Skip to main content
Top
Published in: Information Systems Frontiers 5/2023

14-10-2022

Fraud Detection in Mobile Payment Systems using an XGBoost-based Framework

Authors: Petr Hajek, Mohammad Zoynul Abedin, Uthayasankar Sivarajah

Published in: Information Systems Frontiers | Issue 5/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Mobile payment systems are becoming more popular due to the increase in the number of smartphones, which, in turn, attracts the interest of fraudsters. Extant research has therefore developed various fraud detection methods using supervised machine learning. However, sufficient labeled data are rarely available and their detection performance is negatively affected by the extreme class imbalance in financial fraud data. The purpose of this study is to propose an XGBoost-based fraud detection framework while considering the financial consequences of fraud detection systems. The framework was empirically validated on a large dataset of more than 6 million mobile transactions. To demonstrate the effectiveness of the proposed framework, we conducted a comparative evaluation of existing machine learning methods designed for modeling imbalanced data and outlier detection. The results suggest that in terms of standard classification measures, the proposed semi-supervised ensemble model integrating multiple unsupervised outlier detection algorithms and an XGBoost classifier achieves the best results, while the highest cost savings can be achieved by combining random under-sampling and XGBoost methods. This study has therefore financial implications for organizations to make appropriate decisions regarding the implementation of effective fraud detection systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Ahmed, M., Mahmood, A. N., & Islam, M. R. (2016). A survey of anomaly detection techniques in financial domain. Future Generation Computer Systems, 55, 278–288.CrossRef Ahmed, M., Mahmood, A. N., & Islam, M. R. (2016). A survey of anomaly detection techniques in financial domain. Future Generation Computer Systems, 55, 278–288.CrossRef
go back to reference Akanfe, O., Valecha, R., & Rao, H. R. (2020). Assessing country-level privacy risk for digital payment systems. Computers & Security, 99, 102065.CrossRef Akanfe, O., Valecha, R., & Rao, H. R. (2020). Assessing country-level privacy risk for digital payment systems. Computers & Security, 99, 102065.CrossRef
go back to reference Awoyemi, J. O., Adetunmbi, A. O., & Oluwadare, S. A. (2017). Credit card fraud detection using machine learning techniques: A comparative analysis. IEEE international conference on computing, networking and informatics, ICCNI 2017 (pp. 1–9). IEEE. Awoyemi, J. O., Adetunmbi, A. O., & Oluwadare, S. A. (2017). Credit card fraud detection using machine learning techniques: A comparative analysis. IEEE international conference on computing, networking and informatics, ICCNI 2017 (pp. 1–9). IEEE.
go back to reference Bansal, S., Bruno, P., Denecker, O., & Niederkorn, M. (2019). Global Payments Report 2019: Amid Sustained Growth, Accelerating Challenges Demand Bold Actions. Bansal, S., Bruno, P., Denecker, O., & Niederkorn, M. (2019). Global Payments Report 2019: Amid Sustained Growth, Accelerating Challenges Demand Bold Actions.
go back to reference Bernard, P., De Freitas, N. E. M., & Maillet, B. B. (2021). A financial fraud detection indicator for investors: an IDeA. Annals of Operations Research, 1–24. Bernard, P., De Freitas, N. E. M., & Maillet, B. B. (2021). A financial fraud detection indicator for investors: an IDeA. Annals of Operations Research, 1–24.
go back to reference Blumenstock, J. (2020). Machine learning can help get COVID-19 aid to those who need it most. Nature, 13.7.2020, 1–3. Blumenstock, J. (2020). Machine learning can help get COVID-19 aid to those who need it most. Nature, 13.7.2020, 1–3.
go back to reference Breunig, M. M., Kriegel, H. P., Ng, R. T., & Sander, J. (2000). LOF: Identifying density-based local outliers. In 2000 ACM SIGMOD international conference on management of data - SIGMOD ’00 (pp. 93–104) New York, New York, USA. Breunig, M. M., Kriegel, H. P., Ng, R. T., & Sander, J. (2000). LOF: Identifying density-based local outliers. In 2000 ACM SIGMOD international conference on management of data - SIGMOD ’00 (pp. 93–104) New York, New York, USA.
