Skip to main content
Top

2016 | OriginalPaper | Chapter

7. Foundations of Up-conversion Nanoparticles

Authors : Song Wang, Hongjie Zhang

Published in: Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Up-conversion is an anti-Stokes optical process that can emit ultraviolet/visible/near-infrared light by converting low-energy near-infrared excitation photon radiation. With the advent of nanotechnology and the inexpensive high-power infrared diode lasers, the rare earth-doped up-conversion luminescent nanoparticles have been extensively studied for its potential applications in various fields. In recent years, rare earth-doped up-conversion nanoparticles have been developed as a promising alternatives luminescent optical labels to organic fluorophores and quantum dots for applications in biological assays and medical imaging. The unique optical property of rare earth-doped up-conversion nanoparticles offers low autofluorescence, less scattering and absorption, and deep penetration in biological samples. In this chapter, we give a general introduction to rare earth up-conversion nanoparticles, including the rare earth up-conversion materials, up-conversion mechanisms, synthesis methods, surface modifications, optical properties tuning and so on.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bloembergen N (1959) SOLID STATE INFRARED QUANTUM COUNTERS. Phys. Rev. Lett. 2: 84. Bloembergen N (1959) SOLID STATE INFRARED QUANTUM COUNTERS. Phys. Rev. Lett. 2: 84.
2.
go back to reference Auzel F (2004) Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 104: 139. Auzel F (2004) Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 104: 139.
3.
go back to reference Gamelin DR, Gudel HU (2000) Design of luminescent inorganic materials: New photophysical processes studied by optical spectroscopy. Accounts. Chem. Res. 33: 235. Gamelin DR, Gudel HU (2000) Design of luminescent inorganic materials: New photophysical processes studied by optical spectroscopy. Accounts. Chem. Res. 33: 235.
4.
go back to reference Jin J, Wong ET (2011) Encyclopedia of Inorganic and Bioinorganic Chemistry. Wiley, London. Jin J, Wong ET (2011) Encyclopedia of Inorganic and Bioinorganic Chemistry. Wiley, London.
5.
go back to reference Franken, PA, Weinreich G, Peters CW, Hill AE (1961) Generation of optical harmonics. Phys. Rev. Lett. 7: 118. Franken, PA, Weinreich G, Peters CW, Hill AE (1961) Generation of optical harmonics. Phys. Rev. Lett. 7: 118.
6.
go back to reference Wang F, Deng RR, Wang J, Wang QX, Han Y, Zhu HM, Chen XY, Liu XG (2011), Tuning upconversion through energy migration in core-shell nanoparticles. Nat. Mater. 10: 968. Wang F, Deng RR, Wang J, Wang QX, Han Y, Zhu HM, Chen XY, Liu XG (2011), Tuning upconversion through energy migration in core-shell nanoparticles. Nat. Mater. 10: 968.
7.
go back to reference Niedbala RS (2000) Multiphoton up-converting phosphors for use in rapid immunoassays Proc. SPIE–Int. Soc. Opt. Eng. 3913: 193. Niedbala RS (2000) Multiphoton up-converting phosphors for use in rapid immunoassays Proc. SPIE–Int. Soc. Opt. Eng. 3913: 193.
8.
go back to reference Auzel F (2002) Up-conversion in rare-earth-doped systems: past, present and futureProc. SPIE–Int. Soc. Opt. Eng. 4766: 179. Auzel F (2002) Up-conversion in rare-earth-doped systems: past, present and futureProc. SPIE–Int. Soc. Opt. Eng. 4766: 179.
9.
go back to reference Suyver J F, Aebischer A, Biner D, Gerner P, Grimm J, Heer S, Kramer KW (2005) Novel Materials Doped with Trivalent Lanthanides and Transition Metal Ions Showing near-Infrared to Visible Photon Upconversion Opt. Mater. 27: 1111. Suyver J F, Aebischer A, Biner D, Gerner P, Grimm J, Heer S, Kramer KW (2005) Novel Materials Doped with Trivalent Lanthanides and Transition Metal Ions Showing near-Infrared to Visible Photon Upconversion Opt. Mater. 27: 1111.
10.
go back to reference Downing E, Hesselink L, Alston J, Macfarlane RR (1996) A three-color, solid-state, three-dimensional display. Science. 273: 1185. Downing E, Hesselink L, Alston J, Macfarlane RR (1996) A three-color, solid-state, three-dimensional display. Science. 273: 1185.
11.
go back to reference Cohen BE (2010) Biological imaging: Beyond fluorescence. Nature, 467: 407. Cohen BE (2010) Biological imaging: Beyond fluorescence. Nature, 467: 407.
12.
go back to reference VanderEnde BM, Aartsa L, Meijerink A (2009) Lanthanide ions as spectral converters for solar cells Phys. Chem. Chem. Phys. 11: 11081. VanderEnde BM, Aartsa L, Meijerink A (2009) Lanthanide ions as spectral converters for solar cells Phys. Chem. Chem. Phys. 11: 11081.
13.
go back to reference Wang G, Peng Q, Li YD (2011), Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties, and applications. Acc. Chem. Res., 44: 322. Wang G, Peng Q, Li YD (2011), Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties, and applications. Acc. Chem. Res., 44: 322.
14.
go back to reference Chen J, Zhao XJ (2012), Upconversion Nanomaterials: Synthesis, Mechanism, and Applications in Sensing. Sensors. 12: 2414. Chen J, Zhao XJ (2012), Upconversion Nanomaterials: Synthesis, Mechanism, and Applications in Sensing. Sensors. 12: 2414.
15.
go back to reference Haase M, Schafer H (2011) Upconverting nanoparticles. Angew. Chem. Int. Ed. 50: 5808. Haase M, Schafer H (2011) Upconverting nanoparticles. Angew. Chem. Int. Ed. 50: 5808.
16.
go back to reference Wang, F, Liu XG (2009) Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 38: 976. Wang, F, Liu XG (2009) Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 38: 976.
17.
go back to reference Wang F, Liu XG (2008) Upconversion Multicolor Fine-Tuning: Visible to near-Infrared Emission from Lanthanide-Doped NaYF4 Nanoparticles. J. Am. Chem. Soc. 130: 5642. Wang F, Liu XG (2008) Upconversion Multicolor Fine-Tuning: Visible to near-Infrared Emission from Lanthanide-Doped NaYF4 Nanoparticles. J. Am. Chem. Soc. 130: 5642.
18.
go back to reference Gnach A, Bednarkiewicz A (2012) Lanthanide-doped up-converting nanoparticles: merits and challenges. Nano Today. 7: 532. Gnach A, Bednarkiewicz A (2012) Lanthanide-doped up-converting nanoparticles: merits and challenges. Nano Today. 7: 532.
19.
go back to reference Passuello T, Pedroni M, Piccinelli F, Polizzi S, Marzola P, Tambalo S, Conti G, Benati D, Vetrone F, Bettinelli M, Speghini A (2012) PEG-capped, lanthanide doped GdF3 nanoparticles: luminescent and T2 contrast agents for optical and MRI multimodal imaging. Nanoscale, 4: 7682. Passuello T, Pedroni M, Piccinelli F, Polizzi S, Marzola P, Tambalo S, Conti G, Benati D, Vetrone F, Bettinelli M, Speghini A (2012) PEG-capped, lanthanide doped GdF3 nanoparticles: luminescent and T2 contrast agents for optical and MRI multimodal imaging. Nanoscale, 4: 7682.
20.
go back to reference Schäfer H, Ptacek P, Zerzouf O, Haase M (2008) Synthesis and Optical Properties of KYF4/Yb, Er Nanocrystals, and their Surface Modification with Undoped KYF4. Adv. Funct. Mater. 18: 2913. Schäfer H, Ptacek P, Zerzouf O, Haase M (2008) Synthesis and Optical Properties of KYF4/Yb, Er Nanocrystals, and their Surface Modification with Undoped KYF4. Adv. Funct. Mater. 18: 2913.
