Skip to main content
Top
Published in: Journal of Computational Neuroscience 2/2011

01-04-2011

Frequency switching in a two-compartmental model of the dopaminergic neuron

Authors: Joon Ha, Alexey Kuznetsov

Published in: Journal of Computational Neuroscience | Issue 2/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Mid-brain dopaminergic (DA) neurons display two functionally distinct modes of electrical activity: low- and high-frequency firing. The high-frequency firing is linked to important behavioral events in vivo. However, it cannot be elicited by standard manipulations in vitro. We had suggested a two-compartmental model of the DA cell that united data on firing frequencies under different experimental conditions. We now analyze dynamics of this model. The analysis was possible due to introduction of timescale separation among variables. We formulate the requirements for low and high frequencies. We found that the modulation of the SK current gating controls the frequency rise under applied depolarization. This provides a new mechanism that limits the frequency in the control conditions and allows high-frequency responses to depolarization if the SK current gating is downregulated. The mechanism is based on changing Ca2 +  balance and can also be achieved by direct modulation of the balance. Interestingly, such changes do not affect the high-frequency oscillations under NMDA. Therefore, altering Ca2 +  balance allows combining the high-frequency response to NMDA activation with the inability of other treatments to effectively elevate the frequency. We conclude that manipulations affecting Ca2 +  balance are most effective in controlling the frequency range. This modeling prediction gives a clue to the mechanism of the high-frequency firing in the DA neuron in vivo and in vitro.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Carlson, N. (1999). Foundations of physiological psychology (4th ed.). MA: Allyn and Bacon. Carlson, N. (1999). Foundations of physiological psychology (4th ed.). MA: Allyn and Bacon.
go back to reference Chan, C., Guzman, J., Ilijic, E., Mercer, J. R. C., Tkatch, T., Meredith, G., et al. (2007). ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature, 447(7148), 1081–1086.PubMedCrossRef Chan, C., Guzman, J., Ilijic, E., Mercer, J. R. C., Tkatch, T., Meredith, G., et al. (2007). ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature, 447(7148), 1081–1086.PubMedCrossRef
go back to reference Deister, C. A., Teagarden, M. A., Wilson, C. J., & Paladini, C. A. (2009). An intrinsic neural oscillator underlies dopaminergic neuron bursting. Journal of Neuroscience, 29(50), 15888–15897.PubMedCrossRef Deister, C. A., Teagarden, M. A., Wilson, C. J., & Paladini, C. A. (2009). An intrinsic neural oscillator underlies dopaminergic neuron bursting. Journal of Neuroscience, 29(50), 15888–15897.PubMedCrossRef
go back to reference Ji, H., Hougaard, C., Herrik, K., Straebek, D., Christophersen, P., & Shepard, P. D. (2009). Tuning the excitability of midbrain dopamine neurons by modulating the Ca2 +  sensitivity of sk channels. European Journal of Neuroscience, 29(9), 1883–1895.PubMedCrossRef Ji, H., Hougaard, C., Herrik, K., Straebek, D., Christophersen, P., & Shepard, P. D. (2009). Tuning the excitability of midbrain dopamine neurons by modulating the Ca2 +  sensitivity of sk channels. European Journal of Neuroscience, 29(9), 1883–1895.PubMedCrossRef
go back to reference Johnson, S., & Wu, Y. (2004). Multiple mechanisms underlie burst firing in rat midbrain dopamine neurons in vitro. Brain Research, 1019, 293–296.PubMedCrossRef Johnson, S., & Wu, Y. (2004). Multiple mechanisms underlie burst firing in rat midbrain dopamine neurons in vitro. Brain Research, 1019, 293–296.PubMedCrossRef
go back to reference Kang, Y., & Kitai, S. (1993). A whole cell patch-clamp study on the pacemaker potential in dopaminergic neurons of rat substantia nigra compacta. Neuroscience Research, 18, 209–221.PubMedCrossRef Kang, Y., & Kitai, S. (1993). A whole cell patch-clamp study on the pacemaker potential in dopaminergic neurons of rat substantia nigra compacta. Neuroscience Research, 18, 209–221.PubMedCrossRef
go back to reference Kuznetsov, A., Kopell, N., & Wilson, C. (2006). Transient high-frequency firing in a coupled-oscillator model of the mesencephalic dopaminergic neuron. Journal of Neurophysiology, 95, 932–937.PubMedCrossRef Kuznetsov, A., Kopell, N., & Wilson, C. (2006). Transient high-frequency firing in a coupled-oscillator model of the mesencephalic dopaminergic neuron. Journal of Neurophysiology, 95, 932–937.PubMedCrossRef