go back to reference Burgess, C. P., Higgins, I., Pal, A., Matthey, L., Watters, N., Desjardins, G., & Lerchner, A. (2018). Understanding disentangling in \(\beta\)-VAE. In Proc. of the 31st conference on neural information processing systems (pp. 1–11). Burgess, C. P., Higgins, I., Pal, A., Matthey, L., Watters, N., Desjardins, G., & Lerchner, A. (2018). Understanding disentangling in \(\beta\)-VAE. In Proc. of the 31st conference on neural information processing systems (pp. 1–11).
go back to reference Buschjäger, S., Honysz, P. J., & Morik, K. (2021). Randomized outlier detection with trees. International Journal of Data Science and Analytics, 1–14. Buschjäger, S., Honysz, P. J., & Morik, K. (2021). Randomized outlier detection with trees. International Journal of Data Science and Analytics, 1–14.
go back to reference Carcillo, F., Le Borgne, Y. A., Caelen, O., Kessaci, Y., Oblé, F., & Bontempi, G. (2021). Combining unsupervised and supervised learning in credit card fraud detection. Information Sciences, 557, 317–331.CrossRef Carcillo, F., Le Borgne, Y. A., Caelen, O., Kessaci, Y., Oblé, F., & Bontempi, G. (2021). Combining unsupervised and supervised learning in credit card fraud detection. Information Sciences, 557, 317–331.CrossRef
go back to reference Carminati, M., Caron, R., Maggi, F., Epifani, I., & Zanero, S. (2015). BankSealer: A decision support system for online banking fraud analysis and investigation. Computers & Security, 53, 175–186.CrossRef Carminati, M., Caron, R., Maggi, F., Epifani, I., & Zanero, S. (2015). BankSealer: A decision support system for online banking fraud analysis and investigation. Computers & Security, 53, 175–186.CrossRef
go back to reference Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proc. of the 22nd ACM SIGKDD int. conf. on knowledge discovery and data mining (pp. 785–794) Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proc. of the 22nd ACM SIGKDD int. conf. on knowledge discovery and data mining (pp. 785–794)
go back to reference Chen, Y., & Sivakumar, V. (2021). Invesitigation of finance industry on risk awareness model and digital economic growth. Annals of Operations Research, 1–22. Chen, Y., & Sivakumar, V. (2021). Invesitigation of finance industry on risk awareness model and digital economic growth. Annals of Operations Research, 1–22.
go back to reference Chen, S., Yuan, Y., Luo, X. R., Jian, J., & Wang, Y. (2021). Discovering group-based transnational cyber fraud actives: A polymethodological view. Computers & Security, 104, 102217.CrossRef Chen, S., Yuan, Y., Luo, X. R., Jian, J., & Wang, Y. (2021). Discovering group-based transnational cyber fraud actives: A polymethodological view. Computers & Security, 104, 102217.CrossRef
go back to reference Chin, A. G., Harris, M. A., & Brookshire, R. (2022). An empirical investigation of intent to adopt mobile payment systems using a trust-based extended valence framework. Information Systems Frontiers, 24, 329–347.CrossRef Chin, A. G., Harris, M. A., & Brookshire, R. (2022). An empirical investigation of intent to adopt mobile payment systems using a trust-based extended valence framework. Information Systems Frontiers, 24, 329–347.CrossRef
go back to reference Choi, D., & Lee, K. (2017). Machine learning based approach to financial fraud detection process in mobile payment system. IT CoNvergence PRActice (INPRA), 5(4), 12–24. Choi, D., & Lee, K. (2017). Machine learning based approach to financial fraud detection process in mobile payment system. IT CoNvergence PRActice (INPRA), 5(4), 12–24.