21.
go back to reference Chen C, Sun, LD, Li ZX, Li LL, Zhang J, and Zhang YW (2010) Ionic liquid-based route to spherical NaYF4 nanoclusters with the assistance of microwave radiation and their multicolor upconversion luminescence. Langmuir. 26: 8797. Chen C, Sun, LD, Li ZX, Li LL, Zhang J, and Zhang YW (2010) Ionic liquid-based route to spherical NaYF4 nanoclusters with the assistance of microwave radiation and their multicolor upconversion luminescence. Langmuir. 26: 8797.
22.
go back to reference Schäfer H, Ptacek P, Eickmeier H, Haase M (2009) Synthesis of Hexagonal Yb3+, Er3+-Doped NaYF4 Nanocrystals at Low Temperature. Adv. Funct. Mater. 19: 3091. Schäfer H, Ptacek P, Eickmeier H, Haase M (2009) Synthesis of Hexagonal Yb3+, Er3+-Doped NaYF4 Nanocrystals at Low Temperature. Adv. Funct. Mater. 19: 3091.
23.
go back to reference Chen DQ, Yu Huang Y, Wang FY (2011) Phase transition from hexagonal LnF3 (Ln = La, Ce, Pr) to cubic Ln0.8M0.2F2.8 (M = Ca, Sr, Ba) nanocrystals with enhanced upconversion induced by alkaline-earth doping. Chem. Commun. 47: 2601. Chen DQ, Yu Huang Y, Wang FY (2011) Phase transition from hexagonal LnF3 (Ln = La, Ce, Pr) to cubic Ln0.8M0.2F2.8 (M = Ca, Sr, Ba) nanocrystals with enhanced upconversion induced by alkaline-earth doping. Chem. Commun. 47: 2601.
24.
go back to reference Yin W, Zhao L, Zhou L, Gu Z, Liu X, Tian, G, Jin S, Yan L, Ren W, Xing G, Zhao Y(2012) Enhanced Red Emission from GdF3:Yb3+,Er3+ Upconversion Nanocrystals by Li+ Doping and Their Application for Bioimaging Chem. Eur. J. 18: 9239. Yin W, Zhao L, Zhou L, Gu Z, Liu X, Tian, G, Jin S, Yan L, Ren W, Xing G, Zhao Y(2012) Enhanced Red Emission from GdF3:Yb3+,Er3+ Upconversion Nanocrystals by Li+ Doping and Their Application for Bioimaging Chem. Eur. J. 18: 9239.
25.
go back to reference Li F, Li C, Liu X, Bai T, Dong W, Zhang X, Shi Z, Feng S (2013) Microwave-assisted synthesis and up–down conversion luminescent properties of multicolor hydrophilic LaF3: Ln3+ nanocrystals Dalton Trans. 42: 2015. Li F, Li C, Liu X, Bai T, Dong W, Zhang X, Shi Z, Feng S (2013) Microwave-assisted synthesis and up–down conversion luminescent properties of multicolor hydrophilic LaF3: Ln3+ nanocrystals Dalton Trans. 42: 2015.
26.
go back to reference Liu Q, Sun Y, Yang TS, Feng W, Li CG, Li FY (2011) Sub-10 nm Hexagonal Lanthanide-Doped NaLuF4 Upconversion Nanocrystals for Sensitive Bioimaging in Vivo. J. Am. Chem. Soc. 133: 17122. Liu Q, Sun Y, Yang TS, Feng W, Li CG, Li FY (2011) Sub-10 nm Hexagonal Lanthanide-Doped NaLuF4 Upconversion Nanocrystals for Sensitive Bioimaging in Vivo. J. Am. Chem. Soc. 133: 17122.
27.
go back to reference Shi F, Wang J, Zhai X, Zhao D, Qin W (2011) Facile synthesis of beta-NaLuF4:Yb/Tm hexagonal nanoplates with intense ultraviolet upconversion luminescence CrystEngComm. 13:3782. Shi F, Wang J, Zhai X, Zhao D, Qin W (2011) Facile synthesis of beta-NaLuF4:Yb/Tm hexagonal nanoplates with intense ultraviolet upconversion luminescence CrystEngComm. 13:3782.
28.
go back to reference Yang DM, Dai, YL, Ma PA, Kang XJ, Cheng ZY, Li CX, Lin J (2013) One-Step Synthesis of Small-Sized and Water-Soluble NaREF4 Upconversion Nanoparticles for In Vitro Cell Imaging and Drug Delivery. Chem. Eur. J. 19: 2685. Yang DM, Dai, YL, Ma PA, Kang XJ, Cheng ZY, Li CX, Lin J (2013) One-Step Synthesis of Small-Sized and Water-Soluble NaREF4 Upconversion Nanoparticles for In Vitro Cell Imaging and Drug Delivery. Chem. Eur. J. 19: 2685.
29.
go back to reference Sarkar S, Meesaragandla, Hazra BC, Mahalingam, V (2013) Sub-5 nm Ln3+-doped BaLuF5 Nanocrystals: A Platform to Realize Upconversion via Interparticle Energy Transfer (IPET). Adv. Mater. 25: 856. Sarkar S, Meesaragandla, Hazra BC, Mahalingam, V (2013) Sub-5 nm Ln3+-doped BaLuF5 Nanocrystals: A Platform to Realize Upconversion via Interparticle Energy Transfer (IPET). Adv. Mater. 25: 856.
30.
go back to reference Chen G, Ohulchanskyy TY, Kumar R, Ågren H, Prasad PN (2010) Ultrasmall monodisperse NaYF4:Yb3+/Tm3+ Nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence ACS Nano. 4: 3163. Chen G, Ohulchanskyy TY, Kumar R, Ågren H, Prasad PN (2010) Ultrasmall monodisperse NaYF4:Yb3+/Tm3+ Nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence ACS Nano. 4: 3163.
31.
go back to reference Wong HT, Vetrone, Naccache F R, Chan HLW, Hao J, Capobianco, JA(2011) Water dispersible ultra-small multifunctional KGdF4:Tm3+, Yb3+ nanoparticles with near-infrared to near-infrared upconversion. J. Mater. Chem. 21: 16589. Wong HT, Vetrone, Naccache F R, Chan HLW, Hao J, Capobianco, JA(2011) Water dispersible ultra-small multifunctional KGdF4:Tm3+, Yb3+ nanoparticles with near-infrared to near-infrared upconversion. J. Mater. Chem. 21: 16589.
32.
go back to reference Wang GF, Peng Q, Li YD (2009) Upconversion Luminescence of Monodisperse CaF2:Yb3+/Er3+Nanocrystals J. Am. Chem. Soc. 131: 14200. Wang GF, Peng Q, Li YD (2009) Upconversion Luminescence of Monodisperse CaF2:Yb3+/Er3+Nanocrystals J. Am. Chem. Soc. 131: 14200.
33.
go back to reference Dong NN, Pedroni M, Piccinelli F, Conti G, Sbarbati A, Ramírez-Hernández, Maestro JELM, Iglesias-de la Cruz MC, Sanz-Rodriguez, Juarranz FA, Chen F, Vetrone F, Capobianco JA, Solé JG, Bettinelli, Jaque MD, Speghini A (2011) NIR-to-NIR Two-Photon Excited CaF2:Tm3+,Yb3+ Nanoparticles: Multifunctional Nanoprobes for Highly Penetrating Fluorescence Bio-imaging. ACS Nano. 5: 8665. Dong NN, Pedroni M, Piccinelli F, Conti G, Sbarbati A, Ramírez-Hernández, Maestro JELM, Iglesias-de la Cruz MC, Sanz-Rodriguez, Juarranz FA, Chen F, Vetrone F, Capobianco JA, Solé JG, Bettinelli, Jaque MD, Speghini A (2011) NIR-to-NIR Two-Photon Excited CaF2:Tm3+,Yb3+ Nanoparticles: Multifunctional Nanoprobes for Highly Penetrating Fluorescence Bio-imaging. ACS Nano. 5: 8665.
