Skip to main content
Top

2019 | OriginalPaper | Chapter

5. Frequency Estimation Methods for Smart Grid Systems

Authors : Engin Cemal Mengüç, Nurettin Acır

Published in: Smart Grids and Their Communication Systems

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Frequency is one of the most significant parameters in the smart grid systems. Thus, accurate frequency estimation becomes an essential task for monitoring, controlling and protecting a real-time smart grid system. In this chapter, we present an overview of the frequency estimation methods in the smart grid system with a focus on real-time adaptive estimation algorithms. Primarily, in Sects. 5.1 and 5.2, the importance of the frequency estimation in the smart grid systems and the challenges encountered in its real-time applications are introduced in detail. In Sect. 5.3, a three-phase power system is then formulated as a two-phase system in the complex domain by using the well-known Clarke’s transformation so as to be able to estimate the frequency of the smart grid system in the real time. For this purpose, the adaptive real-time frequency estimation algorithms are comparatively presented as strictly and widely linear algorithms in Sect. 5.4. The strictly linear algorithms yield optimal solutions only under balanced three-phase systems, whereas the widely linear algorithms give a better solution under both balanced and unbalanced conditions due to the fact that they take into account all statistical information of the system. Considering smart grid applications in real time, the mentioned properties of these algorithms under both balanced and unbalanced conditions are proven in Sect. 5.5.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference V. Choqueuse, E. Elbouchikhi, M. Benbouzid, Maximum likelihood frequency estimation in smart grid applications, in 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE), 2015, pp. 1339–1344 V. Choqueuse, E. Elbouchikhi, M. Benbouzid, Maximum likelihood frequency estimation in smart grid applications, in 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE), 2015, pp. 1339–1344
3.
go back to reference A. Kwasinski, A. Kwasinski, Signal processing in the electrification of vehicular transportation: techniques for electric and plug-in hybrid electric vehicles on the smart grid. IEEE Signal Process. Mag. 29(5), 14–23 (2012)CrossRef A. Kwasinski, A. Kwasinski, Signal processing in the electrification of vehicular transportation: techniques for electric and plug-in hybrid electric vehicles on the smart grid. IEEE Signal Process. Mag. 29(5), 14–23 (2012)CrossRef
4.
go back to reference C. Nguyen, K. Srinivasan, A new technique for rapid tracking of frequency deviations based on level crossings. IEEE Trans. Power Apparatus Syst. PAS 103(8), 2230–2236 (1984)CrossRef C. Nguyen, K. Srinivasan, A new technique for rapid tracking of frequency deviations based on level crossings. IEEE Trans. Power Apparatus Syst. PAS 103(8), 2230–2236 (1984)CrossRef
5.
go back to reference S.I. Jang, J.H. Choi, J.W. Kim, D.M. Choi, An adaptive relaying for the protection of a wind farm interconnected with distribution networks, in 2003 IEEE PES Transmission and Distribution Conference and Exposition (IEEE Cat. No.03CH37495), vol. 1, (2003) pp. 296–302 S.I. Jang, J.H. Choi, J.W. Kim, D.M. Choi, An adaptive relaying for the protection of a wind farm interconnected with distribution networks, in 2003 IEEE PES Transmission and Distribution Conference and Exposition (IEEE Cat. No.03CH37495), vol. 1, (2003) pp. 296–302
6.
go back to reference C.-S. Yu, A discrete Fourier transform-based adaptive mimic phasor estimator for distance relaying applications. IEEE Trans. Power Deliv. 21(4), 1836–1846 (2006)MathSciNetCrossRef C.-S. Yu, A discrete Fourier transform-based adaptive mimic phasor estimator for distance relaying applications. IEEE Trans. Power Deliv. 21(4), 1836–1846 (2006)MathSciNetCrossRef
7.
go back to reference A.A. Girgis, F.M. Ham, A quantitative study of pitfalls in the FFT. IEEE Trans. Aerosp. Electron. Syst. AES-16(4), 434–439 (1980)CrossRef A.A. Girgis, F.M. Ham, A quantitative study of pitfalls in the FFT. IEEE Trans. Aerosp. Electron. Syst. AES-16(4), 434–439 (1980)CrossRef
8.
