Skip to main content
Top
Published in: Wireless Personal Communications 1/2020

26-03-2020

Fractional-Grasshopper Optimization Algorithm for the Sensor Activation Control in Wireless Sensor Networks

Authors: Anand Tanwar, Ajay K. Sharma, R. Vinay Shankar Pandey

Published in: Wireless Personal Communications | Issue 1/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The progression in wireless sensor network (WSN) has been increased and gained immense attention in computer vision. In WSN, a large number of sensors are deployed for performing distributed sensing of target field. The conventional methods used wireless chargers for providing the energy to sensor nodes, but the supplied energy is not sufficient for controlling the sensor nodes. Thus, this paper proposes a technique for reducing the energy consumption per node by adapting effective scheduling of sleep/awake of the nodes. The method undergoes two phases for the sensor activation namely, initialization phase, and activation phase. The initialization phase is progressed by the network initiation, which is done to convey the network parameters to the nodes or sensor. Then, in activation phase, the proposed optimization algorithm is utilized for activating the sensors in each slot. The proposed fractional grasshopper optimization algorithm (Fractional-GOA) is the integration of the fractional calculus in grasshopper optimization algorithm (GOA). Thus, the proposed method generates the control regarding the turn-ON or OFF of the sensors, which symbolizes the active sensors and engages itself in sensing and monitoring the distributed environment. The proposed method outperforms other existing method with maximal energy, throughput, and alive nodes of 0.111, 85%, and 11, respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Shaikh, F. K., & Zeadally, S. (2016). Energy harvesting in wireless sensor networks: A comprehensive review. Renewable and Sustainable Energy Reviews, 55, 1041–1054.CrossRef Shaikh, F. K., & Zeadally, S. (2016). Energy harvesting in wireless sensor networks: A comprehensive review. Renewable and Sustainable Energy Reviews, 55, 1041–1054.CrossRef
2.
go back to reference Shaikh, F. K., Zeadally, S., & Exposito, E. (2015). Enabling technologies for green internet of things. IEEE Systems Journal, 11(2), 983–994.CrossRef Shaikh, F. K., Zeadally, S., & Exposito, E. (2015). Enabling technologies for green internet of things. IEEE Systems Journal, 11(2), 983–994.CrossRef
3.
go back to reference Bi, S., & Zhang, R. (2015). Placement optimization of energy and information access points in wireless powered communication networks. IEEE Transactions on Wireless Communications,15(3), 2351–2364.CrossRef Bi, S., & Zhang, R. (2015). Placement optimization of energy and information access points in wireless powered communication networks. IEEE Transactions on Wireless Communications,15(3), 2351–2364.CrossRef
4.
go back to reference Kaur, S., & Mir, R. N. (2016). Energy efficiency optimization in wireless sensor network using proposed load balancing approach. International Journal of Computer Networks and Applications,3(5), 108–117.CrossRef Kaur, S., & Mir, R. N. (2016). Energy efficiency optimization in wireless sensor network using proposed load balancing approach. International Journal of Computer Networks and Applications,3(5), 108–117.CrossRef
5.
go back to reference Ren, J., Zhang, Y., Zhang, K., Liu, A., Chen, J., & Shen, X. S. (2014). Lifetime and energy hole evolution analysis in data-gathering wireless sensor networks. IEEE Transactions on Industrial Informatics,12(2), 788–800.CrossRef Ren, J., Zhang, Y., Zhang, K., Liu, A., Chen, J., & Shen, X. S. (2014). Lifetime and energy hole evolution analysis in data-gathering wireless sensor networks. IEEE Transactions on Industrial Informatics,12(2), 788–800.CrossRef
6.
go back to reference Tung, H. Y., Tsang, K. F., Chui, K. T., Tung, H. C., Chi, H. R., Hancke, G. P., et al. (2013). The generic design of a high-traffic advanced metering infrastructure using ZigBee. IEEE Transactions on Industrial Informatics,10(1), 836–844.CrossRef Tung, H. Y., Tsang, K. F., Chui, K. T., Tung, H. C., Chi, H. R., Hancke, G. P., et al. (2013). The generic design of a high-traffic advanced metering infrastructure using ZigBee. IEEE Transactions on Industrial Informatics,10(1), 836–844.CrossRef
7.
