), IEEE, 2018, pp. 44–47.
5.
go back to reference Elangasinghe, M.A., Singhal, N., Dirks, K.N., Salmond, J.A., and Samarasinghe, S., Complex time series analysis of PM10 and PM2. 5 for a coastal site using artificial neural network modelling and k-means clustering, Atmos. Environ., 2014, vol. 94, pp. 106–116.CrossRef Elangasinghe, M.A., Singhal, N., Dirks, K.N., Salmond, J.A., and Samarasinghe, S., Complex time series analysis of PM10 and PM2. 5 for a coastal site using artificial neural network modelling and k-means clustering, Atmos. Environ., 2014, vol. 94, pp. 106–116.CrossRef
6.
go back to reference Ordieres, J.B., Vergara, E.P., Capuz, R.S., and Salazar, R.E., Neural network prediction model for fine particulate matter (PM2. 5) on the US–Mexico border in El Paso (Texas) and Ciudad Juárez (Chihuahua), Environ. Modell. Software, 2005, vol. 20, no. 5, pp. 547–559.CrossRef Ordieres, J.B., Vergara, E.P., Capuz, R.S., and Salazar, R.E., Neural network prediction model for fine particulate matter (PM2. 5) on the US–Mexico border in El Paso (Texas) and Ciudad Juárez (Chihuahua), Environ. Modell. Software, 2005, vol. 20, no. 5, pp. 547–559.CrossRef
7.
go back to reference Wang, J., Li, J., Wang, X., Wang, J., and Huang, M., Air quality prediction using CT-LSTM, Neural Comput. Appl., 2021, vol. 33, no. 10, pp. 4779–4792.CrossRef Wang, J., Li, J., Wang, X., Wang, J., and Huang, M., Air quality prediction using CT-LSTM, Neural Comput. Appl., 2021, vol. 33, no. 10, pp. 4779–4792.CrossRef
8.
go back to reference Mokhtari, I., Bechkit, W., Rivano, H., and Yaici, M.R., Uncertainty-aware deep learning architectures for highly dynamic air quality prediction, IEEE Access, 2021, vol. 9, pp. 14765–14778.CrossRef Mokhtari, I., Bechkit, W., Rivano, H., and Yaici, M.R., Uncertainty-aware deep learning architectures for highly dynamic air quality prediction, IEEE Access, 2021, vol. 9, pp. 14765–14778.CrossRef
9.
go back to reference Nguyen, M.H., Le Nguyen, P., Nguyen, K., Nguyen, T.H., and Ji, Y., PM2. 5 prediction using genetic algorithm-based feature selection and encoder-decoder model, IEEE Access, 2021, vol. 9, pp. 57338–57350.CrossRef Nguyen, M.H., Le Nguyen, P., Nguyen, K., Nguyen, T.H., and Ji, Y., PM2. 5 prediction using genetic algorithm-based feature selection and encoder-decoder model, IEEE Access, 2021, vol. 9, pp. 57338–57350.CrossRef
10.
go back to reference Xing, H., Wang, G., Liu, C., and Suo, M., PM2. 5 concentration modeling and prediction by using temperature-based deep belief network, Neural Networks, 2021, vol. 133, pp. 157–165.CrossRef Xing, H., Wang, G., Liu, C., and Suo, M., PM2. 5 concentration modeling and prediction by using temperature-based deep belief network, Neural Networks, 2021, vol. 133, pp. 157–165.CrossRef
11.
go back to reference Zheng, G., Liu, H., Yu, C., Li, Y., and Cao, Z., A new PM2. 5 forecasting model based on data preprocessing, reinforcement learning and gated recurrent unit network, Atmos. Pollut.Res., 2022, 101475. Zheng, G., Liu, H., Yu, C., Li, Y., and Cao, Z., A new PM2. 5 forecasting model based on data preprocessing, reinforcement learning and gated recurrent unit network, Atmos. Pollut.Res., 2022, 101475.
41.
go back to reference LeCun, Y., Bengio, Y., and Hinton, G., Deep learning, Nature, 2015, vol. 521, no. 7553, pp. 436–444.CrossRef LeCun, Y., Bengio, Y., and Hinton, G., Deep learning, Nature, 2015, vol. 521, no. 7553, pp. 436–444.CrossRef
42.
go back to reference LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P., Gradient-based learning applied to document recognition, Proc. IEEE, 1998, vol. 86, no. 11, pp. 2278–2324.CrossRef LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P., Gradient-based learning applied to document recognition, Proc. IEEE, 1998, vol. 86, no. 11, pp. 2278–2324.CrossRef
43.
go back to reference Cleeremans, A., Servan-Schreiber, D., and McClelland, J.L., Finite state automata and simple recurrent networks, Neural Comput., 1989, vol. 1, no. 3, pp. 372–381.CrossRef Cleeremans, A., Servan-Schreiber, D., and McClelland, J.L., Finite state automata and simple recurrent networks, Neural Comput., 1989, vol. 1, no. 3, pp. 372–381.CrossRef
44.
go back to reference Tao, Q., Liu, F., Li, Y., and Sidorov, D., Air pollution forecasting using a deep learning model based on 1D convnets and bidirectional GRU, IEEE access, 2019, vol. 7, pp. 76690–76698. doi: 10.1109 /ACCESS. 2019.2921578 Tao, Q., Liu, F., Li, Y., and Sidorov, D., Air pollution forecasting using a deep learning model based on 1D convnets and bidirectional GRU, IEEE access, 2019, vol. 7, pp. 76690–76698. doi: 10.1109 /ACCESS. 2019.2921578
46.
go back to reference Ruby, A.U., Chaithanya, B.N., Swasthika Jain T.J., Darandale, S., Kerenalli, S., and Patil, R., An effective feature descriptor method to classify plant leaf diseases using eXtreme Gradient Boost, J. Integr. Sci. Technol., 2022, vol. 10, no. 1, pp. 43–52. Ruby, A.U., Chaithanya, B.N., Swasthika Jain T.J., Darandale, S., Kerenalli, S., and Patil, R., An effective feature descriptor method to classify plant leaf diseases using eXtreme Gradient Boost, J. Integr. Sci. Technol., 2022, vol. 10, no. 1, pp. 43–52.
47.
go back to reference https://archive.ics.uci.edu/ml/datasets/Beijing+multi-Site+Air-Quality+Data. https://archive.ics.uci.edu/ml/datasets/Beijing+multi-Site+Air-Quality+Data.
48.
go back to reference Das, K. and Das, S., Energy-efficient cloud-integrated sensor network model based on data forecasting through ARIMA, Int. J. e-Collab. (IJeC), 2022, vol. 18, no. 1, pp. 1–17. Das, K. and Das, S., Energy-efficient cloud-integrated sensor network model based on data forecasting through ARIMA, Int. J. e-Collab. (IJeC), 2022, vol. 18, no. 1, pp. 1–17.
Metadata
Title
Forecasting PM2.5 Concentration Using Gradient-Boosted Regression Tree with CNN Learning Model
Authors
A. Usha Ruby
J. George Chellin Chandran
Prasannavenkatesan Theerthagiri
Renuka Patil
B. N. Chaithanya
T. J. Swasthika Jain
Publication date
01-03-2024
Publisher
Pleiades Publishing
Published in
Optical Memory and Neural Networks / Issue 1/2024
Print ISSN: 1060-992X
Electronic ISSN: 1934-7898
DOI
https://doi.org/10.3103/S1060992X24010107

Other articles of this Issue 1/2024

Optical Memory and Neural Networks 1/2024 Go to the issue

Premium Partner