Skip to main content
Top
Published in:
Cover of the book

2013 | OriginalPaper | Chapter

1. Foundations of Photochemistry: A Background on the Interaction Between Light and Molecules

Authors : Peter Douglas, Hugh D. Burrows, Rachel C. Evans

Published in: Applied Photochemistry

Publisher: Springer Netherlands

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter gives an introduction to the key ideas which underpin photochemistry: the nature of electromagnetic radiation, the nature of matter, and the way the two interact. After a discussion of ultraviolet and visible electromagnetic radiation and its interaction with the optical properties of materials, an account is given of the fundamental properties of the four components involved in photochemistry, the protons, neutrons and electrons which make up atoms, and the photon. The ideas of wave mechanics and its application to atomic structure are introduced in a non-mathematical way, with atomic orbitals described in terms of quantum numbers, energies, degeneracies, shapes and symmetries. The role of electron spin in governing orbital occupancy is discussed, along with the structure of many-electron atoms and the use of term symbols to identify the various spin, orbital, and total angular momenta of atomic states. The use of atomic orbitals as constructs for molecular orbitals and molecular bonding is described. Term symbols for small molecules are illustrated briefly using O2, which is particularly important in photochemistry, as an example. The concepts of a Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) are introduced, and the importance of these orbitals in photochemistry is explained. Bonding in conjugated systems, metals and semiconductors is described. The link between energy levels and electrochemical redox potentials is made. The various energy states in atoms molecules and solids, and the way energy is distributed within these energy levels according to the Boltzmann equation, are described. Timescales for various physical and photochemical processes are given. The interaction of electronic energy states with ultraviolet and visible light is discussed in terms of absorption, emission and stimulated emission, using the Einstein A and B coefficients, transition probabilities, and absorption coefficients. The absorption process and the various selection rules which control the efficiency of absorption, and emission, are described, as are the common types of electronic transitions. Absorption in gas, solution, and solid phases, and the effect of aggregation on absorption in solution, are discussed. Unimolecular radiative and non-radiative excited state deactivation processes are discussed in terms of the Jablonski diagram, and the ideas of, competition between decay routes, and quantum yield, are introduced. Bimolecular interactions, quenching and energy transfer are described, with Förster Resonance Energy Transfer (FRET) and Dexter energy transfer discussed in some detail, and the analysis of bimolecular quenching kinetics using the Stern–Volmer equation is given. The chapter finishes with brief discussions of excimers, exciplexes, delayed fluorescence and proton transfer.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Braslavsky SE (2007) Glossary of terms used in photochemistry 3rd edition (IUPAC recommendations 2006). Pure Appl Chem 79:293–465CrossRef Braslavsky SE (2007) Glossary of terms used in photochemistry 3rd edition (IUPAC recommendations 2006). Pure Appl Chem 79:293–465CrossRef
3.
go back to reference Elsaesser T, Kaiser W (1991) Vibrational and vibronic relaxation of large polyatomic molecules in liquids. Ann Rev Phys Chem 42:83–107CrossRef Elsaesser T, Kaiser W (1991) Vibrational and vibronic relaxation of large polyatomic molecules in liquids. Ann Rev Phys Chem 42:83–107CrossRef
4.
go back to reference Hodgman SS, Dall RG, Byron LJ, Baldwin KGH, Buckman SJ, Truscott AG et al (2009) Metastable helium: a new determination of the longest atomic excited-state lifetime. Phys Rev Lett 103:053002CrossRef Hodgman SS, Dall RG, Byron LJ, Baldwin KGH, Buckman SJ, Truscott AG et al (2009) Metastable helium: a new determination of the longest atomic excited-state lifetime. Phys Rev Lett 103:053002CrossRef
5.