go back to reference G.W. Chang, C.I. Chen, Y.J. Liu, M.C. Wu, Measuring power system harmonics and interharmonics by an improved fast Fourier transform-based algorithm. Transm. Distrib. IET Gener. 2(2), 193–201 (2008)CrossRef G.W. Chang, C.I. Chen, Y.J. Liu, M.C. Wu, Measuring power system harmonics and interharmonics by an improved fast Fourier transform-based algorithm. Transm. Distrib. IET Gener. 2(2), 193–201 (2008)CrossRef
9.
go back to reference H. Wen, S. Guo, Z. Teng, F. Li, Y. Yang, Frequency estimation of distorted and noisy signals in power systems by FFT-based approach. IEEE Trans. Power Syst. 29(2), 765–774 (2014)CrossRef H. Wen, S. Guo, Z. Teng, F. Li, Y. Yang, Frequency estimation of distorted and noisy signals in power systems by FFT-based approach. IEEE Trans. Power Syst. 29(2), 765–774 (2014)CrossRef
10.
go back to reference D.G. Lee, S.H. Kang, S.R. Nam, Modified dynamic phasor estimation algorithm for the transient signals of distributed generators. IEEE Trans. Smart Grid 4(1), 419–424 (2013)CrossRef D.G. Lee, S.H. Kang, S.R. Nam, Modified dynamic phasor estimation algorithm for the transient signals of distributed generators. IEEE Trans. Smart Grid 4(1), 419–424 (2013)CrossRef
11.
go back to reference E.A. Feilat, Detection of voltage envelope using Prony analysis-Hilbert transform method. IEEE Trans. Power Deliv. 21(4), 2091–2093 (2006)CrossRef E.A. Feilat, Detection of voltage envelope using Prony analysis-Hilbert transform method. IEEE Trans. Power Deliv. 21(4), 2091–2093 (2006)CrossRef
12.
go back to reference C.I. Chen, G.W. Chang, R.C. Hong, H.M. Li, Extended real model of Kalman Filter for time-varying harmonics estimation. IEEE Trans. Power Deliv. 25(1), 17–26 (2010)CrossRef C.I. Chen, G.W. Chang, R.C. Hong, H.M. Li, Extended real model of Kalman Filter for time-varying harmonics estimation. IEEE Trans. Power Deliv. 25(1), 17–26 (2010)CrossRef
13.
go back to reference Z.G. Zhang, S.C. Chan, K.M. Tsui, A recursive frequency estimator using linear prediction and a Kalman-filter-based iterative algorithm. IEEE Trans. Circuits Syst. II Express Briefs 55(6), 576–580 (2008)CrossRef Z.G. Zhang, S.C. Chan, K.M. Tsui, A recursive frequency estimator using linear prediction and a Kalman-filter-based iterative algorithm. IEEE Trans. Circuits Syst. II Express Briefs 55(6), 576–580 (2008)CrossRef
14.
go back to reference M.D. Kusljevic, J.J. Tomic, L.D. Jovanovic, Frequency estimation of three-phase power system using weighted-least-square algorithm and adaptive FIR filtering. IEEE Trans. Instrum. Meas. 59(2), 322–329 (2010)CrossRef M.D. Kusljevic, J.J. Tomic, L.D. Jovanovic, Frequency estimation of three-phase power system using weighted-least-square algorithm and adaptive FIR filtering. IEEE Trans. Instrum. Meas. 59(2), 322–329 (2010)CrossRef
15.
go back to reference C. Tao, D. Shanxu, L. Bangyin, A robust parametric method for power harmonic estimation based on M-Estimators,” in 2009 IEEE 6th International Power Electronics and Motion Control Conference, 2009, pp. 2501–2506 C. Tao, D. Shanxu, L. Bangyin, A robust parametric method for power harmonic estimation based on M-Estimators,” in 2009 IEEE 6th International Power Electronics and Motion Control Conference, 2009, pp. 2501–2506
16.
go back to reference G.W. Chang, C.I. Chen, An accurate time-domain procedure for harmonics and interharmonics detection. IEEE Trans. Power Deliv. 25(3), 1787–1795 (2010)CrossRef G.W. Chang, C.I. Chen, An accurate time-domain procedure for harmonics and interharmonics detection. IEEE Trans. Power Deliv. 25(3), 1787–1795 (2010)CrossRef
17.