34.
go back to reference Teng X, Zhu Y, Wei W, Wang S, Huang J, Naccache R, Hu W, Tok A I Y, Han Y, Zhang Q, Fan Q, Huang W, Capobianco J A, Huang L (2011) Lanthanide-Doped NaxScF3+x Nanocrystals: Crystal Structure Evolution and Multicolor Tuning. J. Am. Chem. Soc. 134: 8340. Teng X, Zhu Y, Wei W, Wang S, Huang J, Naccache R, Hu W, Tok A I Y, Han Y, Zhang Q, Fan Q, Huang W, Capobianco J A, Huang L (2011) Lanthanide-Doped NaxScF3+x Nanocrystals: Crystal Structure Evolution and Multicolor Tuning. J. Am. Chem. Soc. 134: 8340.
35.
go back to reference Chen F, Bu W, Zhang S, Liu J, Fan W, Zhou L, Peng W, Shi J (2013) Gd3+-Ion-Doped Upconversion Nanoprobes: Relaxivity Mechanism Probing and Sensitivity Optimization Adv. Funct. Mater. 23: 298. Chen F, Bu W, Zhang S, Liu J, Fan W, Zhou L, Peng W, Shi J (2013) Gd3+-Ion-Doped Upconversion Nanoprobes: Relaxivity Mechanism Probing and Sensitivity Optimization Adv. Funct. Mater. 23: 298.
36.
go back to reference Chen D, Yu F, Huang Y, Lin H, Huang P, Yang A, Wang Z, Wang Y (2012) Lanthanide dopant-induced formation of uniform sub-10 nm active-core/active-shellnanocrystals with near-infrared to near-infrared dual-modal luminescence. J. Mater. Chem. 22: 2632. Chen D, Yu F, Huang Y, Lin H, Huang P, Yang A, Wang Z, Wang Y (2012) Lanthanide dopant-induced formation of uniform sub-10 nm active-core/active-shellnanocrystals with near-infrared to near-infrared dual-modal luminescence. J. Mater. Chem. 22: 2632.
37.
go back to reference Tian G, Gu Z, Zhou L, Yin W, Liu X, Yan L, Jin S, Ren W, Xing G, Li S, Zhao Y (2012) Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery. Adv. Mater. 24: 1226. Tian G, Gu Z, Zhou L, Yin W, Liu X, Yan L, Jin S, Ren W, Xing G, Li S, Zhao Y (2012) Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery. Adv. Mater. 24: 1226.
38.
go back to reference Zhou J, Yu MX, Sun Y, Zhang XZ, Zhu XJ, Wu ZH, Wu DM, Li FY (2011) Fluorine-18-labeled Gd3+/Yb3+/Er3+ codoped NaYF4 nanophosphors for multimodality PET/MR/UCL imaging. Biomaterials. 32: 1148. Zhou J, Yu MX, Sun Y, Zhang XZ, Zhu XJ, Wu ZH, Wu DM, Li FY (2011) Fluorine-18-labeled Gd3+/Yb3+/Er3+ codoped NaYF4 nanophosphors for multimodality PET/MR/UCL imaging. Biomaterials. 32: 1148.
39.
go back to reference Sun Y, Yu M X, Liang S, Zhang Y J, Li C G, Mou TT, Yang WJ, Zhang XZ, Li B, Huang CH, Li FY (2011) Fluorine-18 Labeled Rare-Earth Nanoparticles for Positron Emission Tomography (Pet) Imaging of Sentinel Lymph Node. Biomaterials. 32: 2999. Sun Y, Yu M X, Liang S, Zhang Y J, Li C G, Mou TT, Yang WJ, Zhang XZ, Li B, Huang CH, Li FY (2011) Fluorine-18 Labeled Rare-Earth Nanoparticles for Positron Emission Tomography (Pet) Imaging of Sentinel Lymph Node. Biomaterials. 32: 2999.
40.
go back to reference Yang Y, Sun Y, Cao TY, Peng JJ, Liu Y, Wu YQ, Feng W, Zhang YJ, Li FY (2013) Hydrothermal Synthesis of NaLuF4:153Sm,Yb,Tm Nanoparticles and their Application in Dual-modality Upconversion Luminescence and SPECT Bioimaging. Biomaterials. 34: 774. Yang Y, Sun Y, Cao TY, Peng JJ, Liu Y, Wu YQ, Feng W, Zhang YJ, Li FY (2013) Hydrothermal Synthesis of NaLuF4:153Sm,Yb,Tm Nanoparticles and their Application in Dual-modality Upconversion Luminescence and SPECT Bioimaging. Biomaterials. 34: 774.
41.
go back to reference Yang Y, Sun Y, Liu Y, Peng JJ, Wu YQ, Zhang YJ, Feng W, Li FY (2013) Long-term in vivo biodistribution and toxicity of Gd(OH)3 nanorods. Biomaterials. 34: 508. Yang Y, Sun Y, Liu Y, Peng JJ, Wu YQ, Zhang YJ, Feng W, Li FY (2013) Long-term in vivo biodistribution and toxicity of Gd(OH)3 nanorods. Biomaterials. 34: 508.
42.
go back to reference Sun Y, Liu Q, Peng JJ, Zhou J, Yang PY, Zhang YJ, Li FY (2013) Radioisotope post-labeling upconversion nanophosphors for in vivo quantitative tracking. Biomaterials. 34: 2289. Sun Y, Liu Q, Peng JJ, Zhou J, Yang PY, Zhang YJ, Li FY (2013) Radioisotope post-labeling upconversion nanophosphors for in vivo quantitative tracking. Biomaterials. 34: 2289.
43.
go back to reference Huang XY, Han SY, Huang W (2013) Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem. Soc. Rev. 42: 173. Huang XY, Han SY, Huang W (2013) Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem. Soc. Rev. 42: 173.
44.
go back to reference Wang F(2015) Photon Upconversion Nanomaterials springer, chapter1. Wang F(2015) Photon Upconversion Nanomaterials springer, chapter1.
45.
go back to reference Wang F, Liu XG (2009) Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 38: 976. Wang F, Liu XG (2009) Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 38: 976.
46.
go back to reference Liu Y, Tu D, Zhu H Zhu H, Ma E, Chen X (2013) Lanthanide-doped luminescent nano-bioprobes: from fundamentals to biodetection. Nanoscale. 5: 1369. Liu Y, Tu D, Zhu H Zhu H, Ma E, Chen X (2013) Lanthanide-doped luminescent nano-bioprobes: from fundamentals to biodetection. Nanoscale. 5: 1369.
47.
go back to reference Chen GY, Qiu HL, Prasad PN, Chen XY (2014) Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev. 114: 5161. Chen GY, Qiu HL, Prasad PN, Chen XY (2014) Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev. 114: 5161.
48.
go back to reference Martin I R, Yanes AC, Mendez-Ramos J, Torres M E Rodriguez VD (2001) Cooperative Energy Transfer in Yb-Tb Codoped Silica Sol-Gel Glasses. J. Appl. Phy. 89: 2520. Martin I R, Yanes AC, Mendez-Ramos J, Torres M E Rodriguez VD (2001) Cooperative Energy Transfer in Yb-Tb Codoped Silica Sol-Gel Glasses. J. Appl. Phy. 89: 2520.
49.
go back to reference Dwivedi Y, Thakur SN, Rai SB (2007) Study of Frequency Upconversion in Yb3+/Eu3+ by Cooperative Energy Transfer in Oxyfluoroborate Glass Matrix. Appl. Phys. B-Las. and Opt. 89: 45. Dwivedi Y, Thakur SN, Rai SB (2007) Study of Frequency Upconversion in Yb3+/Eu3+ by Cooperative Energy Transfer in Oxyfluoroborate Glass Matrix. Appl. Phys. B-Las. and Opt. 89: 45.
50.
go back to reference Chivian JS, Case WE, Eden DD (1979) The Photon Avalanche-a New Phenomenon in Pr3+ Based Infrared Quantum Counters. Appl. Phys. Lett. 35: 124. Chivian JS, Case WE, Eden DD (1979) The Photon Avalanche-a New Phenomenon in Pr3+ Based Infrared Quantum Counters. Appl. Phys. Lett. 35: 124.
