Skip to main content
Top

2016 | OriginalPaper | Chapter

38. Fuel Cells with Biofuels

Authors : Yusuke Shiratori, Quang-Tuyen Tran

Published in: Hydrogen Energy Engineering

Publisher: Springer Japan

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This describes fuel cell-based power generation using biofuels. After giving an overview of biofuels which are available, such as biogas, bioethanol, and biodiesel oil, hydrogen production and power generation with solid oxide fuel cells are explained based on cell performance data. Technological issues such as carbon deposition and impurity poisoning are discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Divya D, Gopinath LR, Christy PM (2015) A review on current aspects and diverse prospects for enhancing biogas production in sustainble means. Renew Sustain Energy Rev 42:690–699CrossRef Divya D, Gopinath LR, Christy PM (2015) A review on current aspects and diverse prospects for enhancing biogas production in sustainble means. Renew Sustain Energy Rev 42:690–699CrossRef
2.
go back to reference Alves HJ (2013) Overview of hydrogen production technologies from biogas and the applications in fuel cells. Int J Hydrogen Energy 38:5215–5225CrossRef Alves HJ (2013) Overview of hydrogen production technologies from biogas and the applications in fuel cells. Int J Hydrogen Energy 38:5215–5225CrossRef
3.
go back to reference Magomnang AASM, Villanueva EP (2014) Removal of hydrogen sulfide from biogas using dry desulfurization systems. In: Proceedings of international conference on agricultural, environmental and biological sciences, Phuket, Thailand, pp 65–68 Magomnang AASM, Villanueva EP (2014) Removal of hydrogen sulfide from biogas using dry desulfurization systems. In: Proceedings of international conference on agricultural, environmental and biological sciences, Phuket, Thailand, pp 65–68
4.
go back to reference Wyman CE (1996) Handbook of bioethanol. Taylor & Francis, London, pp 4–5 Wyman CE (1996) Handbook of bioethanol. Taylor & Francis, London, pp 4–5
5.
go back to reference Nahar G, Dupont V (2012) Hydrogen via steam reforming of liquid biofeedstock. Biofuels 3:167–191CrossRef Nahar G, Dupont V (2012) Hydrogen via steam reforming of liquid biofeedstock. Biofuels 3:167–191CrossRef
6.
go back to reference Leung DYC, Wu X, Leung MKH (2010) A review recent advancement in catalytic materials for biodiesel production. Appl Energy 87:1083–1095CrossRef Leung DYC, Wu X, Leung MKH (2010) A review recent advancement in catalytic materials for biodiesel production. Appl Energy 87:1083–1095CrossRef
7.
go back to reference Karmakar A, Karmakar S, Mukherjee S (2010) Properties of various plants and animals feedstocks for biodiesel production. Bioresour Technol 101:7201–7210CrossRef Karmakar A, Karmakar S, Mukherjee S (2010) Properties of various plants and animals feedstocks for biodiesel production. Bioresour Technol 101:7201–7210CrossRef
8.
go back to reference Nahar GA (2010) Hydrogen rich gas production by the autothermal reforming of biodiesel (FAME) for utilization in the solid-oxide fuel cells: a thermodynamic analysis. Int J Hydrogen Energy 35:8891–8911CrossRef Nahar GA (2010) Hydrogen rich gas production by the autothermal reforming of biodiesel (FAME) for utilization in the solid-oxide fuel cells: a thermodynamic analysis. Int J Hydrogen Energy 35:8891–8911CrossRef
9.
go back to reference Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M (2012) Review of biodiesel composition, properties, and specifications. Renew Sustain Energy Rev 16:143–169CrossRef Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M (2012) Review of biodiesel composition, properties, and specifications. Renew Sustain Energy Rev 16:143–169CrossRef
10.
go back to reference Miyachi K, Miyagawa M, Katagiri M, Kanda N, Norinaga K (2010) Identification of tar chemical species obtained from pyrolysis of grass biomass. Mitsui Zosen Tech Rev 199:47–53 Miyachi K, Miyagawa M, Katagiri M, Kanda N, Norinaga K (2010) Identification of tar chemical species obtained from pyrolysis of grass biomass. Mitsui Zosen Tech Rev 199:47–53
11.