go back to reference Magno, M., Boyle, D., Brunelli, D., Popovici, E., & Benini, L. (2014). Ensuring survivability of resource-intensive sensor networks through ultra-low power overlays. IEEE Transactions on Industrial Informatics,10(2), 946–956.CrossRef Magno, M., Boyle, D., Brunelli, D., Popovici, E., & Benini, L. (2014). Ensuring survivability of resource-intensive sensor networks through ultra-low power overlays. IEEE Transactions on Industrial Informatics,10(2), 946–956.CrossRef
8.
go back to reference Ren, J., Zhang, Y., & Liu, K. (2015). An energy-efficient cyclic diversionary routing strategy against global eavesdroppers in wireless sensor networks. International Journal of Distributed Sensor Networks,9(4), 834245.CrossRef Ren, J., Zhang, Y., & Liu, K. (2015). An energy-efficient cyclic diversionary routing strategy against global eavesdroppers in wireless sensor networks. International Journal of Distributed Sensor Networks,9(4), 834245.CrossRef
9.
go back to reference Chen, J., Cao, K., Sun, Y., & Shen, X. (2009). Adaptive sensor activation for target tracking in wireless sensor networks, In Proceedings of international conference on communications (pp. 1–5). Chen, J., Cao, K., Sun, Y., & Shen, X. (2009). Adaptive sensor activation for target tracking in wireless sensor networks, In Proceedings of international conference on communications (pp. 1–5).
10.
go back to reference Sears, D., & Rudie, K. (2016). Minimal sensor activation and minimal communication in discrete-event systems. Discrete Event Dynamic Systems,26(2), 295–349.MathSciNetCrossRef Sears, D., & Rudie, K. (2016). Minimal sensor activation and minimal communication in discrete-event systems. Discrete Event Dynamic Systems,26(2), 295–349.MathSciNetCrossRef
11.
go back to reference Lersteau, C., Rossi, A., & Sevaux, M. (2016). Robust scheduling of wireless sensor networks for target tracking under uncertainty. European Journal of Operational Research,252(2), 407–417.MathSciNetCrossRef Lersteau, C., Rossi, A., & Sevaux, M. (2016). Robust scheduling of wireless sensor networks for target tracking under uncertainty. European Journal of Operational Research,252(2), 407–417.MathSciNetCrossRef
12.
go back to reference Pattem, S., Poduri, S., & Krishnamachari, B. (2003). Energy-quality tradeoffs for target tracking in wireless sensor networks. In Information processing in sensor networks (pp. 32–46). Springer, Berlin, Heidelberg. Pattem, S., Poduri, S., & Krishnamachari, B. (2003). Energy-quality tradeoffs for target tracking in wireless sensor networks. In Information processing in sensor networks (pp. 32–46). Springer, Berlin, Heidelberg.
13.
go back to reference Alibeiki, A., Motameni, H., & Mohamadi, H. (2019). A new genetic-based approach for maximizing network lifetime in directional sensor networks with adjustable sensing ranges. Pervasive and Mobile Computing,52, 1–12.CrossRef Alibeiki, A., Motameni, H., & Mohamadi, H. (2019). A new genetic-based approach for maximizing network lifetime in directional sensor networks with adjustable sensing ranges. Pervasive and Mobile Computing,52, 1–12.CrossRef
14.
go back to reference Ejaz, W., Naeem, M., Basharat, M., Anpalagan, A., & Kandeepan, S. (2016). Efficient wireless power transfer in software-defined wireless sensor networks. IEEE Sensors Journal,16(20), 7409–7420.CrossRef Ejaz, W., Naeem, M., Basharat, M., Anpalagan, A., & Kandeepan, S. (2016). Efficient wireless power transfer in software-defined wireless sensor networks. IEEE Sensors Journal,16(20), 7409–7420.CrossRef
15.
go back to reference Kasbekar, G. S., Bejerano, Y., & Sarkar, S. (2010). Lifetime and coverage guarantees through distributed coordinate-free sensor activation. IEEE/ACM Transactions on Networking,19(2), 470–483.CrossRef Kasbekar, G. S., Bejerano, Y., & Sarkar, S. (2010). Lifetime and coverage guarantees through distributed coordinate-free sensor activation. IEEE/ACM Transactions on Networking,19(2), 470–483.CrossRef
16.
go back to reference Abuzainab, N., & Saad, W. (2019). A graphical Bayesian game for secure sensor activation in internet of battlefield things. Ad Hoc Networks,85, 103–109.CrossRef Abuzainab, N., & Saad, W. (2019). A graphical Bayesian game for secure sensor activation in internet of battlefield things. Ad Hoc Networks,85, 103–109.CrossRef
17.
go back to reference Du, R., Xiao, M., & Fischione, C. (2019). Optimal node deployment and energy provision for wirelessly powered sensor networks. IEEE Journal on Selected Areas in Communications,37(2), 407–423.CrossRef Du, R., Xiao, M., & Fischione, C. (2019). Optimal node deployment and energy provision for wirelessly powered sensor networks. IEEE Journal on Selected Areas in Communications,37(2), 407–423.CrossRef
18.