51.
go back to reference Park J, Joo J, Kwon SG, Jang Y, Hyeon T (2007) Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed. 46: 4630. Park J, Joo J, Kwon SG, Jang Y, Hyeon T (2007) Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed. 46: 4630.
52.
go back to reference Zhang YW, Sun X, Si R, You LP, Yan CH (2005) Single-Crystalline and Monodisperse LaF3 Triangular Nanoplates from a Single-Source Precursor. J. Am. Chem. Soc. 127: 3260. Zhang YW, Sun X, Si R, You LP, Yan CH (2005) Single-Crystalline and Monodisperse LaF3 Triangular Nanoplates from a Single-Source Precursor. J. Am. Chem. Soc. 127: 3260.
53.
go back to reference Mai H X, Zhang Y W, Si R Yan ZG, Sun LD, You LP, Yan CH (2006) High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties. J. Am. Chem. Soc. 128: 6426. Mai H X, Zhang Y W, Si R Yan ZG, Sun LD, You LP, Yan CH (2006) High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties. J. Am. Chem. Soc. 128: 6426.
54.
go back to reference Mai H, Zhang Y, Sun L, Yan C (2007) Size- and phase-controlled synthesis of monodisperse NaYF4:Yb,Er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscopy. J. Phys. Chem. C 111: 13730. Mai H, Zhang Y, Sun L, Yan C (2007) Size- and phase-controlled synthesis of monodisperse NaYF4:Yb,Er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscopy. J. Phys. Chem. C 111: 13730.
55.
go back to reference Yin AX, Zhang YW, Sun LD, Yan CH (2010) Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4:Yb,Tm nanocrystals. Nanoscale 2: 953. Yin AX, Zhang YW, Sun LD, Yan CH (2010) Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4:Yb,Tm nanocrystals. Nanoscale 2: 953.
56.
go back to reference Mai HX, Zhang YW, Sun LD, Yan CH (2007) Highly Efficient Multicolor Up-Conversion Emissions and Their Mechanisms of Monodisperse NaYF4:Yb,Er Core and Core/Shell-Structured Nanocrystals. J. Phys. Chem. C 111: 13721. Mai HX, Zhang YW, Sun LD, Yan CH (2007) Highly Efficient Multicolor Up-Conversion Emissions and Their Mechanisms of Monodisperse NaYF4:Yb,Er Core and Core/Shell-Structured Nanocrystals. J. Phys. Chem. C 111: 13721.
57.
go back to reference Du YP, Zhang YW, Sun LD, Yan CH (2009) Optically active uniform potassium and lithium rare earth fluoride nanocrystals derived from metal trifluoroacetate precursors. Dalton Trans. 38: 8574. Du YP, Zhang YW, Sun LD, Yan CH (2009) Optically active uniform potassium and lithium rare earth fluoride nanocrystals derived from metal trifluoroacetate precursors. Dalton Trans. 38: 8574.
58.
go back to reference Yi GS, Chow GM (2006) Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence. Adv. Funct. Mater. 16: 2324. Yi GS, Chow GM (2006) Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence. Adv. Funct. Mater. 16: 2324.
59.
go back to reference Boyer JC, Vetrone F, Cuccia LA, Capobianco JA (2006) Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors. J. Am. Chem. Soc. 128: 7444. Boyer JC, Vetrone F, Cuccia LA, Capobianco JA (2006) Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors. J. Am. Chem. Soc. 128: 7444.
60.
go back to reference Yi GS, Chow GM (2007) Water-Soluble NaYF4:Yb, Er(Tm)/NaYF4/Polymer Core/Shell/Shell Nanoparticles with Significant Enhancement of Upconversion Fluorescence. Chem. Mater. 19: 341. Yi GS, Chow GM (2007) Water-Soluble NaYF4:Yb, Er(Tm)/NaYF4/Polymer Core/Shell/Shell Nanoparticles with Significant Enhancement of Upconversion Fluorescence. Chem. Mater. 19: 341.
61.
go back to reference Boyer JC, Cuccia LA, Capobianco JA (2007) Synthesis of colloidal upconverting NaYF4:Er3+/Yb3 + and Tm3+/Yb3+ monodisperse nanocrystals. Nano Lett. 7: 847. Boyer JC, Cuccia LA, Capobianco JA (2007) Synthesis of colloidal upconverting NaYF4:Er3+/Yb3 + and Tm3+/Yb3+ monodisperse nanocrystals. Nano Lett. 7: 847.
62.
go back to reference Boyer JC, Gagnon J, Cuccia LA, Capobianco JA (2007) Synthesis, Characterization, and Spectroscopy of NaGdF4: Ce3+, Tb3+/NaYF4 Core/Shell Nanoparticles. Chem. Mater. 19: 3358. Boyer JC, Gagnon J, Cuccia LA, Capobianco JA (2007) Synthesis, Characterization, and Spectroscopy of NaGdF4: Ce3+, Tb3+/NaYF4 Core/Shell Nanoparticles. Chem. Mater. 19: 3358.
63.
go back to reference Pichaandi J, Boyer JC, Delaney KR, van Veggel FCJM (2011) Two-Photon Upconversion Laser (Scanning and Wide-Field) Microscopy Using Ln3+-Doped NaYF4 Upconverting Nanocrystals: A Critical Evaluation of their Performance and Potential in Bioimaging. J. Phys. Chem. C 115: 19054. Pichaandi J, Boyer JC, Delaney KR, van Veggel FCJM (2011) Two-Photon Upconversion Laser (Scanning and Wide-Field) Microscopy Using Ln3+-Doped NaYF4 Upconverting Nanocrystals: A Critical Evaluation of their Performance and Potential in Bioimaging. J. Phys. Chem. C 115: 19054.
64.
go back to reference Khan AF, Yadav R, Mukhopadhya PK, Singh S, Dwivedi C, Dutta V, Chawla S (2011) Core–shell nanophosphor with enhanced NIR–visible upconversion as spectrum modifier for enhancement of solar cell efficiency. J. Nanopart. Res. 13: 6837. Khan AF, Yadav R, Mukhopadhya PK, Singh S, Dwivedi C, Dutta V, Chawla S (2011) Core–shell nanophosphor with enhanced NIR–visible upconversion as spectrum modifier for enhancement of solar cell efficiency. J. Nanopart. Res. 13: 6837.
65.
go back to reference Chen G, Ohulchanskyy TY, Liu S, Law WC, Wu F, Swihart MT, Agren H, Prasad P N (2012) Core/Shell NaGdF4:Nd3+/NaGdF4 Nanocrystals with Efficient Near-Infrared to Near-Infrared Downconversion Photoluminescence for Bioimaging Applications. ACS Nano. 6: 2969. Chen G, Ohulchanskyy TY, Liu S, Law WC, Wu F, Swihart MT, Agren H, Prasad P N (2012) Core/Shell NaGdF4:Nd3+/NaGdF4 Nanocrystals with Efficient Near-Infrared to Near-Infrared Downconversion Photoluminescence for Bioimaging Applications. ACS Nano. 6: 2969.
66.
go back to reference Chen G, Shen JT, Ohulchanskyy Y, Patel NJ, Kutikov AZ, Li Song J, Pandey RK, Ågren H, Prasad PN, Han G (2012) (α-NaYbF4:Tm3+)/CaF2 Core/Shell Nanoparticles with Efficient Near-Infrared to Near-Infrared Upconversion for High-Contrast Deep Tissue Bioimaging. ACS Nano 6: 8280. Chen G, Shen JT, Ohulchanskyy Y, Patel NJ, Kutikov AZ, Li Song J, Pandey RK, Ågren H, Prasad PN, Han G (2012) (α-NaYbF4:Tm3+)/CaF2 Core/Shell Nanoparticles with Efficient Near-Infrared to Near-Infrared Upconversion for High-Contrast Deep Tissue Bioimaging. ACS Nano 6: 8280.