go back to reference Effendi A, Hellgardt K, Zhang Z-G, Yoshida T (2005) Optimising H2 production from model biogas via combined steam reforming and CO shift reactions. Fuel 84:869–874CrossRef Effendi A, Hellgardt K, Zhang Z-G, Yoshida T (2005) Optimising H2 production from model biogas via combined steam reforming and CO shift reactions. Fuel 84:869–874CrossRef
12.
go back to reference Muradov N, Smith F (2008) Thermocatalytic conversion of landfill gas and biogas to fuels. Energy Fuels 22:2053–2060CrossRef Muradov N, Smith F (2008) Thermocatalytic conversion of landfill gas and biogas to fuels. Energy Fuels 22:2053–2060CrossRef
13.
go back to reference Zhang B, Tang X, Li Y, Cai Y, Xu Y, Shen W (2006) Steam reforming of bio-ethanol for the production of hydrogen over ceria-supported Co, Ir and Ni catalysts. Catal Commun 7:367–372CrossRef Zhang B, Tang X, Li Y, Cai Y, Xu Y, Shen W (2006) Steam reforming of bio-ethanol for the production of hydrogen over ceria-supported Co, Ir and Ni catalysts. Catal Commun 7:367–372CrossRef
14.
go back to reference Mondal T, Pant KK, Dalai AK (2015) Catalytic oxidative steam reforming of bio-ethanol for hydrogen production over Rh promoted Ni/CeO2-ZrO2 catalyst. Int J Hydrogen Energy 40:2529–2544CrossRef Mondal T, Pant KK, Dalai AK (2015) Catalytic oxidative steam reforming of bio-ethanol for hydrogen production over Rh promoted Ni/CeO2-ZrO2 catalyst. Int J Hydrogen Energy 40:2529–2544CrossRef
15.
go back to reference Basagiannis AC, Verykios XE (2007) Steam reforming of the aqueous fraction of bio-oil over structured Ru/MgO/Al2O3 catalysts. Catal Today 127:256–264CrossRef Basagiannis AC, Verykios XE (2007) Steam reforming of the aqueous fraction of bio-oil over structured Ru/MgO/Al2O3 catalysts. Catal Today 127:256–264CrossRef
16.
go back to reference Vagia EC, Lemonidou AA (2008) Hydrogen production via steam reforming of bio-oil components over calcium aluminate supported nickel and noble metal catalysts. Appl Catal A Gen 351:111–121CrossRef Vagia EC, Lemonidou AA (2008) Hydrogen production via steam reforming of bio-oil components over calcium aluminate supported nickel and noble metal catalysts. Appl Catal A Gen 351:111–121CrossRef
17.
go back to reference Laosiripojana N, Kiatkittipong W, Charojrochkul S, Assabumrungrat S (2010) Effects of support and co-fed elements on steam reforming of palm fatty acid distillate (PFAD) over Rh-based catalysts. Appl Catal A Gen 383:50–57CrossRef Laosiripojana N, Kiatkittipong W, Charojrochkul S, Assabumrungrat S (2010) Effects of support and co-fed elements on steam reforming of palm fatty acid distillate (PFAD) over Rh-based catalysts. Appl Catal A Gen 383:50–57CrossRef
18.
go back to reference Shiratori Y, Tran TQ, Umemura Y, Kitaoka T, Sasaki K (2013) Paper-structured catalyst for the steam reforming of biodiesel fuel. Int J Hydrogen Energy 38:11278–11287CrossRef Shiratori Y, Tran TQ, Umemura Y, Kitaoka T, Sasaki K (2013) Paper-structured catalyst for the steam reforming of biodiesel fuel. Int J Hydrogen Energy 38:11278–11287CrossRef
19.
go back to reference Lercher JA, Bitter JH, Hally W, Niessen W, Seshan K (1996) Design of stable catalysts for methane-carbon dioxide reforming. Stud Surf Sci Catal 101:463–472CrossRef Lercher JA, Bitter JH, Hally W, Niessen W, Seshan K (1996) Design of stable catalysts for methane-carbon dioxide reforming. Stud Surf Sci Catal 101:463–472CrossRef
20.
go back to reference Nakayama T, Ichikuni N, Sato S, Nozaki F (1997) Ni/MgO catalyst prepared using citric acid for hydrogenation of carbon dioxide. Appl Catal A Gen 158:185–199CrossRef Nakayama T, Ichikuni N, Sato S, Nozaki F (1997) Ni/MgO catalyst prepared using citric acid for hydrogenation of carbon dioxide. Appl Catal A Gen 158:185–199CrossRef
21.