go back to reference Choi, D., & Lee, K. (2018). An artificial intelligence approach to financial fraud detection under IoT environment: A survey and implementation. Security and Communication Networks, 2018, 5483472.CrossRef Choi, D., & Lee, K. (2018). An artificial intelligence approach to financial fraud detection under IoT environment: A survey and implementation. Security and Communication Networks, 2018, 5483472.CrossRef
go back to reference Coppolino, L., D’Antonio, S., Formicola, V., Massei, C., & Romano, L. (2015). Use of the Dempster-Shafer theory to detect account takeovers in mobile money transfer services. Journal of Ambient Intelligence and Humanized Computing, 6(6), 753–762.CrossRef Coppolino, L., D’Antonio, S., Formicola, V., Massei, C., & Romano, L. (2015). Use of the Dempster-Shafer theory to detect account takeovers in mobile money transfer services. Journal of Ambient Intelligence and Humanized Computing, 6(6), 753–762.CrossRef
go back to reference Cui, J., Yan, C., & Wang, C. (2021). ReMEMBeR: Ranking metric embedding-based multicontextual behavior profiling for online banking fraud detection. IEEE Transactions on Computational Social Systems, 8(3), 643–654.CrossRef Cui, J., Yan, C., & Wang, C. (2021). ReMEMBeR: Ranking metric embedding-based multicontextual behavior profiling for online banking fraud detection. IEEE Transactions on Computational Social Systems, 8(3), 643–654.CrossRef
go back to reference Davidovic, S., Nunhuck, S., Prady, D., Tourpe, H., & Anderson, E. (2020). Beyond the COVID-19 crisis: a framework for sustainable government-to-person mobile money transfers. IMF Working Papers, 198, 1–38. Davidovic, S., Nunhuck, S., Prady, D., Tourpe, H., & Anderson, E. (2020). Beyond the COVID-19 crisis: a framework for sustainable government-to-person mobile money transfers. IMF Working Papers, 198, 1–38.
go back to reference David-West, O., Oni, O., & Ashiru, F. (2022). Diffusion of innovations: Mobile money utility and financial inclusion in Nigeria. Insights from agents and unbanked poor end users. Information Systems Frontiers, 1–21. David-West, O., Oni, O., & Ashiru, F. (2022). Diffusion of innovations: Mobile money utility and financial inclusion in Nigeria. Insights from agents and unbanked poor end users. Information Systems Frontiers, 1–21.
go back to reference Delecourt, S., & Guo, L. (2019). Building a robust mobile payment fraud detection system with adversarial examples. In 2019 IEEE 2nd int. conf. on artificial intelligence and knowledge engineering (AIKE) (pp. 103–106). IEEE. Delecourt, S., & Guo, L. (2019). Building a robust mobile payment fraud detection system with adversarial examples. In 2019 IEEE 2nd int. conf. on artificial intelligence and knowledge engineering (AIKE) (pp. 103–106). IEEE.
go back to reference Dhieb, N., Ghazzai, H., Besbes, H., & Massoud, Y. (2019). Extreme gradient boosting machine learning algorithm for safe auto insurance operations. In 2019 IEEE international conference on vehicular electronics and safety, ICVES 2019, (p. 1–5), IEEE Dhieb, N., Ghazzai, H., Besbes, H., & Massoud, Y. (2019). Extreme gradient boosting machine learning algorithm for safe auto insurance operations. In 2019 IEEE international conference on vehicular electronics and safety, ICVES 2019, (p. 1–5), IEEE
go back to reference Du, J. Z., Lu, W. G., Wu, X. H., Dong, J. Y., & Zuo, W. M. (2018). L-SVM: A radius-margin-based SVM algorithm with LogDet regularization. Expert Systems with Applications, 102, 113–125.CrossRef Du, J. Z., Lu, W. G., Wu, X. H., Dong, J. Y., & Zuo, W. M. (2018). L-SVM: A radius-margin-based SVM algorithm with LogDet regularization. Expert Systems with Applications, 102, 113–125.CrossRef
go back to reference Franque, F. B., Oliveira, T., & Tam, C. (2022). Continuance intention of mobile payment: TTF model with Trust in an African context. Information Systems Frontiers, 1–19. Franque, F. B., Oliveira, T., & Tam, C. (2022). Continuance intention of mobile payment: TTF model with Trust in an African context. Information Systems Frontiers, 1–19.
go back to reference Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., & Herrera, F. (2012). A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 42(4), 463–484.CrossRef Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., & Herrera, F. (2012). A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 42(4), 463–484.CrossRef
go back to reference Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., & Bing, G. (2017). Learning from class-imbalanced data: Review of methods and applications. Expert Systems with Applications, 73, 220–239.CrossRef Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., & Bing, G. (2017). Learning from class-imbalanced data: Review of methods and applications. Expert Systems with Applications, 73, 220–239.CrossRef
go back to reference Hajek, P. (2019). Interpretable fuzzy rule-based systems for detecting financial statement fraud. In IFIP international conference on artificial intelligence applications and innovations, AIAI 2019 (pp. 425–436). Springer. Hajek, P. (2019). Interpretable fuzzy rule-based systems for detecting financial statement fraud. In IFIP international conference on artificial intelligence applications and innovations, AIAI 2019 (pp. 425–436). Springer.
