Skip to main content
Top
Published in: Cryptography and Communications 6/2019

24-08-2019

Frobenius linear translators giving rise to new infinite classes of permutations and bent functions

Authors: N. Cepak, E. Pasalic, A. Muratović-Ribić

Published in: Cryptography and Communications | Issue 6/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We show the existence of many infinite classes of permutations over finite fields and bent functions by extending the notion of linear translators, introduced by Kyureghyan (J. Combin. Theory Ser. A 118(3), 1052–1061, 2011). We call these translators Frobenius translators since the derivatives of \(f:{\mathbb F}_{p^{n}} \rightarrow {\mathbb F}_{p^{k}}\), where n = rk, are of the form \(f(x+u\gamma )-f(x)=u^{p^{i}}b\), for a fixed \(b \in {\mathbb F}_{p^{k}}\) and all \(u \in {\mathbb F}_{p^{k}}\), rather than considering the standard case corresponding to i = 0. It turns out that Frobenius translators correspond to standard linear translators of an exponentiated version of f, namely to \(f^{p^{k-i}}\) with respect to \(b^{p^{k-i}}\). Nevertheless, this concept turns out to be useful for providing further explicit specification of a rather rare family {f} of quadratic polynomials (especially sparse ones) admitting linear translators. In this direction, we solve a few open problems in the recent article (Cepak et al., Finite Fields Appl. 45, 19–42, 2017) concerning the existence and an exact specification of f admitting classical linear translators. In addition, an open problem introduced in Hodžić et al. (2018), of finding a triple of bent functions f1,f2,f3 such that their sum f4 is bent and that the sum of their duals satisfies \(f_{1}^{*}+f_{2}^{*}+f_{3}^{*}+f_{4}^{*}=1\), is also resolved. We also specify two huge families of permutations over \({\mathbb F}_{p^{n}}\) related to the condition that \(G(y)=-L(y)+(y+\delta )^{s}-(y+\delta )^{p^{k}s}\) permutes the set \({\mathcal S}=\{\beta \in {\mathbb F}_{p^{n}}: T{r_{k}^{n}}(\beta )=0\}\), where n = 2k and p > 2. Finally, we give some generalizations of constructions of bent functions in Mesnager et al. (2017) and describe some new bent families using the permutations found in Cepak et al. (Finite Fields Appl. 45, 19–42, 2017).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
The authors would like to thank the anonymous reviewer for pointing out the alternative definition that shortens some of the proofs in the article.
 