go back to reference Tomishige K, Chen Y, Fujimoto K (1999) Studies on carbon deposition in CO2 reforming of CH4 over nickel-magnesia solid solution catalysts. J Catal 181:91–103CrossRef Tomishige K, Chen Y, Fujimoto K (1999) Studies on carbon deposition in CO2 reforming of CH4 over nickel-magnesia solid solution catalysts. J Catal 181:91–103CrossRef
22.
go back to reference Hou Z, Yashima T (2004) Meso-porous Ni/Mg/Al catalysts for methane reforming with CO2. Appl Catal A Gen 261:205–209CrossRef Hou Z, Yashima T (2004) Meso-porous Ni/Mg/Al catalysts for methane reforming with CO2. Appl Catal A Gen 261:205–209CrossRef
23.
go back to reference Sun J, Qiu XP, Wu F, Zhu WT (2005) H2 from steam reforming of ethanol at low temperature over Ni/Y2O3, Ni/La2O3 and Ni/Al2O3 catalysts for fuel-cell application. Int J Hydrogen Energy 30:437–445CrossRef Sun J, Qiu XP, Wu F, Zhu WT (2005) H2 from steam reforming of ethanol at low temperature over Ni/Y2O3, Ni/La2O3 and Ni/Al2O3 catalysts for fuel-cell application. Int J Hydrogen Energy 30:437–445CrossRef
24.
go back to reference Urasaki K, Sekine Y, Kawabe S, Kikuchi E, Matsukata M (2005) Catalytic activities and coking resistance of Ni/perovskites in steam reforming of methane. Appl Catal A Gen 286:23–29CrossRef Urasaki K, Sekine Y, Kawabe S, Kikuchi E, Matsukata M (2005) Catalytic activities and coking resistance of Ni/perovskites in steam reforming of methane. Appl Catal A Gen 286:23–29CrossRef
25.
go back to reference Narula CK, Haack LP, Chun W, Jen HW, Graham GW (1999) Single-phase PrOy-ZrO2 materials and their oxygen storage capacity: a comparison with single-phase CeO2-ZrO2, PrOy-CeO2, and PrOy-CeO2-ZrO2 materials. J Phys Chem B 103:3634–3639CrossRef Narula CK, Haack LP, Chun W, Jen HW, Graham GW (1999) Single-phase PrOy-ZrO2 materials and their oxygen storage capacity: a comparison with single-phase CeO2-ZrO2, PrOy-CeO2, and PrOy-CeO2-ZrO2 materials. J Phys Chem B 103:3634–3639CrossRef
26.
go back to reference Takeguchi T, Furukawa SN, Inoue M (2001) Hydrogen spillover from NiO to the large surface Area CeO2–ZrO2 solid solutions and activity of the NiO/CeO2–ZrO2 catalysts for partial oxidation of methane. J Catal 202:14–24CrossRef Takeguchi T, Furukawa SN, Inoue M (2001) Hydrogen spillover from NiO to the large surface Area CeO2–ZrO2 solid solutions and activity of the NiO/CeO2–ZrO2 catalysts for partial oxidation of methane. J Catal 202:14–24CrossRef
27.
go back to reference Srinivas D, Satyanarayana CVV, Potdar HS, Ratnasamy P (2003) Structural studies on NiO-CeO2-ZrO2 catalysts for steam reforming of ethanol. Appl Catal A Gen 246:323–334CrossRef Srinivas D, Satyanarayana CVV, Potdar HS, Ratnasamy P (2003) Structural studies on NiO-CeO2-ZrO2 catalysts for steam reforming of ethanol. Appl Catal A Gen 246:323–334CrossRef
28.
go back to reference Shotipruk A, Assabumrungrat S, Pavasant P, Laosiripojana N (2009) Reactivity of CeO2 and Ce–ZrO2 toward steam reforming of palm fatty acid distilled (PFAD) with co-fed oxygen and hydrogen. Chem Eng Sci 64:459–466CrossRef Shotipruk A, Assabumrungrat S, Pavasant P, Laosiripojana N (2009) Reactivity of CeO2 and Ce–ZrO2 toward steam reforming of palm fatty acid distilled (PFAD) with co-fed oxygen and hydrogen. Chem Eng Sci 64:459–466CrossRef
29.