go back to reference S.K. Jain, S.N. Singh, Exact model order ESPRIT technique for harmonics and interharmonics estimation. IEEE Trans. Instrum. Meas. 61(7), 1915–1923 (2012)CrossRef S.K. Jain, S.N. Singh, Exact model order ESPRIT technique for harmonics and interharmonics estimation. IEEE Trans. Instrum. Meas. 61(7), 1915–1923 (2012)CrossRef
18.
go back to reference J. Ren, M. Kezunovic, A hybrid method for power system frequency estimation. IEEE Trans. Power Deliv. 27(3), 1252–1259 (2012)CrossRef J. Ren, M. Kezunovic, A hybrid method for power system frequency estimation. IEEE Trans. Power Deliv. 27(3), 1252–1259 (2012)CrossRef
19.
go back to reference D. Dotta, J.H. Chow, Second harmonic filtering in phasor measurement estimation. IEEE Trans. Power Deliv. 28(2), 1240–1241 (2013)CrossRef D. Dotta, J.H. Chow, Second harmonic filtering in phasor measurement estimation. IEEE Trans. Power Deliv. 28(2), 1240–1241 (2013)CrossRef
20.
go back to reference P.J. Moore, J.H. Allmeling, A.T. Johns, Frequency relaying based on instantaneous frequency measurement. IEEE Trans. Power Deliv. 11(4), 1737–1742 (1996)CrossRef P.J. Moore, J.H. Allmeling, A.T. Johns, Frequency relaying based on instantaneous frequency measurement. IEEE Trans. Power Deliv. 11(4), 1737–1742 (1996)CrossRef
21.
go back to reference Y. Guo, M. Kezunovic, D. Chen, Simplified algorithms for removal of the effect of exponentially decaying DC-offset on the Fourier algorithm. IEEE Trans. Power Deliv. 18(3), 711–717 (2003)CrossRef Y. Guo, M. Kezunovic, D. Chen, Simplified algorithms for removal of the effect of exponentially decaying DC-offset on the Fourier algorithm. IEEE Trans. Power Deliv. 18(3), 711–717 (2003)CrossRef
22.
go back to reference V.L. Pham, K.P. Wong, Antidistortion method for wavelet transform filter banks and nonstationary power system waveform harmonic analysis. Transm. Distrib. IEE Proc. Gener. 148(2), 117–122 (2001)CrossRef V.L. Pham, K.P. Wong, Antidistortion method for wavelet transform filter banks and nonstationary power system waveform harmonic analysis. Transm. Distrib. IEE Proc. Gener. 148(2), 117–122 (2001)CrossRef
23.
go back to reference J. Ren, M. Kezunovic, Real-time power system frequency and phasors estimation using recursive wavelet transform. IEEE Trans. Power Deliv. 26(3), 1392–1402 (2011)CrossRef J. Ren, M. Kezunovic, Real-time power system frequency and phasors estimation using recursive wavelet transform. IEEE Trans. Power Deliv. 26(3), 1392–1402 (2011)CrossRef
24.
go back to reference M. Niedzwiecki, P. Kaczmarek, Tracking analysis of a generalized adaptive notch filter. IEEE Trans. Signal Process. 54(1), 304–314 (2006)CrossRef M. Niedzwiecki, P. Kaczmarek, Tracking analysis of a generalized adaptive notch filter. IEEE Trans. Signal Process. 54(1), 304–314 (2006)CrossRef
25.
go back to reference S.W. Sohn, Y.B. Lim, J.J. Yun, H. Choi, H.D. Bae, A filter bank and a self-tuning adaptive filter for the harmonic and interharmonic estimation in power signals. IEEE Trans. Instrum. Meas. 61(1), 64–73 (2012)CrossRef S.W. Sohn, Y.B. Lim, J.J. Yun, H. Choi, H.D. Bae, A filter bank and a self-tuning adaptive filter for the harmonic and interharmonic estimation in power signals. IEEE Trans. Instrum. Meas. 61(1), 64–73 (2012)CrossRef
26.
go back to reference I. Kamwa, S.R. Samantaray, G. Joos, Wide frequency range adaptive phasor and frequency PMU algorithms. IEEE Trans. Smart Grid 5(2), 569–579 (2014)CrossRef I. Kamwa, S.R. Samantaray, G. Joos, Wide frequency range adaptive phasor and frequency PMU algorithms. IEEE Trans. Smart Grid 5(2), 569–579 (2014)CrossRef
27.