Literature
1.
go back to reference Akbary, A., Ghioca, D., Wang, Q.: On constructing permutations of finite fields. Finite Fields Appl. 17(1), 51–67 (2011)MathSciNetCrossRef Akbary, A., Ghioca, D., Wang, Q.: On constructing permutations of finite fields. Finite Fields Appl. 17(1), 51–67 (2011)MathSciNetCrossRef
2.
go back to reference Carlet, C.: Boolean functions for cryptography and error correcting codes. In: Crama, Y., Hammer, P. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering (Encyclopedia of Mathematics and its Applications), pp 257–397. Cambridge University Press, Cambridge (2010) Carlet, C.: Boolean functions for cryptography and error correcting codes. In: Crama, Y., Hammer, P. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering (Encyclopedia of Mathematics and its Applications), pp 257–397. Cambridge University Press, Cambridge (2010)
3.
4.
5.
go back to reference Charpin, P., Kyureghyan, G.: When does G(x) + γ, Tr(H(x)) permute \({\mathbb F}_{2^{n}}\)?. Finite Fields Appl. 15(5), 615–632 (2009)MathSciNetCrossRef Charpin, P., Kyureghyan, G.: When does G(x) + γ, Tr(H(x)) permute \({\mathbb F}_{2^{n}}\)?. Finite Fields Appl. 15(5), 615–632 (2009)MathSciNetCrossRef
6.
go back to reference Charpin, P., Kyureghyan, G.M., Suder, V.: Sparse permutations with low differential uniformity. Finite Fields Appl. 28, 214–243 (2014)MathSciNetCrossRef Charpin, P., Kyureghyan, G.M., Suder, V.: Sparse permutations with low differential uniformity. Finite Fields Appl. 28, 214–243 (2014)MathSciNetCrossRef
7.
go back to reference Dillon, J.F.: Elementary Hadamard Difference Sets. PhD thesis, University of Maryland (1974)MATH Dillon, J.F.: Elementary Hadamard Difference Sets. PhD thesis, University of Maryland (1974)MATH
9.
go back to reference Hou, X.D.: Permutation polynomials over finite fields - a survey of recent advances. Finite Fields Appl. 32, 82–119 (2015)MathSciNetCrossRef Hou, X.D.: Permutation polynomials over finite fields - a survey of recent advances. Finite Fields Appl. 32, 82–119 (2015)MathSciNetCrossRef
10.
go back to reference Kyureghyan, G.M.: Constructing permutations of finite fields via linear translators. J. Combin. Theory Ser. A 118(3), 1052–1061 (2011)MathSciNetCrossRef Kyureghyan, G.M.: Constructing permutations of finite fields via linear translators. J. Combin. Theory Ser. A 118(3), 1052–1061 (2011)MathSciNetCrossRef
11.
go back to reference Mesnager, S.: Several new infinite families of bent functions and their duals. IEEE Trans. Inf. Theory 60(7), 4397–4407 (2014)MathSciNetCrossRef Mesnager, S.: Several new infinite families of bent functions and their duals. IEEE Trans. Inf. Theory 60(7), 4397–4407 (2014)MathSciNetCrossRef
12.
go back to reference Mesnager, S., Ongan, P., Özbudak, F.: New bent functions from permutations and linear translators, C2SI 2017: Codes, Cryptology and Information Security, pp. 282–297 (2017)CrossRef Mesnager, S., Ongan, P., Özbudak, F.: New bent functions from permutations and linear translators, C2SI 2017: Codes, Cryptology and Information Security, pp. 282–297 (2017)CrossRef
13.
go back to reference Mesnager, S., Ongan, P., Özbudak, F.: Further constructions of infinite families of bent functions from new permutations and their duals. Cryptogr. Commun. 8(2), 229–246 (2016)MathSciNetCrossRef Mesnager, S., Ongan, P., Özbudak, F.: Further constructions of infinite families of bent functions from new permutations and their duals. Cryptogr. Commun. 8(2), 229–246 (2016)MathSciNetCrossRef
14.
go back to reference Mullen, G.L., Panario, D.: Chapter 8: Permutation polynomials, Handbook of Finite Fields. Chapman and Hall/CRC (2013) Mullen, G.L., Panario, D.: Chapter 8: Permutation polynomials, Handbook of Finite Fields. Chapman and Hall/CRC (2013)
15.
go back to reference Tang, C., Zhou, Z., Qi, Y., Zhang, X., Fang, C., Helleseth, T.: Generic construction of bent functions and bent idempotents with any possible algebraic degree. IEEE Trans. Inf. Theory 63(10), 6149–6157 (2017)MathSciNetCrossRef Tang, C., Zhou, Z., Qi, Y., Zhang, X., Fang, C., Helleseth, T.: Generic construction of bent functions and bent idempotents with any possible algebraic degree. IEEE Trans. Inf. Theory 63(10), 6149–6157 (2017)MathSciNetCrossRef
16.
go back to reference Tu, Z., Zeng, X., Hu, L.: Several classes of complete permutation polynomials. Finite Fields Appl. 25, 182–193 (2014)MathSciNetCrossRef Tu, Z., Zeng, X., Hu, L.: Several classes of complete permutation polynomials. Finite Fields Appl. 25, 182–193 (2014)MathSciNetCrossRef
17.
go back to reference Tu, Z., Zeng, X., Jiang, Y.: Two classes of permutation polynomials having the form \((x^{2^{m}}+x+{\delta })^{s}+x\). Finite Fields Appl. 31, 12–24 (2015)MathSciNetCrossRef Tu, Z., Zeng, X., Jiang, Y.: Two classes of permutation polynomials having the form \((x^{2^{m}}+x+{\delta })^{s}+x\). Finite Fields Appl. 31, 12–24 (2015)MathSciNetCrossRef
18.
go back to reference Tu, Z., Zeng, X., Li, C., Helleseth, T.: Permutation polynomials of the form \((x^{p^{m}}-x+{\delta })^{s}+L(x)\) over the finite field \({\mathbb F}_{p^{2m}}\) of odd characteristic. Finite Fields Appl. 34, 20–35 (2015)MathSciNetCrossRef Tu, Z., Zeng, X., Li, C., Helleseth, T.: Permutation polynomials of the form \((x^{p^{m}}-x+{\delta })^{s}+L(x)\) over the finite field \({\mathbb F}_{p^{2m}}\) of odd characteristic. Finite Fields Appl. 34, 20–35 (2015)MathSciNetCrossRef
19.
go back to reference Yuan, J., Ding, C.: Further results on permutation polynomials over finite fields. Finite Fields Appl. 27, 88–103 (2014)MathSciNetCrossRef Yuan, J., Ding, C.: Further results on permutation polynomials over finite fields. Finite Fields Appl. 27, 88–103 (2014)MathSciNetCrossRef
20.
go back to reference Zhang, F., Pasalic, E., Wei, Y., Cepak, N.: Constructing bent functions outside the Maiorana–McFarland class using a general form of Rothaus. IEEE Trans. Inf. Theory 63(8), 5336–5349 (2017)MathSciNetCrossRef Zhang, F., Pasalic, E., Wei, Y., Cepak, N.: Constructing bent functions outside the Maiorana–McFarland class using a general form of Rothaus. IEEE Trans. Inf. Theory 63(8), 5336–5349 (2017)MathSciNetCrossRef
Metadata
Title
Frobenius linear translators giving rise to new infinite classes of permutations and bent functions
Authors
N. Cepak
E. Pasalic
A. Muratović-Ribić
Publication date
24-08-2019
Publisher
Springer US
Published in
Cryptography and Communications / Issue 6/2019
Print ISSN: 1936-2447
Electronic ISSN: 1936-2455
DOI
https://doi.org/10.1007/s12095-019-00395-1

Other articles of this Issue 6/2019

Cryptography and Communications 6/2019 Go to the issue

Premium Partner