go back to reference Newman SM, Lane IC, Orr-Ewing AJ, Newnam DA, Ballard J et al (1999) Integrated absorption intensity and Einstien coefficients for the O2 a 1Δg- X 3Σg-(0,0) transition: A comparison of cavity ringdown and high resolution Fourier transform spectroscopy with a long-path absorption cell. J Chem Phys 110:10749–10757CrossRef Newman SM, Lane IC, Orr-Ewing AJ, Newnam DA, Ballard J et al (1999) Integrated absorption intensity and Einstien coefficients for the O2 a 1Δg- X 3Σg-(0,0) transition: A comparison of cavity ringdown and high resolution Fourier transform spectroscopy with a long-path absorption cell. J Chem Phys 110:10749–10757CrossRef
6.
go back to reference Atkins P, de Paula J, Friedman R (2009) Quanta, matter and change: a molecular approach to physical chemistry. Oxford University Press, Oxford Atkins P, de Paula J, Friedman R (2009) Quanta, matter and change: a molecular approach to physical chemistry. Oxford University Press, Oxford
7.
go back to reference Dorn R, Quabis S, Leuchs G (2003) Sharper focus for a radially polarized light beam. Phys Rev Lett 91:233901–233904CrossRef Dorn R, Quabis S, Leuchs G (2003) Sharper focus for a radially polarized light beam. Phys Rev Lett 91:233901–233904CrossRef
8.
go back to reference The photonics dictionary (2009) Book 4, 45th edn. Laurin Publishing Co, Pittsfield The photonics dictionary (2009) Book 4, 45th edn. Laurin Publishing Co, Pittsfield
9.
go back to reference Smith FG, King TA (2000) Optics and photonics. An introduction. John Wiley, Chichester Smith FG, King TA (2000) Optics and photonics. An introduction. John Wiley, Chichester
10.
go back to reference Michelson AA, Morley EW (1887) On the relative motion of the earth and the luminiferous ether. Am J Sci 34:333–345 Michelson AA, Morley EW (1887) On the relative motion of the earth and the luminiferous ether. Am J Sci 34:333–345
11.
go back to reference Hell SW (2007) Far-field optical nanoscopy. Science 316:1153–1158 Hell SW (2007) Far-field optical nanoscopy. Science 316:1153–1158
12.
go back to reference Moore WJ et al(1972) Physical chemistry. Longman, London Moore WJ et al(1972) Physical chemistry. Longman, London
13.
go back to reference Moore AD (ed) (1983) Electrostatics and its applications. John Wiley, New York Chapter 1 Moore AD (ed) (1983) Electrostatics and its applications. John Wiley, New York Chapter 1
14.
go back to reference Banwell C, McCash E (1994) Fundamentals of molecular spectroscopy, 4th edn. Mcgraw-Hill Banwell C, McCash E (1994) Fundamentals of molecular spectroscopy, 4th edn. Mcgraw-Hill
15.
go back to reference Hollas JM (2004) Modern spectroscopy, 4th edn. Wiley, Chichester Hollas JM (2004) Modern spectroscopy, 4th edn. Wiley, Chichester
16.
go back to reference Worner HJ, Niikura H, Bertrand JB, Corkum PB,Villeneuve DM (2009) Observation of electronic structure minima in high-harmonic generation. Phys Rev Lett 102:103901 Worner HJ, Niikura H, Bertrand JB, Corkum PB,Villeneuve DM (2009) Observation of electronic structure minima in high-harmonic generation. Phys Rev Lett 102:103901
17.
go back to reference Housecroft CE, Sharpe AG (2001) Inorganic chemistry. Prentice Hall, Harlow, pp 16–25 Housecroft CE, Sharpe AG (2001) Inorganic chemistry. Prentice Hall, Harlow, pp 16–25
18.
go back to reference Pritchard HO (2012) We need to update the teaching of valence theory. J Chem Ed 89:301–303CrossRef Pritchard HO (2012) We need to update the teaching of valence theory. J Chem Ed 89:301–303CrossRef
19.
go back to reference Sandorfy C (1964) Electronic spectra and quantum chemistry. Prentice-Hall, Englewood Cliffs Sandorfy C (1964) Electronic spectra and quantum chemistry. Prentice-Hall, Englewood Cliffs
20.