go back to reference H. Mori, K. Itou, H. Uematsu, S. Tsuzuki, An artificial neural-net based method for predicting power system voltage harmonics. IEEE Trans. Power Deliv. 7(1), 402–409 (1992)CrossRef H. Mori, K. Itou, H. Uematsu, S. Tsuzuki, An artificial neural-net based method for predicting power system voltage harmonics. IEEE Trans. Power Deliv. 7(1), 402–409 (1992)CrossRef
28.
go back to reference P.K. Dash, D.P. Swain, A. Routray, A.C. Liew, Harmonic estimation in a power system using adaptive perceptrons. Transm. Distrib. IEE Proc. Gener. 143(6), 565–574 (1996)CrossRef P.K. Dash, D.P. Swain, A. Routray, A.C. Liew, Harmonic estimation in a power system using adaptive perceptrons. Transm. Distrib. IEE Proc. Gener. 143(6), 565–574 (1996)CrossRef
29.
go back to reference D.O. Abdeslam, P. Wira, J. Merckle, D. Flieller, Y.A. Chapuis, A unified artificial neural network architecture for active power filters. IEEE Trans. Industr. Electron. 54(1), 61–76 (2007)CrossRef D.O. Abdeslam, P. Wira, J. Merckle, D. Flieller, Y.A. Chapuis, A unified artificial neural network architecture for active power filters. IEEE Trans. Industr. Electron. 54(1), 61–76 (2007)CrossRef
30.
go back to reference B.K. Bose, Neural network applications in power electronics and motor drives–an introduction and perspective. IEEE Trans. Industr. Electron. 54(1), 14–33 (2007)CrossRef B.K. Bose, Neural network applications in power electronics and motor drives–an introduction and perspective. IEEE Trans. Industr. Electron. 54(1), 14–33 (2007)CrossRef
31.
go back to reference C.I. Chen, Virtual multifunction power quality analyzer based on adaptive linear neural network. IEEE Trans. Industr. Electron. 59(8), 3321–3329 (2012)CrossRef C.I. Chen, Virtual multifunction power quality analyzer based on adaptive linear neural network. IEEE Trans. Industr. Electron. 59(8), 3321–3329 (2012)CrossRef
32.
go back to reference G.W. Chang, C.I. Chen, Q.W. Liang, A two-stage ADALINE for harmonics and interharmonics measurement. IEEE Trans. Industr. Electron. 56(6), 2220–2228 (2009)CrossRef G.W. Chang, C.I. Chen, Q.W. Liang, A two-stage ADALINE for harmonics and interharmonics measurement. IEEE Trans. Industr. Electron. 56(6), 2220–2228 (2009)CrossRef
33.
go back to reference S.C. Tong, Y.M. Li, G. Feng, T.S. Li, Observer-based adaptive fuzzy backstepping dynamic surface control for a class of MIMO nonlinear systems. IEEE Trans. Syst. Man Cybern. Part B Cybern. 41(4), 1124–1135 (2011)CrossRef S.C. Tong, Y.M. Li, G. Feng, T.S. Li, Observer-based adaptive fuzzy backstepping dynamic surface control for a class of MIMO nonlinear systems. IEEE Trans. Syst. Man Cybern. Part B Cybern. 41(4), 1124–1135 (2011)CrossRef
34.
go back to reference S. Tong, Y. Li, P. Shi, Observer-based adaptive fuzzy backstepping output feedback control of uncertain MIMO pure-feedback nonlinear systems. IEEE Trans. Fuzzy Syst. 20(4), 771–785 (2012)CrossRef S. Tong, Y. Li, P. Shi, Observer-based adaptive fuzzy backstepping output feedback control of uncertain MIMO pure-feedback nonlinear systems. IEEE Trans. Fuzzy Syst. 20(4), 771–785 (2012)CrossRef
35.