go back to reference Xu, W., Liang, W., Jia, X., Xu, Z., Li, Z., & Liu, Y. (2017). Maximizing sensor lifetime with the minimal service cost of a mobile charger in wireless sensor networks. IEEE Transactions on Mobile Computing,17, 2564–2577.CrossRef Xu, W., Liang, W., Jia, X., Xu, Z., Li, Z., & Liu, Y. (2017). Maximizing sensor lifetime with the minimal service cost of a mobile charger in wireless sensor networks. IEEE Transactions on Mobile Computing,17, 2564–2577.CrossRef
19.
go back to reference Liao, C.-C., & Ting, C.-K. (2018). A novel integer-coded memetic algorithm for the set k-cover problem in wireless sensor networks. IEEE Transactions on Cybernetics,48(8), 2245–2258.MathSciNetCrossRef Liao, C.-C., & Ting, C.-K. (2018). A novel integer-coded memetic algorithm for the set k-cover problem in wireless sensor networks. IEEE Transactions on Cybernetics,48(8), 2245–2258.MathSciNetCrossRef
20.
go back to reference Nesa, N., & Banerjee, I. (2018). SensorRank: An energy efficient sensor activation algorithm for sensor data fusion in wireless networks. IEEE Internet of Things Journal,6(2), 2532–2539.CrossRef Nesa, N., & Banerjee, I. (2018). SensorRank: An energy efficient sensor activation algorithm for sensor data fusion in wireless networks. IEEE Internet of Things Journal,6(2), 2532–2539.CrossRef
21.
go back to reference Nguyen, T. G., So-In, C., Nguyen, N. G., & Phoemphon, S. (2017). A novel energy-efficient clustering protocol with area coverage awareness for wireless sensor networks. Peer-to-Peer Networking and Applications,10(3), 519–536.CrossRef Nguyen, T. G., So-In, C., Nguyen, N. G., & Phoemphon, S. (2017). A novel energy-efficient clustering protocol with area coverage awareness for wireless sensor networks. Peer-to-Peer Networking and Applications,10(3), 519–536.CrossRef
22.
go back to reference Naeem, M. K., Patwary, M., & Abdel-Maguid, M. (2017). Universal and dynamic clustering scheme for energy constrained cooperative wireless sensor networks. IEEE Access,5, 12318–12337.CrossRef Naeem, M. K., Patwary, M., & Abdel-Maguid, M. (2017). Universal and dynamic clustering scheme for energy constrained cooperative wireless sensor networks. IEEE Access,5, 12318–12337.CrossRef
23.
go back to reference Shankar, T., Shanmugavel, S., & Rajesh, A. (2016). Hybrid HSA and PSO algorithm for energy efficient cluster head selection in wireless sensor networks. Swarm and Evolutionary Computation,30, 1–10.CrossRef Shankar, T., Shanmugavel, S., & Rajesh, A. (2016). Hybrid HSA and PSO algorithm for energy efficient cluster head selection in wireless sensor networks. Swarm and Evolutionary Computation,30, 1–10.CrossRef
24.
go back to reference Katre, S. S., & Gosavi, S. K. (2018). Challenges and issues in wireless sensor network–a review. International Research Journal of Engineering and Technology (IRJET), 5(4). Katre, S. S., & Gosavi, S. K. (2018). Challenges and issues in wireless sensor network–a review. International Research Journal of Engineering and Technology (IRJET), 5(4).
25.
26.
go back to reference Saremi, S., Mirjalili, S., & Lewis, A. (2017). Grasshopper optimisation algorithm: theory and application. Advances in Engineering Software,105, 30–47.CrossRef Saremi, S., Mirjalili, S., & Lewis, A. (2017). Grasshopper optimisation algorithm: theory and application. Advances in Engineering Software,105, 30–47.CrossRef
27.
go back to reference Yadav, A. K., & Tripathi, S. (2017). QMRPRNS: Design of QoS multicast routing protocol using reliable node selection scheme for MANETs. Peer-to-Peer Networking and Applications,10(4), 897–909.CrossRef Yadav, A. K., & Tripathi, S. (2017). QMRPRNS: Design of QoS multicast routing protocol using reliable node selection scheme for MANETs. Peer-to-Peer Networking and Applications,10(4), 897–909.CrossRef
28.
go back to reference Balachandra, M., Prema, K. V., & Makkithaya, K. (2014). Multiconstrained and multipath QoS aware routing protocol for MANETs. Wireless networks,20(8), 2395–2408.CrossRef Balachandra, M., Prema, K. V., & Makkithaya, K. (2014). Multiconstrained and multipath QoS aware routing protocol for MANETs. Wireless networks,20(8), 2395–2408.CrossRef
Metadata
Title
Fractional-Grasshopper Optimization Algorithm for the Sensor Activation Control in Wireless Sensor Networks
Authors
Anand Tanwar
Ajay K. Sharma
R. Vinay Shankar Pandey
Publication date
26-03-2020
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 1/2020
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07206-4

Other articles of this Issue 1/2020

Wireless Personal Communications 1/2020 Go to the issue