67.
go back to reference Kar A, Patra A (2012) Impacts of core–shell structures on properties of lanthanide-based nanocrystals: crystal phase, lattice strain, downconversion, upconversion and energy transfer. Nanoscale 4: 3608. Kar A, Patra A (2012) Impacts of core–shell structures on properties of lanthanide-based nanocrystals: crystal phase, lattice strain, downconversion, upconversion and energy transfer. Nanoscale 4: 3608.
68.
go back to reference Zhang C, Lee JY (2013) Prevalence of Anisotropic Shell Growth in Rare Earth Core–Shell Upconversion Nanocrystals. ACS Nano. 7: 4393. Zhang C, Lee JY (2013) Prevalence of Anisotropic Shell Growth in Rare Earth Core–Shell Upconversion Nanocrystals. ACS Nano. 7: 4393.
69.
go back to reference Qian H-S, Zhang Y (2008) Synthesis of Hexagonal-Phase Core − Shell NaYF4 Nanocrystals with Tunable Upconversion Fluorescence. Langmuir 24: 12123. Qian H-S, Zhang Y (2008) Synthesis of Hexagonal-Phase Core − Shell NaYF4 Nanocrystals with Tunable Upconversion Fluorescence. Langmuir 24: 12123.
70.
go back to reference Tang Y, Di W, Zhai X, Yang R, Qin W (2013) NIR-Responsive Photocatalytic Activity and Mechanism of NaYF4:Yb,Tm@TiO2 Core–Shell Nanoparticles. ACS Catal. 3: 405. Tang Y, Di W, Zhai X, Yang R, Qin W (2013) NIR-Responsive Photocatalytic Activity and Mechanism of NaYF4:Yb,Tm@TiO2 Core–Shell Nanoparticles. ACS Catal. 3: 405.
71.
go back to reference Zeng S, Tsang MK, Chan CF, Wong KL, Hao J (2012) PEG modified BaGdF5:Yb/Er nanoprobes for multi-modal upconversion fluorescent, in vivo X-ray computed tomography and biomagnetic imaging. Biomaterials. 33: 9232. Zeng S, Tsang MK, Chan CF, Wong KL, Hao J (2012) PEG modified BaGdF5:Yb/Er nanoprobes for multi-modal upconversion fluorescent, in vivo X-ray computed tomography and biomagnetic imaging. Biomaterials. 33: 9232.
72.
go back to reference Wang F, Chatterjee DK, Li Z, Zhang Y, Fan X, Wang M (2006) Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence. Nanotechnology, 17: 5786. Wang F, Chatterjee DK, Li Z, Zhang Y, Fan X, Wang M (2006) Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence. Nanotechnology, 17: 5786.
73.
go back to reference Li CX, Quan ZW, Yang PP, Huang SS, Lian HZ, Lin J (2008) Shape-Controllable Synthesis and Upconversion Properties of Lutetium Fluoride (Doped with Yb3+/Er3+) Microcrystals by Hydrothermal Process. J. Phys. Chem. C, 112: 13395. Li CX, Quan ZW, Yang PP, Huang SS, Lian HZ, Lin J (2008) Shape-Controllable Synthesis and Upconversion Properties of Lutetium Fluoride (Doped with Yb3+/Er3+) Microcrystals by Hydrothermal Process. J. Phys. Chem. C, 112: 13395.
74.
go back to reference Liu J, Bu W, Zhang S, Chen F, Xing H, Pan L, Zhou L, Peng W, Shi J (2012) Controlled Synthesis of Uniform and Monodisperse Upconversion Core/Mesoporous Silica Shell Nanocomposites for Bimodal Imaging. Chem. Eur. J. 18: 2335. Liu J, Bu W, Zhang S, Chen F, Xing H, Pan L, Zhou L, Peng W, Shi J (2012) Controlled Synthesis of Uniform and Monodisperse Upconversion Core/Mesoporous Silica Shell Nanocomposites for Bimodal Imaging. Chem. Eur. J. 18: 2335.
75.
go back to reference Zhang CM, Hou ZY, Chai RT, Cheng ZY, Xu ZH, Li CX, Huang L, Lin J (2010) Mesoporous SrF2 and SrF2:Ln3+ (Ln = Ce, Tb, Yb, Er) Hierarchical Microspheres: Hydrothermal Synthesis, Growing Mechanism, and Luminescent Properties. J. Phys. Chem. C 114: 6928. Zhang CM, Hou ZY, Chai RT, Cheng ZY, Xu ZH, Li CX, Huang L, Lin J (2010) Mesoporous SrF2 and SrF2:Ln3+ (Ln = Ce, Tb, Yb, Er) Hierarchical Microspheres: Hydrothermal Synthesis, Growing Mechanism, and Luminescent Properties. J. Phys. Chem. C 114: 6928.
76.
go back to reference Dorman JA, Choi JH, Kuzmanich G, Chang JP (2012) Elucidating the Effects of a Rare-Earth Oxide Shell on the Luminescence Dynamics of Er3+:Y2O3 Nanoparticles, J. Phys. Chem. C, 116: 10333. Dorman JA, Choi JH, Kuzmanich G, Chang JP (2012) Elucidating the Effects of a Rare-Earth Oxide Shell on the Luminescence Dynamics of Er3+:Y2O3 Nanoparticles, J. Phys. Chem. C, 116: 10333.
77.
go back to reference Bogdan NE, Rodriguez, Sanz-Rodriguez MF, Iglesias de la Cruz MC, Juarranz A, Jaque D, Sole J G, Capobianco JA (2012) Bio-functionalization of ligand-free upconverting lanthanide doped nanoparticles for bio-imaging and cell targeting. Nanoscale 4:3647. Bogdan NE, Rodriguez, Sanz-Rodriguez MF, Iglesias de la Cruz MC, Juarranz A, Jaque D, Sole J G, Capobianco JA (2012) Bio-functionalization of ligand-free upconverting lanthanide doped nanoparticles for bio-imaging and cell targeting. Nanoscale 4:3647.
78.
go back to reference Wang S, SY Song, Deng RP, Guo HL, Lei YQ, Cao F, Li XY, Su SQ, Zhang HJ (2010) Hydrothermal synthesis and upconversion photoluminescence properties of lanthanide doped YF3 sub-microflowers. CrystEngComm 12: 3537. Wang S, SY Song, Deng RP, Guo HL, Lei YQ, Cao F, Li XY, Su SQ, Zhang HJ (2010) Hydrothermal synthesis and upconversion photoluminescence properties of lanthanide doped YF3 sub-microflowers. CrystEngComm 12: 3537.
79.
go back to reference Wang S, Deng RP, Guo HL, Song SY, Cao F, Li XY, Su SQ, Zhang HJ (2010) Lanthanide doped Y6O5F8/YF3 microcrystals: phase-tunable synthesis and bright white upconversion photoluminescence properties. Dalton Trans. 39: 9153. Wang S, Deng RP, Guo HL, Song SY, Cao F, Li XY, Su SQ, Zhang HJ (2010) Lanthanide doped Y6O5F8/YF3 microcrystals: phase-tunable synthesis and bright white upconversion photoluminescence properties. Dalton Trans. 39: 9153.
80.
go back to reference Yin WY, Zhou LG, Gu ZJ, Tian G, Jin S, Yan L, Liu XX, Xing GM, Ren WL, Liu F (2012) Pan, Z.W., Zhao, Y.L.: Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging. J. Mater. Chem. 22: 6974. Yin WY, Zhou LG, Gu ZJ, Tian G, Jin S, Yan L, Liu XX, Xing GM, Ren WL, Liu F (2012) Pan, Z.W., Zhao, Y.L.: Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging. J. Mater. Chem. 22: 6974.