go back to reference Hajek, P., & Henriques, R. (2017). Mining corporate annual reports for intelligent detection of financial statement fraud - A comparative study of machine learning methods. Knowledge-Based Systems, 128, 139–152.CrossRef Hajek, P., & Henriques, R. (2017). Mining corporate annual reports for intelligent detection of financial statement fraud - A comparative study of machine learning methods. Knowledge-Based Systems, 128, 139–152.CrossRef
go back to reference Hardin, J., & Rocke, D. M. (2004). Outlier detection in the multiple cluster setting using the minimum covariance determinant estimator. Computational Statistics and Data Analysis, 44(4), 625–638.CrossRef Hardin, J., & Rocke, D. M. (2004). Outlier detection in the multiple cluster setting using the minimum covariance determinant estimator. Computational Statistics and Data Analysis, 44(4), 625–638.CrossRef
go back to reference He, Z., Xu, X., & Deng, S. (2003). Discovering cluster-based local outliers. Pattern Recognition Letters, 24(9–10), 1641–1650.CrossRef He, Z., Xu, X., & Deng, S. (2003). Discovering cluster-based local outliers. Pattern Recognition Letters, 24(9–10), 1641–1650.CrossRef
go back to reference Huang, S. Y., Lin, C. C., Chiu, A. A., & Yen, D. C. (2017). Fraud detection using fraud triangle risk factors. Information Systems Frontiers, 19(6), 1343–1356.CrossRef Huang, S. Y., Lin, C. C., Chiu, A. A., & Yen, D. C. (2017). Fraud detection using fraud triangle risk factors. Information Systems Frontiers, 19(6), 1343–1356.CrossRef
go back to reference Iman, N. (2018). Is mobile payment still relevant in the fintech era? Electronic Commerce Research and Applications, 30, 72–82.CrossRef Iman, N. (2018). Is mobile payment still relevant in the fintech era? Electronic Commerce Research and Applications, 30, 72–82.CrossRef
go back to reference Jia, L., Song, X., & Hall, D. (2022). Influence of habits on mobile payment acceptance: An ecosystem perspective. Information Systems Frontiers, 24, 247–266.CrossRef Jia, L., Song, X., & Hall, D. (2022). Influence of habits on mobile payment acceptance: An ecosystem perspective. Information Systems Frontiers, 24, 247–266.CrossRef
go back to reference Jocevski, M., Ghezzi, A., & Arvidsson, N. (2020). Exploring the growth challenge of mobile payment platforms: A business model perspective. Electronic Commerce Research and Applications, 40, 100908.CrossRef Jocevski, M., Ghezzi, A., & Arvidsson, N. (2020). Exploring the growth challenge of mobile payment platforms: A business model perspective. Electronic Commerce Research and Applications, 40, 100908.CrossRef
go back to reference Kang, J. (2018). Mobile payment in Fintech environment: trends, security challenges, and services. Human-Centric Computing and Information Sciences, 8(1), 1–16.CrossRef Kang, J. (2018). Mobile payment in Fintech environment: trends, security challenges, and services. Human-Centric Computing and Information Sciences, 8(1), 1–16.CrossRef
go back to reference Kar, A. K. (2021). What affects usage satisfaction in mobile payments? Modelling user generated content to develop the “digital service usage satisfaction model’’. Information Systems Frontiers, 23(5), 1341–1361.CrossRef Kar, A. K. (2021). What affects usage satisfaction in mobile payments? Modelling user generated content to develop the “digital service usage satisfaction model’’. Information Systems Frontiers, 23(5), 1341–1361.CrossRef
go back to reference Kriegel, H. P., Schubert, M., & Zimek, A. (2008). Angle-based outlier detection in high-dimensional data. In Proc. of the 14th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 444–452). Kriegel, H. P., Schubert, M., & Zimek, A. (2008). Angle-based outlier detection in high-dimensional data. In Proc. of the 14th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 444–452).