go back to reference Harris DC, Bertolucci MD (1989) Symmetry and spectroscopy: an introduction to vibrational and electronic spectroscopy. Dover, New York Harris DC, Bertolucci MD (1989) Symmetry and spectroscopy: an introduction to vibrational and electronic spectroscopy. Dover, New York
21.
go back to reference Campbell MK (1980) The 1A1g → 1B2u transition of benzene. J Chem Ed 57:756–758CrossRef Campbell MK (1980) The 1A1g → 1B2u transition of benzene. J Chem Ed 57:756–758CrossRef
22.
go back to reference Pope M, Swenberg CE (1999) Electronic processes in organic crystals and polymers. Oxford University Press, Oxford Pope M, Swenberg CE (1999) Electronic processes in organic crystals and polymers. Oxford University Press, Oxford
23.
go back to reference Davydov AS (1971) Theory of molecular excitons. Plenum, New York Davydov AS (1971) Theory of molecular excitons. Plenum, New York
24.
go back to reference Kasha M, Rawls HR, El-Bayoumi MA (1965) The exciton model in molecular spectroscopy. Pure Appl Chem 11:371–392CrossRef Kasha M, Rawls HR, El-Bayoumi MA (1965) The exciton model in molecular spectroscopy. Pure Appl Chem 11:371–392CrossRef
25.
go back to reference Guerrero AH, Fasoli HJ, Costa JL (1999) Why gold and copper are coloured but silver is not. J Chem Ed 76:200CrossRef Guerrero AH, Fasoli HJ, Costa JL (1999) Why gold and copper are coloured but silver is not. J Chem Ed 76:200CrossRef
26.
go back to reference Heeger AJ, Kivelson S, Schrieffer JR, Su WP (1988) Solitons in conducting polymers. Rev Mod Phys 60:781–850CrossRef Heeger AJ, Kivelson S, Schrieffer JR, Su WP (1988) Solitons in conducting polymers. Rev Mod Phys 60:781–850CrossRef
27.
go back to reference Rauscher U, Bässler H, Bradley DDC, Hennecke M (1990) Exciton versus band description of the absorption and luminescence spectra in poly(p-phenylenevinylene). Phys Rev B 42:9830–9836CrossRef Rauscher U, Bässler H, Bradley DDC, Hennecke M (1990) Exciton versus band description of the absorption and luminescence spectra in poly(p-phenylenevinylene). Phys Rev B 42:9830–9836CrossRef
28.
go back to reference Sariciftci NS (ed) (1998) Primary photoexcitations in conjugated polymers: molecular exciton versus semiconductor band model. World Scientific, Singapore Sariciftci NS (ed) (1998) Primary photoexcitations in conjugated polymers: molecular exciton versus semiconductor band model. World Scientific, Singapore
29.
go back to reference Schweitzer B, Bässler H (2000) Excitons in conjugated polymers. Synth Met 109:1–6CrossRef Schweitzer B, Bässler H (2000) Excitons in conjugated polymers. Synth Met 109:1–6CrossRef
30.
go back to reference Köhler A, Bässler H (2011) What controls triplet exciton transfer in organic semiconductors? J Mater Chem 21:4003–4011CrossRef Köhler A, Bässler H (2011) What controls triplet exciton transfer in organic semiconductors? J Mater Chem 21:4003–4011CrossRef
31.
go back to reference Schwartz BJ (2003) Conjugated polymers as molecular materials: How chain conformation and film morphology influence energy transfer and interchain interactions. Ann Rev Phys Chem 54:141–172CrossRef Schwartz BJ (2003) Conjugated polymers as molecular materials: How chain conformation and film morphology influence energy transfer and interchain interactions. Ann Rev Phys Chem 54:141–172CrossRef
32.
go back to reference Ebsworth EAV, Rankin DWH, Cradock S (1991) Structural methods in inorganic chemistry, 2nd edn. Blackwell Scientific Publications, Oxford Ebsworth EAV, Rankin DWH, Cradock S (1991) Structural methods in inorganic chemistry, 2nd edn. Blackwell Scientific Publications, Oxford
33.