81.
go back to reference Ren WL, Tian G, Zhou LJ, Yin WY, Yan L, Jin S, Zu Y, Li SJ, Gu ZJ, Zhao YL (2012) Lanthanide ion-doped GdPO4 nanorods with dual-modal bio-optical and magnetic resonance imaging properties. Nanoscale 4: 3754. Ren WL, Tian G, Zhou LJ, Yin WY, Yan L, Jin S, Zu Y, Li SJ, Gu ZJ, Zhao YL (2012) Lanthanide ion-doped GdPO4 nanorods with dual-modal bio-optical and magnetic resonance imaging properties. Nanoscale 4: 3754.
82.
go back to reference Song Y, Huang Y, Zhang L, Zheng Y, Guo N, You H (2012) Gd2O2S:Yb,Er submicrospheres with multicolor upconversion fluorescence. RSC Adv. 2:4777. Song Y, Huang Y, Zhang L, Zheng Y, Guo N, You H (2012) Gd2O2S:Yb,Er submicrospheres with multicolor upconversion fluorescence. RSC Adv. 2:4777.
83.
go back to reference Wang X, Zhuang J, Peng Q, Li YD (2005) A General Strategy for Nanocrystal Synthesis. Nature 437: 121. Wang X, Zhuang J, Peng Q, Li YD (2005) A General Strategy for Nanocrystal Synthesis. Nature 437: 121.
84.
go back to reference Wang X, Zhuang J, Peng Q, Li YD (2006) Hydrothermal Synthesis of Rare-Earth Fluoride Nanocrystals. Inorg. Chem. 45: 6661. Wang X, Zhuang J, Peng Q, Li YD (2006) Hydrothermal Synthesis of Rare-Earth Fluoride Nanocrystals. Inorg. Chem. 45: 6661.
85.
go back to reference Zeng JH, Su J, Li ZH, Yan RX, Li YD (2005) Synthesis and Upconversion Luminescence of Hexagonal-Phase NaYF4:Yb3+, Er3+, Phosphors of Controlled Size and Morphology, Adv. Mater. 17: 2119. Zeng JH, Su J, Li ZH, Yan RX, Li YD (2005) Synthesis and Upconversion Luminescence of Hexagonal-Phase NaYF4:Yb3+, Er3+, Phosphors of Controlled Size and Morphology, Adv. Mater. 17: 2119.
86.
go back to reference Zeng JH, Li ZH, Su J, Wang LY, Yan RX, Li YD (2006) Synthesis of complex rare earth fluoride nanocrystal phosphors. Nanotechnology. 17: 3549. Zeng JH, Li ZH, Su J, Wang LY, Yan RX, Li YD (2006) Synthesis of complex rare earth fluoride nanocrystal phosphors. Nanotechnology. 17: 3549.
87.
go back to reference Li CX, Yang J, Quan Z, Yang PP, Kong DY, Lin J (2007) Different Microstructures of β-NaYF4 Fabricated by Hydrothermal Process: Effects of pH Values and Fluoride Sources, Chem. Mater. 19: 4933. Li CX, Yang J, Quan Z, Yang PP, Kong DY, Lin J (2007) Different Microstructures of β-NaYF4 Fabricated by Hydrothermal Process: Effects of pH Values and Fluoride Sources, Chem. Mater. 19: 4933.
88.
go back to reference Yi GS, Chow GM (2005) Colloidal LaF3:Yb,Er, LaF3:Yb,Ho and LaF3:Yb,Tm nanocrystals with multicolor upconversion fluorescence. J. Mater. Chem. 15: 4460. Yi GS, Chow GM (2005) Colloidal LaF3:Yb,Er, LaF3:Yb,Ho and LaF3:Yb,Tm nanocrystals with multicolor upconversion fluorescence. J. Mater. Chem. 15: 4460.
89.
go back to reference Yi G, Lu H, Zhao S, Ge Y, Yang W, Chen D, Guo L (2004) Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infrared-to-visible up-conversion phosphors. Nano Lett. 4: 2191. Yi G, Lu H, Zhao S, Ge Y, Yang W, Chen D, Guo L (2004) Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infrared-to-visible up-conversion phosphors. Nano Lett. 4: 2191.
90.
go back to reference Kong X, Zhang H (2009) Ionothermal synthesis of hexagonal-phase NaYF4:Yb3+,Er3+/Tm3+ upconversion nanophosphors. Chem. Commun. 6628. Kong X, Zhang H (2009) Ionothermal synthesis of hexagonal-phase NaYF4:Yb3+,Er3+/Tm3+ upconversion nanophosphors. Chem. Commun. 6628.
91.
go back to reference Chen C, Sun LD, Li ZX, Li LL, Zhang J, and Zhang YW (2010) Ionic liquid-based route to spherical NaYF4 nanoclusters with the assistance of microwave radiation and their multicolor upconversion luminescence. Langmuir 26: 8797. Chen C, Sun LD, Li ZX, Li LL, Zhang J, and Zhang YW (2010) Ionic liquid-based route to spherical NaYF4 nanoclusters with the assistance of microwave radiation and their multicolor upconversion luminescence. Langmuir 26: 8797.
92.
go back to reference Wang H Q, Nann T (2009) Monodisperse Upconverting Nanocrystals by Microwave-Assisted Synthesis. ACS Nano 3: 3804. Wang H Q, Nann T (2009) Monodisperse Upconverting Nanocrystals by Microwave-Assisted Synthesis. ACS Nano 3: 3804.
93.
go back to reference Wang S, Su SQ, Song SY, Deng RP, Zhang HJ (2012) Raisin-like rare earth doped gadolinium fluoride nanocrystals: microwave synthesis and magnetic and upconversion luminescent properties. CrystEngComm. 14: 4266. Wang S, Su SQ, Song SY, Deng RP, Zhang HJ (2012) Raisin-like rare earth doped gadolinium fluoride nanocrystals: microwave synthesis and magnetic and upconversion luminescent properties. CrystEngComm. 14: 4266.
94.
go back to reference Cao TY, Yang Y, Gao Y, Zhou J, Li ZQ, Li FY (2011) High-Quality Water-Soluble and Surface-Functionalized Upconversion Nanocrystals as Luminescent Probes for Bioimaging. Biomaterials. 32: 2959. Cao TY, Yang Y, Gao Y, Zhou J, Li ZQ, Li FY (2011) High-Quality Water-Soluble and Surface-Functionalized Upconversion Nanocrystals as Luminescent Probes for Bioimaging. Biomaterials. 32: 2959.
95.
go back to reference Hu H, Yu MX, Li FY, Chen ZG, Gao X, Xiong LQ, Huang CH (2008) Facile Epoxidation Strategy for Producing Amphiphilic Up-Converting Rare-Earth Nanophosphors as Biological Labels. Chem. Mater. 20: 7003. Hu H, Yu MX, Li FY, Chen ZG, Gao X, Xiong LQ, Huang CH (2008) Facile Epoxidation Strategy for Producing Amphiphilic Up-Converting Rare-Earth Nanophosphors as Biological Labels. Chem. Mater. 20: 7003.
96.
go back to reference Naccache R, Vetrone F, Mahalingam V, Cuccia LA, and Capobianco JA (2009) Controlled Synthesis and Water Dispersibility of Hexagonal Phase NaGdF4:Ho3+/Yb3+ Nanoparticles. Chem. Mater. 21: 717. Naccache R, Vetrone F, Mahalingam V, Cuccia LA, and Capobianco JA (2009) Controlled Synthesis and Water Dispersibility of Hexagonal Phase NaGdF4:Ho3+/Yb3+ Nanoparticles. Chem. Mater. 21: 717.
97.
go back to reference Boyer JC, Manseau MP, Murray JI, van Veggel FCJM (2010) Surface Modification of Upconverting NaYF4 Nanoparticles with PEG − Phosphate Ligands for NIR (800 nm) Biolabeling within the Biological Window. Langmuir, 26: 1157. Boyer JC, Manseau MP, Murray JI, van Veggel FCJM (2010) Surface Modification of Upconverting NaYF4 Nanoparticles with PEG − Phosphate Ligands for NIR (800 nm) Biolabeling within the Biological Window. Langmuir, 26: 1157.