go back to reference S. Tong, S. Sui, Y. Li, Fuzzy adaptive output feedback control of MIMO nonlinear systems with partial tracking errors constrained. IEEE Trans. Fuzzy Syst. 23(4), 729–742 (2015)CrossRef S. Tong, S. Sui, Y. Li, Fuzzy adaptive output feedback control of MIMO nonlinear systems with partial tracking errors constrained. IEEE Trans. Fuzzy Syst. 23(4), 729–742 (2015)CrossRef
36.
go back to reference W. Chen, L. Jiao, R. Li, J. Li, Adaptive backstepping fuzzy control for nonlinearly parameterized systems with periodic disturbances. IEEE Trans. Fuzzy Syst. 18(4), 674–685 (2010)CrossRef W. Chen, L. Jiao, R. Li, J. Li, Adaptive backstepping fuzzy control for nonlinearly parameterized systems with periodic disturbances. IEEE Trans. Fuzzy Syst. 18(4), 674–685 (2010)CrossRef
37.
go back to reference T.P. Zhang, H. Wen, Q. Zhu, Adaptive fuzzy control of nonlinear systems in pure feedback form based on input-to-state stability. IEEE Trans. Fuzzy Syst. 18(1), 80–93 (2010)CrossRef T.P. Zhang, H. Wen, Q. Zhu, Adaptive fuzzy control of nonlinear systems in pure feedback form based on input-to-state stability. IEEE Trans. Fuzzy Syst. 18(1), 80–93 (2010)CrossRef
38.
go back to reference S. Mitchell, K. Cohen, Fuzzy logic decision making for autonomous robotic applications, in 2014 IEEE 6th International Conference on Awareness Science and Technology (iCAST), 2014, pp. 1–6 S. Mitchell, K. Cohen, Fuzzy logic decision making for autonomous robotic applications, in 2014 IEEE 6th International Conference on Awareness Science and Technology (iCAST), 2014, pp. 1–6
39.
go back to reference C. Laopromsukon, K. Hongesombut, J. Rungrangpitayagon, Wide-area power system control using fuzzy logic based static synchronous series compensator, in 2014 International Electrical Engineering Congress (iEECON), 2014, pp. 1–4 C. Laopromsukon, K. Hongesombut, J. Rungrangpitayagon, Wide-area power system control using fuzzy logic based static synchronous series compensator, in 2014 International Electrical Engineering Congress (iEECON), 2014, pp. 1–4
40.
go back to reference R. Belaidi, A. Haddouche, H. Guendouz, Fuzzy logic controller based three-phase shunt active power filter for compensating harmonics and reactive power under unbalanced mains voltages. Energy Procedia 18(Supplement C), 560–570 (2012) R. Belaidi, A. Haddouche, H. Guendouz, Fuzzy logic controller based three-phase shunt active power filter for compensating harmonics and reactive power under unbalanced mains voltages. Energy Procedia 18(Supplement C), 560–570 (2012)
41.
go back to reference S. Nanda, P. K. Dash, T. Chakravorti, S. Hasan, A quadratic polynomial signal model and fuzzy adaptive filter for frequency and parameter estimation of nonstationary power signals. Measurement 87(Supplement C), 274–293 (2016) S. Nanda, P. K. Dash, T. Chakravorti, S. Hasan, A quadratic polynomial signal model and fuzzy adaptive filter for frequency and parameter estimation of nonstationary power signals. Measurement 87(Supplement C), 274–293 (2016)
42.
go back to reference C.J. Ramos, A.P. Martins, A.D.S. Carvalho, Power system frequency estimation using a least mean squares differentiator. Int. J. Electr. Power Energy Syst. 87(Supplement C), 166–175 (2017) C.J. Ramos, A.P. Martins, A.D.S. Carvalho, Power system frequency estimation using a least mean squares differentiator. Int. J. Electr. Power Energy Syst. 87(Supplement C), 166–175 (2017)
43.
go back to reference A.K. Pradhan, A. Routray, A. Basak, Power system frequency estimation using least mean square technique. IEEE Trans. Power Deliv. 20(3), 1812–1816 (2005)CrossRef A.K. Pradhan, A. Routray, A. Basak, Power system frequency estimation using least mean square technique. IEEE Trans. Power Deliv. 20(3), 1812–1816 (2005)CrossRef
44.
go back to reference A. Rastegarnia et al., Frequency Estimation of unbalanced three-phase power systems using the modified adaptive filtering. Am. J. Signal Process. 5(2A), 16–25 (2015) A. Rastegarnia et al., Frequency Estimation of unbalanced three-phase power systems using the modified adaptive filtering. Am. J. Signal Process. 5(2A), 16–25 (2015)
45.