go back to reference Moore CE (1970) Analyses of optical spectra. Office of Standard Reference Data, NSRDS-NBS 34. National Bureau of Standards. Washington, DC Moore CE (1970) Analyses of optical spectra. Office of Standard Reference Data, NSRDS-NBS 34. National Bureau of Standards. Washington, DC
34.
go back to reference Montalti M, Credi A, Prodi L, Gandolfi MT (2006) Handbook of photochemistry, 3rd edn. CRC Press, Boca Raton Montalti M, Credi A, Prodi L, Gandolfi MT (2006) Handbook of photochemistry, 3rd edn. CRC Press, Boca Raton
35.
go back to reference Trasetti S (1986) The absolute electrode potential—an explanatory note. Pure Appl Chem 58:955–966CrossRef Trasetti S (1986) The absolute electrode potential—an explanatory note. Pure Appl Chem 58:955–966CrossRef
36.
go back to reference Brett CMA, Brett AMO (1993) Electrochemistry: principles, methods, and applications. Oxford University Press, Oxford Brett CMA, Brett AMO (1993) Electrochemistry: principles, methods, and applications. Oxford University Press, Oxford
37.
go back to reference Connelly NG, Geiger WE (1996) Chemical redox agents for organometallic chemistry. Chem Rev 96:877–910CrossRef Connelly NG, Geiger WE (1996) Chemical redox agents for organometallic chemistry. Chem Rev 96:877–910CrossRef
38.
go back to reference Cardona CM, Li W, Kaifer AE, Stockdale D, Bazan GC et al (2011) Electrochemical considerations for determining absolute frontier orbital energy levels of conjugated polymers for solar cell applications. Adv Mater 23:2367–2371CrossRef Cardona CM, Li W, Kaifer AE, Stockdale D, Bazan GC et al (2011) Electrochemical considerations for determining absolute frontier orbital energy levels of conjugated polymers for solar cell applications. Adv Mater 23:2367–2371CrossRef
39.
go back to reference Kalyanasundaram K (1982) Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium(II) and its analogues. Coord Chem Rev 46:159–244CrossRef Kalyanasundaram K (1982) Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium(II) and its analogues. Coord Chem Rev 46:159–244CrossRef
40.
go back to reference Burrows HD, Azenha ME, Monteiro CJP (2008) Homogeneous photocatalysis. In: Figueiredo JL, Pereira MM, Faria J (eds) Catalysis from theory to application. Coimbra University Press, Coimbra Burrows HD, Azenha ME, Monteiro CJP (2008) Homogeneous photocatalysis. In: Figueiredo JL, Pereira MM, Faria J (eds) Catalysis from theory to application. Coimbra University Press, Coimbra
41.
go back to reference Koopman T (1934) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms. Physica 1:104–113CrossRef Koopman T (1934) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms. Physica 1:104–113CrossRef
42.
go back to reference Ramsey BG (1977) A comparison of the role of charge transfer hyperconjugation, inductive and field interactions in substituted methyl and silyl substituent effects in benzene π vertical ionization energies. J Organomet Chem 135:307–319CrossRef Ramsey BG (1977) A comparison of the role of charge transfer hyperconjugation, inductive and field interactions in substituted methyl and silyl substituent effects in benzene π vertical ionization energies. J Organomet Chem 135:307–319CrossRef
43.
go back to reference Doering JP (1977) Electronic energy levels of benzene below 7 eV. J Chem Phys 67:4065–4070CrossRef Doering JP (1977) Electronic energy levels of benzene below 7 eV. J Chem Phys 67:4065–4070CrossRef
44.
go back to reference Palmer MH, Walker IC (1989) The electronic states of benzene and the azines. 1 The parent compound benzene. Correlation of vacuum UV and electron scattering data with ab initio calculations. Chem Phys 133:113–121CrossRef Palmer MH, Walker IC (1989) The electronic states of benzene and the azines. 1 The parent compound benzene. Correlation of vacuum UV and electron scattering data with ab initio calculations. Chem Phys 133:113–121CrossRef
45.