98.
go back to reference Hu H, Xiong LQ, Zhou J, Li FY, Cao TY, Huang CH (2009) Multimodal-Luminescence Core–Shell Nanocomposites for Targeted Imaging of Tumor Cells. Chem.Eur. J. 15:3577. Hu H, Xiong LQ, Zhou J, Li FY, Cao TY, Huang CH (2009) Multimodal-Luminescence Core–Shell Nanocomposites for Targeted Imaging of Tumor Cells. Chem.Eur. J. 15:3577.
99.
go back to reference Jiang S, Zhang Y, (2010) Upconversion Nanoparticle-Based FRET System for Study of siRNA in Live Cells. Langmuir. 26: 6689. Jiang S, Zhang Y, (2010) Upconversion Nanoparticle-Based FRET System for Study of siRNA in Live Cells. Langmuir. 26: 6689.
100.
go back to reference Li Z, Zhang Y, (2006) Monodisperse silica-coated polyvinylpyrrolidone NaYF4 nanocrystals with multicolor upconversion fluorescence emission. Angew. Chem., Int. Ed. 45: 7732. Li Z, Zhang Y, (2006) Monodisperse silica-coated polyvinylpyrrolidone NaYF4 nanocrystals with multicolor upconversion fluorescence emission. Angew. Chem., Int. Ed. 45: 7732.
101.
go back to reference Liu Q, Li CY, Yang TS, Yi T, Li FY (2010) “Drawing” upconversion nanophosphors into water throughst guest interaction. Chem. Commun. 46: 5551. Liu Q, Li CY, Yang TS, Yi T, Li FY (2010) “Drawing” upconversion nanophosphors into water throughst guest interaction. Chem. Commun. 46: 5551.
102.
go back to reference Liu Q, Chen M, Sun Y, Chen G, Yang T, Gao Y, Zhang X, Li FY (2011) 18F-labeled Rare-earth self-assemble nanosystem for dual-modal upconversion luminescence and positron emission tomography imaging in vivo. Biomaterials. 32: 8243. Liu Q, Chen M, Sun Y, Chen G, Yang T, Gao Y, Zhang X, Li FY (2011) 18F-labeled Rare-earth self-assemble nanosystem for dual-modal upconversion luminescence and positron emission tomography imaging in vivo. Biomaterials. 32: 8243.
103.
go back to reference Jalil R A, Zhang Y, (2008) Biocompatibility of Silica Coated NaYF4 Upconversion Fluorescent Nanocrystals, Biomaterials. 29: 4122. Jalil R A, Zhang Y, (2008) Biocompatibility of Silica Coated NaYF4 Upconversion Fluorescent Nanocrystals, Biomaterials. 29: 4122.
104.
go back to reference Meiser F, Cortez C, Caruso F (2004) Biofunctionalization of Fluorescent Rare-Earth-Doped Lanthanum Phosphate Colloidal Nanoparticles. Angew. Chem. Int. Ed., 43:5954. Meiser F, Cortez C, Caruso F (2004) Biofunctionalization of Fluorescent Rare-Earth-Doped Lanthanum Phosphate Colloidal Nanoparticles. Angew. Chem. Int. Ed., 43:5954.
105.
go back to reference Hilderbrand SA, Shao FW, Salthouse C, Mahmood U, Weissleder R (2009) Upconverting luminescent nanomaterials: application to in vivo bioimaging. Chem. Commun. 4188. Hilderbrand SA, Shao FW, Salthouse C, Mahmood U, Weissleder R (2009) Upconverting luminescent nanomaterials: application to in vivo bioimaging. Chem. Commun. 4188.
106.
go back to reference Chen Z, Chen H, Hu H, Yu MX, Li FY, Zhang Q, Zhou ZG, Yi T, Huang CH (2008) Versatile Synthesis Strategy for Carboxylic Acid-Functionalized Upconversion Nanophosphors as Biological Labels. J. Am. Chem. Soc. 130: 3023. Chen Z, Chen H, Hu H, Yu MX, Li FY, Zhang Q, Zhou ZG, Yi T, Huang CH (2008) Versatile Synthesis Strategy for Carboxylic Acid-Functionalized Upconversion Nanophosphors as Biological Labels. J. Am. Chem. Soc. 130: 3023.
107.
go back to reference Zhou HP, Xu CH, Sun W, Yan CH (2009) Clean and Flexible Modification Strategy for Carboxyl/Aldehyde-Functionalized Upconversion Nanoparticles and Their Optical Applications. Adv. Funct. Mater. 19: 3892. Zhou HP, Xu CH, Sun W, Yan CH (2009) Clean and Flexible Modification Strategy for Carboxyl/Aldehyde-Functionalized Upconversion Nanoparticles and Their Optical Applications. Adv. Funct. Mater. 19: 3892.
108.
go back to reference Kobayashi H, Kosaka N, Ogawa M, Morgan NY, Smith PD, Murray CB, Ye XC, Collins J, Kumar G A, Bell H, Choyke P L (2009) In vivo multiple color lymphatic imaging using upconverting nanocrystals. J. Mater. Chem. 19: 6481. Kobayashi H, Kosaka N, Ogawa M, Morgan NY, Smith PD, Murray CB, Ye XC, Collins J, Kumar G A, Bell H, Choyke P L (2009) In vivo multiple color lymphatic imaging using upconverting nanocrystals. J. Mater. Chem. 19: 6481.
109.
go back to reference Wang LY, Yan RX, Hao ZY, Wang L, Zeng JH, Bao H, Wang X, Peng Q, Li YD (2005) Fluorescence Resonant Energy Transfer Biosensor Based on Upconversion-Luminescent Nanoparticles Angew. Chem., Int. Ed., 44: 6054. Wang LY, Yan RX, Hao ZY, Wang L, Zeng JH, Bao H, Wang X, Peng Q, Li YD (2005) Fluorescence Resonant Energy Transfer Biosensor Based on Upconversion-Luminescent Nanoparticles Angew. Chem., Int. Ed., 44: 6054.
110.
go back to reference Qian HS, Li ZQ, Zhang Y (2008) Multicolor polystyrene nanospheres tagged with up-conversion fluorescent nanocrystals. Nanotechnology, 19: 255601. Qian HS, Li ZQ, Zhang Y (2008) Multicolor polystyrene nanospheres tagged with up-conversion fluorescent nanocrystals. Nanotechnology, 19: 255601.
111.
go back to reference Lu HC, Yi GS, Zhao SY, Chen DP, Guo LH, Cheng J (2004) Synthesis and characterization of multi-functional nanoparticles possessing magnetic, up-conversion fluorescence and bio-affinity properties, J. Mater. Chem., 14:1336. Lu HC, Yi GS, Zhao SY, Chen DP, Guo LH, Cheng J (2004) Synthesis and characterization of multi-functional nanoparticles possessing magnetic, up-conversion fluorescence and bio-affinity properties, J. Mater. Chem., 14:1336.
112.
go back to reference Liu ZY, Yi GS, Zhang HT, Ding J, Zhang YW, Xue JM (2008) Monodisp- erse silica nanoparticles encapsulating upconversion fluorescent and superparamagnetic nanocrystals, Chem. Commun. 694. Liu ZY, Yi GS, Zhang HT, Ding J, Zhang YW, Xue JM (2008) Monodisp- erse silica nanoparticles encapsulating upconversion fluorescent and superparamagnetic nanocrystals, Chem. Commun. 694.
113.
go back to reference Ehlert O, Thomann R, Darbandi M, Nann T (2008) A Four-Color Colloidal Multiplexing Nanoparticle System ACS Nano, 2: 120. Ehlert O, Thomann R, Darbandi M, Nann T (2008) A Four-Color Colloidal Multiplexing Nanoparticle System ACS Nano, 2: 120.