go back to reference Li, Q., & Clark, G. (2013). Mobile security: A look ahead. IEEE Security and Privacy, 11(1), 78–81.CrossRef Li, Q., & Clark, G. (2013). Mobile security: A look ahead. IEEE Security and Privacy, 11(1), 78–81.CrossRef
go back to reference Liu, F. T., Ting, K. M., & Zhou, Z. H. (2008). Isolation forest. In IEEE int. conf. on data mining, ICDM (pp. 413–422). IEEE Liu, F. T., Ting, K. M., & Zhou, Z. H. (2008). Isolation forest. In IEEE int. conf. on data mining, ICDM (pp. 413–422). IEEE
go back to reference Liu, Y., Li, Z., Zhou, C., Jiang, Y., Sun, J., Wang, M., & He, X. (2019). Generative adversarial active learning for unsupervised outlier detection. IEEE Transactions on Knowledge and Data Engineering, 32(8), 1517–1528. Liu, Y., Li, Z., Zhou, C., Jiang, Y., Sun, J., Wang, M., & He, X. (2019). Generative adversarial active learning for unsupervised outlier detection. IEEE Transactions on Knowledge and Data Engineering, 32(8), 1517–1528.
go back to reference Lopez-Rojas, E. A., & Axelsson, S. (2014). Banksim: A bank payments simulator for fraud detection research. In the 26th European Modeling and Simulation Symposium (EMSS) (pp. 144–152). Lopez-Rojas, E. A., & Axelsson, S. (2014). Banksim: A bank payments simulator for fraud detection research. In the 26th European Modeling and Simulation Symposium (EMSS) (pp. 144–152).
go back to reference Lopez-Rojas, E., Elmir, A., & Axelsson, S. (2016). Paysim: A financial mobile money simulator for fraud detection. In 28th European modeling and simulation symposium, EMSS 2016, Dime University of Genoa, Larnaca (pp. 249–255). Lopez-Rojas, E., Elmir, A., & Axelsson, S. (2016). Paysim: A financial mobile money simulator for fraud detection. In 28th European modeling and simulation symposium, EMSS 2016, Dime University of Genoa, Larnaca (pp. 249–255).
go back to reference Lopez-Rojas, E. A., & Barneaud, C. (2019). Advantages of the PaySim simulator for improving financial fraud controls. Advances in Intelligent Systems and Computing, 998, 727–736.CrossRef Lopez-Rojas, E. A., & Barneaud, C. (2019). Advantages of the PaySim simulator for improving financial fraud controls. Advances in Intelligent Systems and Computing, 998, 727–736.CrossRef
go back to reference Lopez-Rojas, E. A., Axelsson, S., & Baca, D. (2018). Analysis of fraud controls using the PaySim financial simulator. International Journal of Simulation and Process Modelling, 13(4), 377–386.CrossRef Lopez-Rojas, E. A., Axelsson, S., & Baca, D. (2018). Analysis of fraud controls using the PaySim financial simulator. International Journal of Simulation and Process Modelling, 13(4), 377–386.CrossRef
go back to reference Mahbobi, M., Kimiagari, S., & Vasudevan, M. (2021). Credit risk classification: an integrated predictive accuracy algorithm using artificial and deep neural networks. Annals of Operations Research, 1–29. Mahbobi, M., Kimiagari, S., & Vasudevan, M. (2021). Credit risk classification: an integrated predictive accuracy algorithm using artificial and deep neural networks. Annals of Operations Research, 1–29.
go back to reference Mendelson, S., & Lerner, B. (2020). Online cluster drift detection for novelty detection in data streams. In Proc. of the 19th IEEE international conference on machine learning and applications, ICMLA 2020 (pp. 171–178). Mendelson, S., & Lerner, B. (2020). Online cluster drift detection for novelty detection in data streams. In Proc. of the 19th IEEE international conference on machine learning and applications, ICMLA 2020 (pp. 171–178).
go back to reference Misra, S., Thakur, S., Ghosh, M., & Saha, S. K. (2020). An autoencoder based model for detecting fraudulent credit card transaction. Procedia Computer Science, 167, 254–262.CrossRef Misra, S., Thakur, S., Ghosh, M., & Saha, S. K. (2020). An autoencoder based model for detecting fraudulent credit card transaction. Procedia Computer Science, 167, 254–262.CrossRef
go back to reference Mubalaike, A. M., & Adali, E. (2018). Deep learning approach for intelligent financial fraud detection system. In UBMK 2018 3rd int. conf. on computer science and engineering (pp. 598–603). Mubalaike, A. M., & Adali, E. (2018). Deep learning approach for intelligent financial fraud detection system. In UBMK 2018 3rd int. conf. on computer science and engineering (pp. 598–603).
