Skip to main content
Top
Published in: Designs, Codes and Cryptography 3/2022

25-01-2022

From primary to dual affine variety codes over the Klein quartic

Author: Olav Geil

Published in: Designs, Codes and Cryptography | Issue 3/2022

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In Geil and Özbudak (Cryptogr Commun 11(2):237–257, 2019) a novel method was established to estimate the minimum distance of primary affine variety codes and a thorough treatment of the Klein quartic led to the discovery of a family of primary codes with good parameters, the duals of which were originally treated in Kolluru et al (Appl Algebra Eng Commun Comput 10(6):433-464, 2000)[Ex. 3.2, Ex. 4.1]. In the present work we translate the method from Geil and Özbudak (Cryptogr Commun 11(2):237–257, 2019) into a method for also dealing with dual codes and we demonstrate that for the considered family of dual affine variety codes from the Klein quartic our method produces much more accurate information than what was found in Kolluru et al (Appl Algebra Eng Commun Comput 10(6):433-464, 2000). Combining then our knowledge on both primary and dual codes we determine asymmetric quantum codes with desirable parameters.
Footnotes
1
We remark that in cases where for a given index i there exists an \(s \in {\mathbb {F}}_q\) such that for no \(P_j\) the ith coordinate is s we may leave out this value in the ith product of (6) simplifying the calculations.
 