go back to reference Orchin M, Jaffe HH (1971) Symmetry, orbitals and spectra. Wiley, New York Orchin M, Jaffe HH (1971) Symmetry, orbitals and spectra. Wiley, New York
46.
go back to reference Wayne RP (1988) Principles and applications of photochemistry. Oxford University Press, Oxford Wayne RP (1988) Principles and applications of photochemistry. Oxford University Press, Oxford
47.
go back to reference Sturm JE (1990) Grid of expressions related to the Einstein coefficients. J Chem Ed 67:32–33CrossRef Sturm JE (1990) Grid of expressions related to the Einstein coefficients. J Chem Ed 67:32–33CrossRef
48.
go back to reference Benessi HA, Hildebrand JH (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707CrossRef Benessi HA, Hildebrand JH (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707CrossRef
49.
go back to reference Kasha M (1963) Energy transfer mechanisms and the molecular exciton model for molecular aggregation. Radiat Res 20:55–71CrossRef Kasha M (1963) Energy transfer mechanisms and the molecular exciton model for molecular aggregation. Radiat Res 20:55–71CrossRef
50.
go back to reference Jelley EE (1936) Spectral absorbance and fluorescence of dyes in the molecular state. Nature 138:1009–1010CrossRef Jelley EE (1936) Spectral absorbance and fluorescence of dyes in the molecular state. Nature 138:1009–1010CrossRef
51.
go back to reference Scheibe G (1937) Über die Veränderlichkeit der Absorptionsspektren in Lösungen und die Nebenvalenzen als ihre Ursache. Angew Chem 50:212–219CrossRef Scheibe G (1937) Über die Veränderlichkeit der Absorptionsspektren in Lösungen und die Nebenvalenzen als ihre Ursache. Angew Chem 50:212–219CrossRef
52.
go back to reference Würthner F, Kaiser TE, Saha-Möller CR (2011) J-aggregates: from serendipitious discovery to supramolecular engineering of functional dye molecules. Angew Chem Int Ed 50:3376–3410CrossRef Würthner F, Kaiser TE, Saha-Möller CR (2011) J-aggregates: from serendipitious discovery to supramolecular engineering of functional dye molecules. Angew Chem Int Ed 50:3376–3410CrossRef
53.
go back to reference Tilley R (2011) Colour and the optical properties of materials, 2nd edn. Wiley, Chichester Tilley R (2011) Colour and the optical properties of materials, 2nd edn. Wiley, Chichester
54.
go back to reference Prasad PN, Williams DJ (1990) Introduction to nonlinear optical effects in molecules and polymers. Wiley, New York Prasad PN, Williams DJ (1990) Introduction to nonlinear optical effects in molecules and polymers. Wiley, New York
55.
go back to reference Strickler SJ, Berg RA (1962) Relationship between absorption intensity and fluorescence lifetime of molecules. J Chem Phys 37:814–822CrossRef Strickler SJ, Berg RA (1962) Relationship between absorption intensity and fluorescence lifetime of molecules. J Chem Phys 37:814–822CrossRef
56.
go back to reference Kasha M (1950) Characterization of electronic transitions in complex molecules. Disc Faraday Soc 9:4–19CrossRef Kasha M (1950) Characterization of electronic transitions in complex molecules. Disc Faraday Soc 9:4–19CrossRef
57.
go back to reference Cario G, Franck J (1923) On sensitized fluorescence of gases. Z Phys 17:202–212CrossRef Cario G, Franck J (1923) On sensitized fluorescence of gases. Z Phys 17:202–212CrossRef
58.
go back to reference Förster T (1948) Zwischenmolekulare energiewanderung und fluoreszenz. Ann Phys 2:55–75 Förster T (1948) Zwischenmolekulare energiewanderung und fluoreszenz. Ann Phys 2:55–75
59.