go back to reference Nami, S., & Shajari, M. (2018). Cost-sensitive payment card fraud detection based on dynamic random forest and k-nearest neighbors. Expert Systems with Applications, 110, 381–392.CrossRef Nami, S., & Shajari, M. (2018). Cost-sensitive payment card fraud detection based on dynamic random forest and k-nearest neighbors. Expert Systems with Applications, 110, 381–392.CrossRef
go back to reference Ngai, E. W. T., Hu, Y., Wong, Y. H., Chen, Y., & Sun, X. (2011). The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decision Support Systems, 50(3), 559–569.CrossRef Ngai, E. W. T., Hu, Y., Wong, Y. H., Chen, Y., & Sun, X. (2011). The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decision Support Systems, 50(3), 559–569.CrossRef
go back to reference Onwubiko, C. (2020). Fraud matrix: a morphological and analysis-based classification and taxonomy of fraud. Computers & Security, 96, 101900.CrossRef Onwubiko, C. (2020). Fraud matrix: a morphological and analysis-based classification and taxonomy of fraud. Computers & Security, 96, 101900.CrossRef
go back to reference Pal, A., De, R., & Herath, T. (2020). The role of mobile payment technology in sustainable and human-centric development: evidence from the post-demonetization period in India. Information Systems Frontiers, 22(3), 607–631.CrossRef Pal, A., De, R., & Herath, T. (2020). The role of mobile payment technology in sustainable and human-centric development: evidence from the post-demonetization period in India. Information Systems Frontiers, 22(3), 607–631.CrossRef
go back to reference Pal, A., Herath, T., De, R., & Rao, H. R. (2021). Is the convenience worth the risk? An investigation of mobile payment usage. Information Systems Frontiers, 23(4), 941–961.CrossRef Pal, A., Herath, T., De, R., & Rao, H. R. (2021). Is the convenience worth the risk? An investigation of mobile payment usage. Information Systems Frontiers, 23(4), 941–961.CrossRef
go back to reference Pambudi, B. N., Hidayah, I., & Fauziati, S. (2019). Improving money laundering detection using optimized support vector machine. In 2019 2nd international seminar on research of information technology and intelligent systems, ISRITI 2019 (pp. 273–278). Pambudi, B. N., Hidayah, I., & Fauziati, S. (2019). Improving money laundering detection using optimized support vector machine. In 2019 2nd international seminar on research of information technology and intelligent systems, ISRITI 2019 (pp. 273–278).
go back to reference Papouskova, M., & Hajek, P. (2019). Two-stage consumer credit risk modelling using heterogeneous ensemble learning. Decision Support Systems, 118, 33–45.CrossRef Papouskova, M., & Hajek, P. (2019). Two-stage consumer credit risk modelling using heterogeneous ensemble learning. Decision Support Systems, 118, 33–45.CrossRef
go back to reference Pevny, T. (2016). Loda: Lightweight on-line detector of anomalies. Machine Learning, 102(2), 275–304.CrossRef Pevny, T. (2016). Loda: Lightweight on-line detector of anomalies. Machine Learning, 102(2), 275–304.CrossRef
go back to reference Ramaswamy, S., Rastogi, R., & Shim, K. (2000). Efficient algorithms for mining outliers from large data sets. In Proc. of the 2000 ACM SIGMOD int. conf. on management of data (pp. 427–438). Ramaswamy, S., Rastogi, R., & Shim, K. (2000). Efficient algorithms for mining outliers from large data sets. In Proc. of the 2000 ACM SIGMOD int. conf. on management of data (pp. 427–438).