Literature
1.
go back to reference Aly S.A., Klappenecker A., Sarvepalli P.K.: Remarkable degenerate quantum stabilizer codes derived from duadic codes. In: 2006 IEEE International Symposium on Information Theory, pp. 1105–1108 (2006). Aly S.A., Klappenecker A., Sarvepalli P.K.: Remarkable degenerate quantum stabilizer codes derived from duadic codes. In: 2006 IEEE International Symposium on Information Theory, pp. 1105–1108 (2006).
2.
3.
go back to reference Beelen P., Datta M.: Generalized Hamming weights of affine Cartesian codes. Finite Fields Appl. 51, 130–145 (2018).MathSciNetCrossRef Beelen P., Datta M.: Generalized Hamming weights of affine Cartesian codes. Finite Fields Appl. 51, 130–145 (2018).MathSciNetCrossRef
4.
go back to reference Carvalho C., Chara M., Quoos L.: On evaluation codes coming from a tower of function fields. J. Symbolic Comput. 89, 121–128 (2018).MathSciNetCrossRef Carvalho C., Chara M., Quoos L.: On evaluation codes coming from a tower of function fields. J. Symbolic Comput. 89, 121–128 (2018).MathSciNetCrossRef
5.
go back to reference Cox D.A., Little J., O’Shea D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, vol. 10. Springer, New York (1997).CrossRef Cox D.A., Little J., O’Shea D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, vol. 10. Springer, New York (1997).CrossRef
6.
go back to reference Duursma I.M., Kirov R.: An extension of the order bound for AG codes. In: Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes. Lecture Notes in Comput. Sci., vol. 5527, pp. 11–22. Springer, Berlin (2009). Duursma I.M., Kirov R.: An extension of the order bound for AG codes. In: Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes. Lecture Notes in Comput. Sci., vol. 5527, pp. 11–22. Springer, Berlin (2009).
7.
go back to reference Duursma I.M., Kirov R., Park S.: Distance bounds for algebraic geometric codes. J. Pure Appl. Algebra 215(8), 1863–1878 (2011).MathSciNetCrossRef Duursma I.M., Kirov R., Park S.: Distance bounds for algebraic geometric codes. J. Pure Appl. Algebra 215(8), 1863–1878 (2011).MathSciNetCrossRef
8.
10.
go back to reference Ezerman M.F., Jitman S., Solé P.: Xing-Ling codes, duals of their subcodes, and good asymmetric quantum codes. Des. Codes Cryptogr. 75(1), 21–42 (2015).MathSciNetCrossRef Ezerman M.F., Jitman S., Solé P.: Xing-Ling codes, duals of their subcodes, and good asymmetric quantum codes. Des. Codes Cryptogr. 75(1), 21–42 (2015).MathSciNetCrossRef
11.
go back to reference Feng G.L., Rao T.R.N.: Decoding algebraic-geometric codes up to the designed minimum distance. IEEE Trans. Inf. Theory 39(1), 37–45 (1993).MathSciNetCrossRef Feng G.L., Rao T.R.N.: Decoding algebraic-geometric codes up to the designed minimum distance. IEEE Trans. Inf. Theory 39(1), 37–45 (1993).MathSciNetCrossRef
12.
go back to reference Feng G.L., Rao T.R.N.: A simple approach for construction of algebraic-geometric codes from affine plane curves. IEEE Trans. Inf. Theory 40(4), 1003–1012 (1994).MathSciNetCrossRef Feng G.L., Rao T.R.N.: A simple approach for construction of algebraic-geometric codes from affine plane curves. IEEE Trans. Inf. Theory 40(4), 1003–1012 (1994).MathSciNetCrossRef
13.
go back to reference Feng G.L., Rao T.R.N.: Improved geometric Goppa codes part I: basic theory. IEEE Trans. Inf. Theory 41(6), 1678–1693 (1995).CrossRef Feng G.L., Rao T.R.N.: Improved geometric Goppa codes part I: basic theory. IEEE Trans. Inf. Theory 41(6), 1678–1693 (1995).CrossRef
14.
go back to reference Fitzgerald J., Lax R.F.: Decoding affine variety codes using Gröbner bases. Des. Codes Cryptogr. 13(2), 147–158 (1998).MathSciNetCrossRef Fitzgerald J., Lax R.F.: Decoding affine variety codes using Gröbner bases. Des. Codes Cryptogr. 13(2), 147–158 (1998).MathSciNetCrossRef
15.
go back to reference García-Marco I., Márquez-Corbella I., Ruano D.: High dimensional affine codes whose square has a designed minimum distance. Des. Codes Cryptogr. 88(8), 1653–1672 (2020).MathSciNetCrossRef García-Marco I., Márquez-Corbella I., Ruano D.: High dimensional affine codes whose square has a designed minimum distance. Des. Codes Cryptogr. 88(8), 1653–1672 (2020).MathSciNetCrossRef
16.
go back to reference Geil O.: Evaluation codes from an affine variety code perspective. In: Advances in Algebraic Geometry Codes, Ser. Coding Theory Cryptol., vol. 5, pp. 153–180. World Sci. Publ., Hackensack (2008). Geil O.: Evaluation codes from an affine variety code perspective. In: Advances in Algebraic Geometry Codes, Ser. Coding Theory Cryptol., vol. 5, pp. 153–180. World Sci. Publ., Hackensack (2008).
17.
go back to reference Geil O., Martin S.: Further improvements on the Feng-Rao bound for dual codes. Finite Fields Appl. 30, 33–48 (2014).MathSciNetCrossRef Geil O., Martin S.: Further improvements on the Feng-Rao bound for dual codes. Finite Fields Appl. 30, 33–48 (2014).MathSciNetCrossRef