go back to reference Förster T (1959) Transfer mechanisms of electronic excitation. Disc Faraday Soc 27:7–17CrossRef Förster T (1959) Transfer mechanisms of electronic excitation. Disc Faraday Soc 27:7–17CrossRef
60.
go back to reference Berlman IB (1973) Energy transfer parameters of aromatic compounds. Academic Press, New York Berlman IB (1973) Energy transfer parameters of aromatic compounds. Academic Press, New York
61.
go back to reference Arnaut L, Formosinho S, Burrows H (2007) Chemical kinetics: from molecular structures to chemical reactivity. Elsevier, Amsterdam, pp 229–235 Arnaut L, Formosinho S, Burrows H (2007) Chemical kinetics: from molecular structures to chemical reactivity. Elsevier, Amsterdam, pp 229–235
62.
go back to reference Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta 811:265–322 Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta 811:265–322
63.
go back to reference Piotrowiak P (2001) Relationship between electron and electronic excitation transfer. In: Balzani V (ed) Electron transfer in chemistry, vol 1. Wiley-VCH, Weinheim Piotrowiak P (2001) Relationship between electron and electronic excitation transfer. In: Balzani V (ed) Electron transfer in chemistry, vol 1. Wiley-VCH, Weinheim
64.
go back to reference Dexter DL (1953) A theory of sensitized luminescence in solids. J Chem Phys 21:836–850CrossRef Dexter DL (1953) A theory of sensitized luminescence in solids. J Chem Phys 21:836–850CrossRef
65.
go back to reference Saini S, Srivinivas G, Bagchi M (2009) Distance and orientation dependence of excitation energy transfer: From molecular systems to metal nanoparticles. J Phys Chem B 113:1817–1832 Saini S, Srivinivas G, Bagchi M (2009) Distance and orientation dependence of excitation energy transfer: From molecular systems to metal nanoparticles. J Phys Chem B 113:1817–1832
66.
go back to reference Hwang I, Scholes GD (2011) Electronic energy transfer and quantum-coherence in π-conjugated polymers. Chem Mater 23:610–620 Hwang I, Scholes GD (2011) Electronic energy transfer and quantum-coherence in π-conjugated polymers. Chem Mater 23:610–620
67.
go back to reference Stern O, Volmer M (1919) Über die Abklingzeit der Fluoreszenz. Physikalische Zeitschrift 20:183–188 Stern O, Volmer M (1919) Über die Abklingzeit der Fluoreszenz. Physikalische Zeitschrift 20:183–188
68.
go back to reference Förster T, Kasper K (1954) Ein Konzentrationsumschlag der Fluoreszenz. Z Phys Chem Neue Folge 1:275–277CrossRef Förster T, Kasper K (1954) Ein Konzentrationsumschlag der Fluoreszenz. Z Phys Chem Neue Folge 1:275–277CrossRef
69.
go back to reference Stevens B, Hutton E (1960) Radiative lifetime of the pyrene dimer and possible role of excited dimers in energy transfer processes. Nature 186:1045–1046CrossRef Stevens B, Hutton E (1960) Radiative lifetime of the pyrene dimer and possible role of excited dimers in energy transfer processes. Nature 186:1045–1046CrossRef
70.
go back to reference Birks JB (1970) Excimer fluorescence of aromatic compounds. Prog React Kinetics 5:181–272 Birks JB (1970) Excimer fluorescence of aromatic compounds. Prog React Kinetics 5:181–272
71.
go back to reference Hopfield JJ (1930) Absorption and emission spectra in the region λ = 600–1100. Phys Rev 35:1133–1134CrossRef Hopfield JJ (1930) Absorption and emission spectra in the region λ = 600–1100. Phys Rev 35:1133–1134CrossRef
72.
go back to reference Leonhardt H, Weller A (1963) Elektronenübertragungsreaktionen des angeregten Perylens. Ber Buns Phys Chem 67:791–795 Leonhardt H, Weller A (1963) Elektronenübertragungsreaktionen des angeregten Perylens. Ber Buns Phys Chem 67:791–795
73.