go back to reference Reunanen, N., Räty, T., & Lintonen, T. (2020). Automatic optimization of outlier detection ensembles using a limited number of outlier examples. International Journal of Data Science and Analytics, 10, 377–394.CrossRef Reunanen, N., Räty, T., & Lintonen, T. (2020). Automatic optimization of outlier detection ensembles using a limited number of outlier examples. International Journal of Data Science and Analytics, 10, 377–394.CrossRef
go back to reference Rieke, R., Zhdanova, M., Repp, J., Giot, R., & Gaber, C. (2013). Fraud detection in mobile payments utilizing process behavior analysis. In 2013 int. conf. on availability, reliability and security, ARES 2013 (pp. 662–669). Rieke, R., Zhdanova, M., Repp, J., Giot, R., & Gaber, C. (2013). Fraud detection in mobile payments utilizing process behavior analysis. In 2013 int. conf. on availability, reliability and security, ARES 2013 (pp. 662–669).
go back to reference Sakurada, M., & Yairi, T. (2014). Anomaly detection using autoencoders with nonlinear dimensionality reduction. In Proc. of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis (pp. 4–11). Sakurada, M., & Yairi, T. (2014). Anomaly detection using autoencoders with nonlinear dimensionality reduction. In Proc. of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis (pp. 4–11).
go back to reference Schlör, D., Ring, M., Krause, A., & Hotho, A. (2021). Financial fraud detection with improved neural arithmetic logic units. Lecture Notes in Computer Science, 12591, 40–54.CrossRef Schlör, D., Ring, M., Krause, A., & Hotho, A. (2021). Financial fraud detection with improved neural arithmetic logic units. Lecture Notes in Computer Science, 12591, 40–54.CrossRef
go back to reference Schölkopf, B., Williamson, R., Smola, A., Shawe-Taylor, J., Platt, J., & Holloway, R. (2000). Support vector method for novelty detection. In Advances in neural information processing systems (pp. 582–588). MIT Press Schölkopf, B., Williamson, R., Smola, A., Shawe-Taylor, J., Platt, J., & Holloway, R. (2000). Support vector method for novelty detection. In Advances in neural information processing systems (pp. 582–588). MIT Press
go back to reference Seera, M., Lim, C. P., Kumar, A., Dhamotharan, L., & Tan, K. H. (2021). An intelligent payment card fraud detection system. Annals of Operations Research, 1–23. Seera, M., Lim, C. P., Kumar, A., Dhamotharan, L., & Tan, K. H. (2021). An intelligent payment card fraud detection system. Annals of Operations Research, 1–23.
go back to reference Sethia, A., Patel, R., & Raut, P. (2018). Data augmentation using generative models for credit card fraud detection. In 4th international conference on computing communication and automation (ICCCA) (pp. 1–6). IEEE Sethia, A., Patel, R., & Raut, P. (2018). Data augmentation using generative models for credit card fraud detection. In 4th international conference on computing communication and automation (ICCCA) (pp. 1–6). IEEE
go back to reference Shajalal, M., Hajek, P., & Abedin, M. Z. (2021). Product backorder prediction using deep neural network on imbalanced data. International Journal of Production Research, 1–18. Shajalal, M., Hajek, P., & Abedin, M. Z. (2021). Product backorder prediction using deep neural network on imbalanced data. International Journal of Production Research, 1–18.
go back to reference Turner, A., Mccombie, S., & Uhlmann, A. (2021). Follow the money: Revealing risky nodes in a Ransomware-Bitcoin network. In Proc. of the 54th Hawaii int. conf. on system sciences (pp. 1560–1572). Turner, A., Mccombie, S., & Uhlmann, A. (2021). Follow the money: Revealing risky nodes in a Ransomware-Bitcoin network. In Proc. of the 54th Hawaii int. conf. on system sciences (pp. 1560–1572).