go back to reference Y. Xia, D.P. Mandic, A widely linear least mean phase algorithm for adaptive frequency estimation of unbalanced power systems. Int. J. Electr. Power Energy Syst. 54(Supplement C), 367–375 (2014) Y. Xia, D.P. Mandic, A widely linear least mean phase algorithm for adaptive frequency estimation of unbalanced power systems. Int. J. Electr. Power Energy Syst. 54(Supplement C), 367–375 (2014)
46.
go back to reference Y. Xia, S.C. Douglas, D.P. Mandic, Adaptive frequency estimation in smart grid applications: exploiting noncircularity and widely linear adaptive estimators. IEEE Signal Process. Mag. 29(5), 44–54 (2012)CrossRef Y. Xia, S.C. Douglas, D.P. Mandic, Adaptive frequency estimation in smart grid applications: exploiting noncircularity and widely linear adaptive estimators. IEEE Signal Process. Mag. 29(5), 44–54 (2012)CrossRef
47.
go back to reference H.S. Song, K. Nam, Instantaneous phase-angle estimation algorithm under unbalanced voltage-sag conditions. IEE Proc. Gener. Transm. Distrib. 147(6), 409–415 (2000)CrossRef H.S. Song, K. Nam, Instantaneous phase-angle estimation algorithm under unbalanced voltage-sag conditions. IEE Proc. Gener. Transm. Distrib. 147(6), 409–415 (2000)CrossRef
48.
go back to reference M. Mojiri, D. Yazdani, A. Bakhshai, Robust adaptive frequency estimation of three-phase power system. IEEE Trans. Instrum. Meas. 59(7), 1793–1802 (2010)CrossRef M. Mojiri, D. Yazdani, A. Bakhshai, Robust adaptive frequency estimation of three-phase power system. IEEE Trans. Instrum. Meas. 59(7), 1793–1802 (2010)CrossRef
49.
go back to reference R. Arablouei, K. Doğançay, S. Werner, Adaptive frequency estimation of three-phase power systems. Signal Process. 109(Supplement C), 290–300 (2015) R. Arablouei, K. Doğançay, S. Werner, Adaptive frequency estimation of three-phase power systems. Signal Process. 109(Supplement C), 290–300 (2015)
50.
go back to reference Section 1304 Smart Grid RD & Highlights, USA Energy Independence and Security Act, 2007 Section 1304 Smart Grid RD & Highlights, USA Energy Independence and Security Act, 2007
51.
go back to reference S. Chakrabarti, E. Kyriakides, T. Bi, D. Cai, V. Terzija, Measurements get together. IEEE Power Energ. Mag. 7(1), 41–49 (2009)CrossRef S. Chakrabarti, E. Kyriakides, T. Bi, D. Cai, V. Terzija, Measurements get together. IEEE Power Energ. Mag. 7(1), 41–49 (2009)CrossRef
52.
go back to reference V. Eckhardt, P. Hippe, G. Hosemann, Dynamic measuring of frequency and frequency oscillations in multiphase power systems. IEEE Trans. Power Deliv. 4(1), 95–102 (1989)CrossRef V. Eckhardt, P. Hippe, G. Hosemann, Dynamic measuring of frequency and frequency oscillations in multiphase power systems. IEEE Trans. Power Deliv. 4(1), 95–102 (1989)CrossRef
53.
go back to reference M.H.J. Bollen, I.Y.H. Gu, S. Santoso, M.F. McGranaghan, P.A. Crossley, M.V. Ribeiro, P.F. Ribeiro, Bridging the gap between signal and power. IEEE Signal Process. Mag. 26(4), 11–31 (2009)CrossRef M.H.J. Bollen, I.Y.H. Gu, S. Santoso, M.F. McGranaghan, P.A. Crossley, M.V. Ribeiro, P.F. Ribeiro, Bridging the gap between signal and power. IEEE Signal Process. Mag. 26(4), 11–31 (2009)CrossRef
54.