go back to reference Lobb, C. J., Wilson, C. J., & Paladini, C. A. (2010). A dynamic role for GABA receptors on the firing pattern of midbrain dopaminergic neurons. Journal of Neurophysiology. May 5, E-pub ahead of print. Lobb, C. J., Wilson, C. J., & Paladini, C. A. (2010). A dynamic role for GABA receptors on the firing pattern of midbrain dopaminergic neurons. Journal of Neurophysiology. May 5, E-pub ahead of print.
go back to reference Morikawa, H., Khodakhah, K., & Williams, J. (2003). Two intracellular pathways medicate metabotropic glutamate receptor-induced Ca2 +  mobilization in dopamine neurons. Journal of Neuroscience, 23, 149–157.PubMed Morikawa, H., Khodakhah, K., & Williams, J. (2003). Two intracellular pathways medicate metabotropic glutamate receptor-induced Ca2 +  mobilization in dopamine neurons. Journal of Neuroscience, 23, 149–157.PubMed
go back to reference Nedergaard, S., Flatman, J., & Engberg, I. (1993). Nifedipine- and omega-conotoxin-sensitive Ca2 +  conductances in guinea-pig substantia nigra pars compacta neurones. Journal of Physiology (London), 466, 727–747. Nedergaard, S., Flatman, J., & Engberg, I. (1993). Nifedipine- and omega-conotoxin-sensitive Ca2 +  conductances in guinea-pig substantia nigra pars compacta neurones. Journal of Physiology (London), 466, 727–747.
go back to reference Overton, P., & Clark, D. (1997). Burst firing in midbrain dopaminergic neurons. Brain Research Reviews, 25, 312–334.PubMedCrossRef Overton, P., & Clark, D. (1997). Burst firing in midbrain dopaminergic neurons. Brain Research Reviews, 25, 312–334.PubMedCrossRef
go back to reference Ping, H., & Shepard, P. (1996). Apamin-sensitive Ca2 + -activated k+ channels regulate pacemaker activity in nigral neurons. Neuroreport, 7, 809–814.PubMedCrossRef Ping, H., & Shepard, P. (1996). Apamin-sensitive Ca2 + -activated k+ channels regulate pacemaker activity in nigral neurons. Neuroreport, 7, 809–814.PubMedCrossRef
go back to reference Richards, C., Shiroyama, T., & Kitai, S. (1997). Electrophysiological and immunocytochemical characteristics of GABA and dopamine neurons in the substantia nigra of the rat. Neuroscience, 80, 545–557.PubMedCrossRef Richards, C., Shiroyama, T., & Kitai, S. (1997). Electrophysiological and immunocytochemical characteristics of GABA and dopamine neurons in the substantia nigra of the rat. Neuroscience, 80, 545–557.PubMedCrossRef
go back to reference Shepar, P., & Bunney, B. (1991). Repetitive firing properties of putative dopamine-containing neurons in vitro: Regulation by an apamin-sensitive Ca(2 +)-activated k+ conductance. Experimental Brain Research, 86, 141–150. Shepar, P., & Bunney, B. (1991). Repetitive firing properties of putative dopamine-containing neurons in vitro: Regulation by an apamin-sensitive Ca(2 +)-activated k+ conductance. Experimental Brain Research, 86, 141–150.
go back to reference Strange, P. (2001). Antipsychotic drugs: Importance of dopamine receptors for mechanisms of therapeutic actions and side effects. Pharmacological Review, 53, 119–133. Strange, P. (2001). Antipsychotic drugs: Importance of dopamine receptors for mechanisms of therapeutic actions and side effects. Pharmacological Review, 53, 119–133.
go back to reference Strogatz, S. (1997). Nonlinear dynamics and chaos (2nd ed.). MA: Addison-Wesley. Strogatz, S. (1997). Nonlinear dynamics and chaos (2nd ed.). MA: Addison-Wesley.
go back to reference Surmeier, D., Mercer, J., & Chan, C. (2005). Autonomous pacemakers in the basal ganglia: Who needs excitatory synapses anyway? Current Opinion in Neurobiology, 15, 312–318.PubMedCrossRef Surmeier, D., Mercer, J., & Chan, C. (2005). Autonomous pacemakers in the basal ganglia: Who needs excitatory synapses anyway? Current Opinion in Neurobiology, 15, 312–318.PubMedCrossRef
Metadata
Title
Frequency switching in a two-compartmental model of the dopaminergic neuron
Authors
Joon Ha
Alexey Kuznetsov
Publication date
01-04-2011
Publisher
Springer US
Published in
Journal of Computational Neuroscience / Issue 2/2011
Print ISSN: 0929-5313
Electronic ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-010-0251-6

Other articles of this Issue 2/2011

Journal of Computational Neuroscience 2/2011 Go to the issue

Premium Partner