go back to reference Vaughan, G. (2020). Efficient big data model selection with applications to fraud detection. International Journal of Forecasting, 36(3), 1116–1127.CrossRef Vaughan, G. (2020). Efficient big data model selection with applications to fraud detection. International Journal of Forecasting, 36(3), 1116–1127.CrossRef
go back to reference Verkijika, S. F. (2020). An affective response model for understanding the acceptance of mobile payment systems. Electronic Commerce Research and Applications, 39, 100905.CrossRef Verkijika, S. F. (2020). An affective response model for understanding the acceptance of mobile payment systems. Electronic Commerce Research and Applications, 39, 100905.CrossRef
go back to reference Wang, C., Deng, C., & Wang, S. (2020). Imbalance-XGBoost: leveraging weighted and focal losses for binary label-imbalanced classification with XGBoost. Pattern Recognition Letters, 136, 190–197.CrossRef Wang, C., Deng, C., & Wang, S. (2020). Imbalance-XGBoost: leveraging weighted and focal losses for binary label-imbalanced classification with XGBoost. Pattern Recognition Letters, 136, 190–197.CrossRef
go back to reference West, J., & Bhattacharya, M. (2016). Intelligent financial fraud detection: A comprehensive review. Computers & Security, 57, 47–66.CrossRef West, J., & Bhattacharya, M. (2016). Intelligent financial fraud detection: A comprehensive review. Computers & Security, 57, 47–66.CrossRef
go back to reference Wong, M. L., Seng, K., & Wong, P. K. (2020). Cost-sensitive ensemble of stacked denoising autoencoders for class imbalance problems in business domain. Expert Systems with Applications, 141, 112918.CrossRef Wong, M. L., Seng, K., & Wong, P. K. (2020). Cost-sensitive ensemble of stacked denoising autoencoders for class imbalance problems in business domain. Expert Systems with Applications, 141, 112918.CrossRef
go back to reference Xenopoulos, P. (2017). Introducing DeepBalance: Random deep belief network ensembles to address class imbalance. In 2017 IEEE Int. Conf. on Big Data, Big Data 2017 (pp. 3684–3689). Xenopoulos, P. (2017). Introducing DeepBalance: Random deep belief network ensembles to address class imbalance. In 2017 IEEE Int. Conf. on Big Data, Big Data 2017 (pp. 3684–3689).
go back to reference Yamanishi, K., Takeuchi, J. I., Williams, G., & Milne, P. (2004). On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms. Data Mining and Knowledge Discovery, 8(3), 275–300.CrossRef Yamanishi, K., Takeuchi, J. I., Williams, G., & Milne, P. (2004). On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms. Data Mining and Knowledge Discovery, 8(3), 275–300.CrossRef
go back to reference Ye, X., Dong, L. A., & Ma, D. (2018). Loan evaluation in P2P lending based on random forest optimized by genetic algorithm with profit score. Electronic Commerce Research and Applications, 32, 23–36.CrossRef Ye, X., Dong, L. A., & Ma, D. (2018). Loan evaluation in P2P lending based on random forest optimized by genetic algorithm with profit score. Electronic Commerce Research and Applications, 32, 23–36.CrossRef
go back to reference Zhao, Y., & Hryniewicki, M. K. (2018). XGBOD: Improving supervised outlier detection with unsupervised representation learning. In Proc. of the int. joint conf. on neural networks (pp. 1–8). Zhao, Y., & Hryniewicki, M. K. (2018). XGBOD: Improving supervised outlier detection with unsupervised representation learning. In Proc. of the int. joint conf. on neural networks (pp. 1–8).
go back to reference Zhao, Y., Nasrullah, Z., & Li, Z. (2019). PyOD: A Python toolbox for scalable outlier detection. Journal of Machine Learning Research, 20(96), 1–7. Zhao, Y., Nasrullah, Z., & Li, Z. (2019). PyOD: A Python toolbox for scalable outlier detection. Journal of Machine Learning Research, 20(96), 1–7.
go back to reference Zhou, H., Chai, H. F., & Qiu, M. L. (2018). Fraud detection within bankcard enrollment on mobile device based payment using machine learning. Frontiers of Information Technology and Electronic Engineering, 19(12), 1537–1545.CrossRef Zhou, H., Chai, H. F., & Qiu, M. L. (2018). Fraud detection within bankcard enrollment on mobile device based payment using machine learning. Frontiers of Information Technology and Electronic Engineering, 19(12), 1537–1545.CrossRef
Metadata
Title
Fraud Detection in Mobile Payment Systems using an XGBoost-based Framework
Authors
Petr Hajek
Mohammad Zoynul Abedin
Uthayasankar Sivarajah
Publication date
14-10-2022
Publisher
Springer US
Published in
Information Systems Frontiers / Issue 5/2023
Print ISSN: 1387-3326
Electronic ISSN: 1572-9419
DOI
https://doi.org/10.1007/s10796-022-10346-6

Other articles of this Issue 5/2023

Information Systems Frontiers 5/2023 Go to the issue

Premium Partner