go back to reference Knibb H, Rehm D, Weller A (1968) Intermediates and kinetics of fluorescence quenching by electron transfer. Ber Buns Phys Chem 72:257–263 Knibb H, Rehm D, Weller A (1968) Intermediates and kinetics of fluorescence quenching by electron transfer. Ber Buns Phys Chem 72:257–263
74.
go back to reference Mataga N, Chosrojan H, Taniguchi S (2005) Ultrafast charge transfer in excited electronic states and investigation into fundamental problems of exciplex chemistry: our early studies and recent developments. J Photochem Photobiol C 6:37–79CrossRef Mataga N, Chosrojan H, Taniguchi S (2005) Ultrafast charge transfer in excited electronic states and investigation into fundamental problems of exciplex chemistry: our early studies and recent developments. J Photochem Photobiol C 6:37–79CrossRef
75.
go back to reference Grabowski ZR, Dobkowski J (1983) Twisted intramolecular charge transfer (TICT) excited states: energy and molecular structure. Pure Appl Chem 55:245–252CrossRef Grabowski ZR, Dobkowski J (1983) Twisted intramolecular charge transfer (TICT) excited states: energy and molecular structure. Pure Appl Chem 55:245–252CrossRef
76.
go back to reference Parker CA (1964) Phosphorescence and delayed fluorescence from solutions. Adv Photochem 2:305–383CrossRef Parker CA (1964) Phosphorescence and delayed fluorescence from solutions. Adv Photochem 2:305–383CrossRef
77.
go back to reference Berberan Santos MN, Garcia JMM (1996) Unusually strong delayed fluorescence of C70. J Am Chem Soc 118:9391–9394CrossRef Berberan Santos MN, Garcia JMM (1996) Unusually strong delayed fluorescence of C70. J Am Chem Soc 118:9391–9394CrossRef
78.
79.
go back to reference Misra TN (1973) Delayed fluorescence of organic mixed crystals—temperature independent delayed fluorescence in biphenyl host. J Chem Phys 58:1235–1242CrossRef Misra TN (1973) Delayed fluorescence of organic mixed crystals—temperature independent delayed fluorescence in biphenyl host. J Chem Phys 58:1235–1242CrossRef
80.
go back to reference Monkman A, Rothe C, King S, Dias F (2008) Polyfluorene photophysics. Adv Polym Sci 212:187–225 Monkman A, Rothe C, King S, Dias F (2008) Polyfluorene photophysics. Adv Polym Sci 212:187–225
81.
go back to reference Monkman AP, Burrows HD, Hamblett I, Navaratnam S (2001) Intrachain triplet–triplet annihilation and delayed fluorescence in soluble conjugated polymers. Chem Phys Lett 340:467–472CrossRef Monkman AP, Burrows HD, Hamblett I, Navaratnam S (2001) Intrachain triplet–triplet annihilation and delayed fluorescence in soluble conjugated polymers. Chem Phys Lett 340:467–472CrossRef
82.
go back to reference Förster TH (1950) Die pH Abhägigkeit der Fluoreszenz von Naphthalinderivaten. Z Elelectrochem 54:531–535 Förster TH (1950) Die pH Abhägigkeit der Fluoreszenz von Naphthalinderivaten. Z Elelectrochem 54:531–535
83.
go back to reference Ireland JF, Wyatt PAH (1976) Acid-base properties of electronically excited states of organic molecules. Adv Photochem 12:131–221 Ireland JF, Wyatt PAH (1976) Acid-base properties of electronically excited states of organic molecules. Adv Photochem 12:131–221
84.
go back to reference Weller A (1961) Fast reactions of excited molecules. Prog React Kinet 1:187–214 Weller A (1961) Fast reactions of excited molecules. Prog React Kinet 1:187–214
Metadata
Title
Foundations of Photochemistry: A Background on the Interaction Between Light and Molecules
Authors
Peter Douglas
Hugh D. Burrows
Rachel C. Evans
Copyright Year
2013
Publisher
Springer Netherlands
DOI
https://doi.org/10.1007/978-90-481-3830-2_1

Premium Partners