114.
go back to reference Mi C, Tian Z, Cao C, Wang Z, Mao C, Xu S (2011) Novel Microwave-Assisted Solvothermal Synthesis of NaYF4:Yb,Er Upconversion Nanoparticles and Their Application in Cancer Cell Imaging. Langmuir. 27: 14632. Mi C, Tian Z, Cao C, Wang Z, Mao C, Xu S (2011) Novel Microwave-Assisted Solvothermal Synthesis of NaYF4:Yb,Er Upconversion Nanoparticles and Their Application in Cancer Cell Imaging. Langmuir. 27: 14632.
115.
go back to reference Shan J, Ju Y (2007) Controlled synthesis of lanthanide-doped NaYF4 upconversion nanocrystals via ligand induced crystal phase transition and silica coating. Appl. Phys. Lett. 91: 123103. Shan J, Ju Y (2007) Controlled synthesis of lanthanide-doped NaYF4 upconversion nanocrystals via ligand induced crystal phase transition and silica coating. Appl. Phys. Lett. 91: 123103.
116.
go back to reference Yi G, Peng Y, Gao Z (2011) Strong Red-Emitting near-Infrared-to-Visible Upconversion Fluorescent Nanoparticles. Chem. Mater. 23: 2729. Yi G, Peng Y, Gao Z (2011) Strong Red-Emitting near-Infrared-to-Visible Upconversion Fluorescent Nanoparticles. Chem. Mater. 23: 2729.
117.
go back to reference Liu SH, Han MY (2010) Silica-Coated Metal Nanoparticles Chem. Asian J. 5: 36. Liu SH, Han MY (2010) Silica-Coated Metal Nanoparticles Chem. Asian J. 5: 36.
118.
go back to reference Caruso, F. (2001) Nanoengineering of Particle Surfaces, Adv. Mater., 13:11. Caruso, F. (2001) Nanoengineering of Particle Surfaces, Adv. Mater., 13:11.
119.
go back to reference Piao YZ, Burns A, Kim J, Wiesner U, Hyeon T (2008) Designed Fabrication of Silica-Based Nanostructured Particle Systems for Nanomedicine Applications. Adv. Funct. Mater. 18:3745. Piao YZ, Burns A, Kim J, Wiesner U, Hyeon T (2008) Designed Fabrication of Silica-Based Nanostructured Particle Systems for Nanomedicine Applications. Adv. Funct. Mater. 18:3745.
120.
go back to reference Wang F, Han Y, Lim C S, Lu YH, Wang J, Xu J, Chen HY, Zhang C, Hong M H, Liu X G (2010) Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature. 463: 1061. Wang F, Han Y, Lim C S, Lu YH, Wang J, Xu J, Chen HY, Zhang C, Hong M H, Liu X G (2010) Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature. 463: 1061.
121.
go back to reference Chen D, Huang P, Yu Y, Huang F, Yang A, Wang Y (2011) Dopant-induced phase transition: a new strategy of synthesizing hexagonal upconversion NaYF4 at low temperature. Chem. Commun. 47: 5801. Chen D, Huang P, Yu Y, Huang F, Yang A, Wang Y (2011) Dopant-induced phase transition: a new strategy of synthesizing hexagonal upconversion NaYF4 at low temperature. Chem. Commun. 47: 5801.
122.
go back to reference Liu N, Qin WP, Qin GS, Jiang T, Zhao D (2011) Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures. Chem. Commun. 47: 7671. Liu N, Qin WP, Qin GS, Jiang T, Zhao D (2011) Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures. Chem. Commun. 47: 7671.
123.
go back to reference Paudel HP, Zhong LL, Bayat K, Baroughi MF, Smith S, Lin CK, Jiang CY, Berry MT, May PS (2011) Enhancement of near-infrared-to-visible upconversion luminescence using engineered plasmonic gold surfaces.,J. Phys. Chem. C, 115: 19028. Paudel HP, Zhong LL, Bayat K, Baroughi MF, Smith S, Lin CK, Jiang CY, Berry MT, May PS (2011) Enhancement of near-infrared-to-visible upconversion luminescence using engineered plasmonic gold surfaces.,J. Phys. Chem. C, 115: 19028.
124.
go back to reference Yuan PY, Lee YH, Gnanasammandhan MK, Guan Z, Zhang Y, Xu QH (2012) Plasmon enhanced upconversion luminescence of NaYF4:Yb,Er@SiO2@Ag core–shell nanocomposites for cell imaging. Nanoscale, 4: 5132. Yuan PY, Lee YH, Gnanasammandhan MK, Guan Z, Zhang Y, Xu QH (2012) Plasmon enhanced upconversion luminescence of NaYF4:Yb,Er@SiO2@Ag core–shell nanocomposites for cell imaging. Nanoscale, 4: 5132.
125.
go back to reference Wang Y, Tu LP, Zhao, JW, Sun YJ, Kong XG, Zhang H (2009) Upconversion luminescence of β-NaYF4:Yb3+,Er3+@β-NaYF4 core/shell nanoparticles: Excitation power density and surface dependence.,J. Phys. Chem. C, 113: 7164. Wang Y, Tu LP, Zhao, JW, Sun YJ, Kong XG, Zhang H (2009) Upconversion luminescence of β-NaYF4:Yb3+,Er3+@β-NaYF4 core/shell nanoparticles: Excitation power density and surface dependence.,J. Phys. Chem. C, 113: 7164.
126.
go back to reference Zhang F, Che RH, Li XM, Yao C, Yang JP, Shen DK, Hu P, Li W, Zhao DY (2012) Direct Imaging the Upconversion Nanocrystal Core/Shell Structure at the Subnanometer Level: Shell Thickness Dependence in Upconverting Optical Properties. Nano Lett. 12: 2852. Zhang F, Che RH, Li XM, Yao C, Yang JP, Shen DK, Hu P, Li W, Zhao DY (2012) Direct Imaging the Upconversion Nanocrystal Core/Shell Structure at the Subnanometer Level: Shell Thickness Dependence in Upconverting Optical Properties. Nano Lett. 12: 2852.
127.
go back to reference Park YI, Kim JH, Lee KT, Jeon K-S, Na HB, Yu JH, Kim HM, Lee N, Choi SH, Baik S-I, Kim H, Park SP, Park B-J, Kim YW, Lee SH, Yoon SY, Song IC, Moon WK, Suh YD, Hyeon T (2009) Nonblinking and Nonbleaching Upconverting Nanoparticles as an Optical Imaging Nanoprobe and T1 Magnetic Resonance Imaging Contrast Agent. Adv. Mater. 21: 4467. Park YI, Kim JH, Lee KT, Jeon K-S, Na HB, Yu JH, Kim HM, Lee N, Choi SH, Baik S-I, Kim H, Park SP, Park B-J, Kim YW, Lee SH, Yoon SY, Song IC, Moon WK, Suh YD, Hyeon T (2009) Nonblinking and Nonbleaching Upconverting Nanoparticles as an Optical Imaging Nanoprobe and T1 Magnetic Resonance Imaging Contrast Agent. Adv. Mater. 21: 4467.
128.
go back to reference Wang YF, Sun LD, Xiao JW, Feng W, Zhou JC, Shen J, Yan CH. (2012) Rare-Earth Nanoparticles with Enhanced Upconversion Emission and Suppressed Rare-Earth-Ion Leakage Chem. Eur. J. 18: 5558. Wang YF, Sun LD, Xiao JW, Feng W, Zhou JC, Shen J, Yan CH. (2012) Rare-Earth Nanoparticles with Enhanced Upconversion Emission and Suppressed Rare-Earth-Ion Leakage Chem. Eur. J. 18: 5558.
129.
go back to reference Li Z, Zhang Y, Jiang S. (2008) Multicolor Core/Shell-Structured Upconversion Fluorescent Nanoparticles. Adv. Mater. 20: 4765. Li Z, Zhang Y, Jiang S. (2008) Multicolor Core/Shell-Structured Upconversion Fluorescent Nanoparticles. Adv. Mater. 20: 4765.
Metadata
Title
Foundations of Up-conversion Nanoparticles
Authors
Song Wang
Hongjie Zhang
Copyright Year
2016
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-1590-8_7

Premium Partners