go back to reference D.E. Bakken, A. Bose, C.H. Hauser, D.E. Whitehead, G.C. Zweigle, Smart generation and transmission with coherent, real-time data. Proc. IEEE 99(6), 928–951 (2011)CrossRef D.E. Bakken, A. Bose, C.H. Hauser, D.E. Whitehead, G.C. Zweigle, Smart generation and transmission with coherent, real-time data. Proc. IEEE 99(6), 928–951 (2011)CrossRef
55.
go back to reference E. Clarke, Circuit Analysis of A.C. Power Systems (Wiley, New York, 1943) E. Clarke, Circuit Analysis of A.C. Power Systems (Wiley, New York, 1943)
56.
go back to reference M. Akke, Frequency estimation by demodulation of two complex signals. IEEE Trans. Power Deliv. 12(1), 157–163 (1997)CrossRef M. Akke, Frequency estimation by demodulation of two complex signals. IEEE Trans. Power Deliv. 12(1), 157–163 (1997)CrossRef
57.
go back to reference D.P. Mandic, S.L. Goh, Complex Valued Nonlinear Adaptive Filters: Noncircularity, Widely Linear and Neural Models (Wiley, New York, 2009)CrossRef D.P. Mandic, S.L. Goh, Complex Valued Nonlinear Adaptive Filters: Noncircularity, Widely Linear and Neural Models (Wiley, New York, 2009)CrossRef
58.
go back to reference B. Picinbono, P. Chevalier, Widely linear estimation with complex data. IEEE Trans. Signal Process. 43(8), 2030–2033 (1995)CrossRef B. Picinbono, P. Chevalier, Widely linear estimation with complex data. IEEE Trans. Signal Process. 43(8), 2030–2033 (1995)CrossRef
59.
go back to reference P.J. Schreier, L.L. Scharf, Second-order analysis of improper complex random vectors and process. IEEE Trans. Signal Process. 51(3), 714–725 (2003)MathSciNetCrossRef P.J. Schreier, L.L. Scharf, Second-order analysis of improper complex random vectors and process. IEEE Trans. Signal Process. 51(3), 714–725 (2003)MathSciNetCrossRef
60.
go back to reference Y. Xia, S. Javidi, D.P. Mandic, A regularised normalised augmented complex least mean square algorithm, in 7th International Symposium on Wireless Communication System (ISWCS), 2010, pp. 355–359 Y. Xia, S. Javidi, D.P. Mandic, A regularised normalised augmented complex least mean square algorithm, in 7th International Symposium on Wireless Communication System (ISWCS), 2010, pp. 355–359
61.
go back to reference S. Javidi, M. Pedzisz, S.L. Goh, D. Mandic, The augmented complex least mean square algorithm with application to adaptive prediction problems, in Proceedings of 1st IARP Workshop Cognitive Inform. Processing, 2008, pp. 54–57 S. Javidi, M. Pedzisz, S.L. Goh, D. Mandic, The augmented complex least mean square algorithm with application to adaptive prediction problems, in Proceedings of 1st IARP Workshop Cognitive Inform. Processing, 2008, pp. 54–57
62.
go back to reference C.C. Took, D.P. Mandic, Adaptive IIR filtering of noncircular complex signals. IEEE Trans. Signal Process. 57(10), 4111–4118 (2009)MathSciNetCrossRef C.C. Took, D.P. Mandic, Adaptive IIR filtering of noncircular complex signals. IEEE Trans. Signal Process. 57(10), 4111–4118 (2009)MathSciNetCrossRef
63.
go back to reference Y. Xia, D.P. Mandic, Widely linear adaptive frequency estimation of unbalanced three-phase power systems. IEEE Trans. Instrum. Meas. 61(1), 74–83 (2012)CrossRef Y. Xia, D.P. Mandic, Widely linear adaptive frequency estimation of unbalanced three-phase power systems. IEEE Trans. Instrum. Meas. 61(1), 74–83 (2012)CrossRef
64.
go back to reference S.L. Goh, D.P. Mandic, An augmented CRTRL for complex valued recurrent neural networks. Neural Netw. 20(10), 1061–1066 (2007)CrossRef S.L. Goh, D.P. Mandic, An augmented CRTRL for complex valued recurrent neural networks. Neural Netw. 20(10), 1061–1066 (2007)CrossRef
65.