18.
go back to reference Geil O., Martin S.: An improvement of the Feng-Rao bound for primary codes. Des. Codes Cryptogr. 76(1), 49–79 (2015).MathSciNetCrossRef Geil O., Martin S.: An improvement of the Feng-Rao bound for primary codes. Des. Codes Cryptogr. 76(1), 49–79 (2015).MathSciNetCrossRef
19.
20.
22.
go back to reference Grassl M., Lu S., Zeng B.: Codes for simultaneous transmission of quantum and classical information. In: 2017 IEEE International Symposium on Information Theory (ISIT), pp. 1718–1722 (2017). Grassl M., Lu S., Zeng B.: Codes for simultaneous transmission of quantum and classical information. In: 2017 IEEE International Symposium on Information Theory (ISIT), pp. 1718–1722 (2017).
23.
go back to reference Høholdt T.: On (or in) Dick Blahut’s’ footprint’. Codes, Curves and Signals, pp. 3–9 (1998). Høholdt T.: On (or in) Dick Blahut’s’ footprint’. Codes, Curves and Signals, pp. 3–9 (1998).
24.
go back to reference Høholdt T., van Lint J.H., Pellikaan R.: Algebraic geometry codes. In: Pless V.S., Huffman W.C. (eds.) Handbook of Coding Theory, vol. 1, pp. 871–961. Elsevier, Amsterdam (1998). Høholdt T., van Lint J.H., Pellikaan R.: Algebraic geometry codes. In: Pless V.S., Huffman W.C. (eds.) Handbook of Coding Theory, vol. 1, pp. 871–961. Elsevier, Amsterdam (1998).
26.
go back to reference Kolluru M.S., Feng G.L., Rao T.R.N.: Construction of improved geometric Goppa codes om Klein curves and Klein-like curves. Appl. Algebra Eng. Commun. Comput. 10(6), 433–464 (2000).CrossRef Kolluru M.S., Feng G.L., Rao T.R.N.: Construction of improved geometric Goppa codes om Klein curves and Klein-like curves. Appl. Algebra Eng. Commun. Comput. 10(6), 433–464 (2000).CrossRef
27.
go back to reference López H.H., Soprunov I., Villarreal R.H.: The dual of an evaluation code. Des. Codes Cryptogr. 89(7), 1367–1403 (2021).MathSciNetCrossRef López H.H., Soprunov I., Villarreal R.H.: The dual of an evaluation code. Des. Codes Cryptogr. 89(7), 1367–1403 (2021).MathSciNetCrossRef
28.
go back to reference Matsumoto R.: Two Gilbert-Varshamov-type existential bounds for asymmetric quantum error-correcting codes. Quantum Inf. Process. 16(12), 285 (2017).MathSciNetCrossRef Matsumoto R.: Two Gilbert-Varshamov-type existential bounds for asymmetric quantum error-correcting codes. Quantum Inf. Process. 16(12), 285 (2017).MathSciNetCrossRef
29.
go back to reference Matsumoto R., Miura S.: On the Feng-Rao bound for the \({\cal{L}}\)-construction of algebraic geometry codes. IEICE Trans. Fundam. 5, 926–930 (2000) E83-A. Matsumoto R., Miura S.: On the Feng-Rao bound for the \({\cal{L}}\)-construction of algebraic geometry codes. IEICE Trans. Fundam. 5, 926–930 (2000) E83-A.
30.
go back to reference Miura S.: Linear codes on affine algebraic curves. Trans. IEICE 10, 1398–1421 (1998) J81-A. Miura S.: Linear codes on affine algebraic curves. Trans. IEICE 10, 1398–1421 (1998) J81-A.
31.
go back to reference Patanker N., Singh S.K.: Affine variety codes over a hyperelliptic curve. Probl. Inf. Transm. 57, 84–97 (2021).CrossRef Patanker N., Singh S.K.: Affine variety codes over a hyperelliptic curve. Probl. Inf. Transm. 57, 84–97 (2021).CrossRef
32.
go back to reference Pellikaan R.: On the efficient decoding of algebraic-geometric codes. In: Eurocode ’92 (Udine, 1992), CISM Courses and Lect., vol. 339, pp. 231–253. Springer, Vienna (1993). Pellikaan R.: On the efficient decoding of algebraic-geometric codes. In: Eurocode ’92 (Udine, 1992), CISM Courses and Lect., vol. 339, pp. 231–253. Springer, Vienna (1993).
33.
go back to reference Salazar G., Dunn D., Graham S.B.: An improvement of the Feng-Rao bound on minimum distance. Finite Fields Appl. 12, 313–335 (2006).MathSciNetCrossRef Salazar G., Dunn D., Graham S.B.: An improvement of the Feng-Rao bound on minimum distance. Finite Fields Appl. 12, 313–335 (2006).MathSciNetCrossRef
34.
go back to reference Sarvepalli P.K., Klappenecker A., Rötteler M.: Asymmetric quantum codes: constructions, bounds and performance. In: Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci., vol. 465, pp. 1645–1672. The Royal Society (2009). Sarvepalli P.K., Klappenecker A., Rötteler M.: Asymmetric quantum codes: constructions, bounds and performance. In: Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci., vol. 465, pp. 1645–1672. The Royal Society (2009).
Metadata
Title
From primary to dual affine variety codes over the Klein quartic
Author
Olav Geil
Publication date
25-01-2022
Publisher
Springer US
Published in
Designs, Codes and Cryptography / Issue 3/2022
Print ISSN: 0925-1022
Electronic ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-021-00990-5

Other articles of this Issue 3/2022

Designs, Codes and Cryptography 3/2022 Go to the issue

Premium Partner