go back to reference Shishido T, Sukenobu M, Morioka H, Furukawa R, Shirahase H, Takehira K (2001) CO2 reforming of CH4 over Ni/Mg-Al oxide catalysts prepared by solid phase crystallization method from Mg-Al hydrotalcite-like precursors. Catal Lett 73:21–26CrossRef Shishido T, Sukenobu M, Morioka H, Furukawa R, Shirahase H, Takehira K (2001) CO2 reforming of CH4 over Ni/Mg-Al oxide catalysts prepared by solid phase crystallization method from Mg-Al hydrotalcite-like precursors. Catal Lett 73:21–26CrossRef
30.
go back to reference Li D, Wang L, Koike M, Nakagawa Y, Nakagawa Y, Tomishige K (2011) Steam reforming of tar from pyrolysis of biomass over Ni/Mg/Al catalysts prepared from hydrotalcite-like precursors. Appl Catal B Environ 102:528–538CrossRef Li D, Wang L, Koike M, Nakagawa Y, Nakagawa Y, Tomishige K (2011) Steam reforming of tar from pyrolysis of biomass over Ni/Mg/Al catalysts prepared from hydrotalcite-like precursors. Appl Catal B Environ 102:528–538CrossRef
31.
go back to reference Tran TQ, Kaida T, Sakamoto M, Sasaki K, Shiratori Y (2015) Effectiveness of paper-structured catalyst for the operation of biodiesel-fueled solid oxide fuel cell. J Power Sources 283:320–327CrossRef Tran TQ, Kaida T, Sakamoto M, Sasaki K, Shiratori Y (2015) Effectiveness of paper-structured catalyst for the operation of biodiesel-fueled solid oxide fuel cell. J Power Sources 283:320–327CrossRef
32.
go back to reference Horny C, Renken A, Kiwi-Minsker L (2007) Compact string reactor for autothermal hydrogen production. Catal Today 120:45–53CrossRef Horny C, Renken A, Kiwi-Minsker L (2007) Compact string reactor for autothermal hydrogen production. Catal Today 120:45–53CrossRef
33.
go back to reference Twigg MV, Richadson JT (2007) Fundamentals and applications of structured ceramic foam catalysts. Ind Eng Chem Res 46:4166–4177CrossRef Twigg MV, Richadson JT (2007) Fundamentals and applications of structured ceramic foam catalysts. Ind Eng Chem Res 46:4166–4177CrossRef
34.
go back to reference Nishihara H, Mukai SR, Yamashita D, Tamon H (2005) Ordered macroporous silica by ice templating. Chem Mater 17:683–689CrossRef Nishihara H, Mukai SR, Yamashita D, Tamon H (2005) Ordered macroporous silica by ice templating. Chem Mater 17:683–689CrossRef
35.
go back to reference Patcas FC, Garrido GI, Kraushaar-Czarnetzki B (2007) CO oxidation over structured carriers: a comparison of ceramic foams, honeycombs and beads. Chem Eng Sci 62:3984–3990CrossRef Patcas FC, Garrido GI, Kraushaar-Czarnetzki B (2007) CO oxidation over structured carriers: a comparison of ceramic foams, honeycombs and beads. Chem Eng Sci 62:3984–3990CrossRef
36.
go back to reference Fukahori S, Kitaoka T, Tomoda A, Suzuki R, Wariishi H (2006) Methanol steam reforming over paper-like composites of Cu/ZnO catalyst and ceramic fiber. Appl Catal A 300:155–161CrossRef Fukahori S, Kitaoka T, Tomoda A, Suzuki R, Wariishi H (2006) Methanol steam reforming over paper-like composites of Cu/ZnO catalyst and ceramic fiber. Appl Catal A 300:155–161CrossRef
37.
go back to reference Fukahori S, Koga H, Kitaoka T, Nakamura M, Wariishi H (2008) Steam reforming behavior of methanol using paper-structured catalysts: experimental and computational fluid dynamic analysis. Int J Hydrogen Energy 33:1661–1670CrossRef Fukahori S, Koga H, Kitaoka T, Nakamura M, Wariishi H (2008) Steam reforming behavior of methanol using paper-structured catalysts: experimental and computational fluid dynamic analysis. Int J Hydrogen Energy 33:1661–1670CrossRef
38.