go back to reference D.P. Mandic, S. Javidi, S.L. Goh, A. Kuh, K. Aihara, Complex valued prediction of wind profile using augmented complex statistics. Renew. Energy 34(1), 196–210 (2009)CrossRef D.P. Mandic, S. Javidi, S.L. Goh, A. Kuh, K. Aihara, Complex valued prediction of wind profile using augmented complex statistics. Renew. Energy 34(1), 196–210 (2009)CrossRef
66.
go back to reference Y. Xia, C.C. Took, D.P. Mandic, An augmented affine projection algorithm for the filtering of noncircular complex signals. Sig. Process. 90, 1788–1799 (2010)CrossRef Y. Xia, C.C. Took, D.P. Mandic, An augmented affine projection algorithm for the filtering of noncircular complex signals. Sig. Process. 90, 1788–1799 (2010)CrossRef
67.
go back to reference B. Jelfs, D.P. Mandic, S.C. Douglas, An adaptive approach for the identification of improper complex signals. Sig. Process. 92, 335–344 (2012)CrossRef B. Jelfs, D.P. Mandic, S.C. Douglas, An adaptive approach for the identification of improper complex signals. Sig. Process. 92, 335–344 (2012)CrossRef
68.
go back to reference T. Adali, P.J. Schreier, L.L. Scharf, Complex-valued signal processing: the proper way to deal with impropriety. IEEE Trans. Signal Process. 59(11), 5101–5125 (2011)MathSciNetCrossRef T. Adali, P.J. Schreier, L.L. Scharf, Complex-valued signal processing: the proper way to deal with impropriety. IEEE Trans. Signal Process. 59(11), 5101–5125 (2011)MathSciNetCrossRef
69.
go back to reference P.J. Schreier, L.L. Scharf, Statistical Signal Processing of Complex—Valued Data: The Theory of Improper and Noncircular Signals (Cambridge Univ. Press, Cambridge, U.K., 2010)CrossRef P.J. Schreier, L.L. Scharf, Statistical Signal Processing of Complex—Valued Data: The Theory of Improper and Noncircular Signals (Cambridge Univ. Press, Cambridge, U.K., 2010)CrossRef
70.
go back to reference B. Widrow, M.E. Hoff, Adaptive switching circuits, in Proceedings of IRE WESCON Convention Record, 1960, pp. 96–104 B. Widrow, M.E. Hoff, Adaptive switching circuits, in Proceedings of IRE WESCON Convention Record, 1960, pp. 96–104
71.
go back to reference S. Haykin, Adaptive Filter Theory, 4th edn. (Prentice Hall, Upper Saddle River, NJ, 2002)MATH S. Haykin, Adaptive Filter Theory, 4th edn. (Prentice Hall, Upper Saddle River, NJ, 2002)MATH
72.
go back to reference B. Widrow, J. McCool, M. Ball, The complex LMS algorithm. Proc. IEEE 63(4), 719–720 (1975)CrossRef B. Widrow, J. McCool, M. Ball, The complex LMS algorithm. Proc. IEEE 63(4), 719–720 (1975)CrossRef
73.
go back to reference A. Tarighat, A.H. Sayed, Least mean-phase adaptive filters with application to communications systems. IEEE Signal Process. Lett. 11(2), 220–223 (2004)CrossRef A. Tarighat, A.H. Sayed, Least mean-phase adaptive filters with application to communications systems. IEEE Signal Process. Lett. 11(2), 220–223 (2004)CrossRef
74.
go back to reference T.K. Rawat, H. Parthasarathy, A continuous-time least mean-phase adaptive filter for power system frequency estimation. Int. J. Electr. Power Energy Syst. 31(2), 111–115 (2009)CrossRef T.K. Rawat, H. Parthasarathy, A continuous-time least mean-phase adaptive filter for power system frequency estimation. Int. J. Electr. Power Energy Syst. 31(2), 111–115 (2009)CrossRef
75.
go back to reference S.C. Douglas, Widely-linear recursive least-squares algorithm for adaptive beamforming, in 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, 2009, pp. 2041–2044 S.C. Douglas, Widely-linear recursive least-squares algorithm for adaptive beamforming, in 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, 2009, pp. 2041–2044
Metadata
Title
Frequency Estimation Methods for Smart Grid Systems
Authors
Engin Cemal Mengüç
Nurettin Acır
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-1768-2_5