go back to reference Koga H, Umemura Y, Ishihara H, Kitaoka T, Tomoda A, Suzuki R, Wariishi H (2009) Paper-structured fiber composites impregnated with platinum nanoparticles synthesized on a carbon fiber matrix for catalytic reduction of nitrogen oxides. Appl Catal B Environ 90:699–704CrossRef Koga H, Umemura Y, Ishihara H, Kitaoka T, Tomoda A, Suzuki R, Wariishi H (2009) Paper-structured fiber composites impregnated with platinum nanoparticles synthesized on a carbon fiber matrix for catalytic reduction of nitrogen oxides. Appl Catal B Environ 90:699–704CrossRef
39.
go back to reference Ishihara H, Koga H, Kitaoka T, Wariishi H, Tomoda A, Suzuki R (2010) Paper-structured catalyst for catalytic NOx removal from combustion exhaust gas. Chem Eng Sci 65:208–213CrossRef Ishihara H, Koga H, Kitaoka T, Wariishi H, Tomoda A, Suzuki R (2010) Paper-structured catalyst for catalytic NOx removal from combustion exhaust gas. Chem Eng Sci 65:208–213CrossRef
40.
go back to reference Shiratori Y, Ogura T, Nakajima H, Sakamoto M, Takahashi Y, Wakita Y, Kitaoka T, Sasaki K (2013) Study on paper-structured catalyst for direct internal reforming SOFC fueled by the mixture of CH4 and CO2. J Hydrogen Energy 38:10542–10551CrossRef Shiratori Y, Ogura T, Nakajima H, Sakamoto M, Takahashi Y, Wakita Y, Kitaoka T, Sasaki K (2013) Study on paper-structured catalyst for direct internal reforming SOFC fueled by the mixture of CH4 and CO2. J Hydrogen Energy 38:10542–10551CrossRef
41.
go back to reference Wachsman ED, Marlowe CA, Lee KT (2012) Role of solid oxide fuel cells in a balanced energy strategy. Energy Environ Sci 5:5498–5509CrossRef Wachsman ED, Marlowe CA, Lee KT (2012) Role of solid oxide fuel cells in a balanced energy strategy. Energy Environ Sci 5:5498–5509CrossRef
42.
go back to reference Ge XM, Chan SH, Liu QL, Sun Q (2012) Solid oxide fuel cell anode materials for direct hydrogen carbon utilization. Adv Energy Mater 2:1156–1181CrossRef Ge XM, Chan SH, Liu QL, Sun Q (2012) Solid oxide fuel cell anode materials for direct hydrogen carbon utilization. Adv Energy Mater 2:1156–1181CrossRef
43.
go back to reference Liu J, Barnett SA (2003) Operation of anode-supported solid oxide fuel cells on methane and natural gas. Solid State Ionics 158(1–2):11–16CrossRef Liu J, Barnett SA (2003) Operation of anode-supported solid oxide fuel cells on methane and natural gas. Solid State Ionics 158(1–2):11–16CrossRef
44.
go back to reference Liu J, Madsen BD, Ji Z, Barnett SA (2002) A fuel-flexible ceramic-based anode for solid oxide fuel cells. Electrochem Solid-State Lett 5:A122–A124CrossRef Liu J, Madsen BD, Ji Z, Barnett SA (2002) A fuel-flexible ceramic-based anode for solid oxide fuel cells. Electrochem Solid-State Lett 5:A122–A124CrossRef
45.
go back to reference Iida T, Kawano M, Matsui T, Kikuchi R, Eguchi K (2007) Internal reforming of SOFCs: carbon deposition on fuel electrode and subsequent deterioration of cell. J Electrochem Soc 154(2):B234–B241CrossRef Iida T, Kawano M, Matsui T, Kikuchi R, Eguchi K (2007) Internal reforming of SOFCs: carbon deposition on fuel electrode and subsequent deterioration of cell. J Electrochem Soc 154(2):B234–B241CrossRef
46.
go back to reference Kishimoto H, Yamaji K, Horita T, Xiong Y, Sakai N, Brito M, Yokokawa H (2007) Feasibility of liquid hydrocarbon fuels for SOFC with Ni-ScSZ anode. J Power Sources 172:67–71CrossRef Kishimoto H, Yamaji K, Horita T, Xiong Y, Sakai N, Brito M, Yokokawa H (2007) Feasibility of liquid hydrocarbon fuels for SOFC with Ni-ScSZ anode. J Power Sources 172:67–71CrossRef
47.
go back to reference Kim H, Park S, Vohs JM, Gorte RJ (2001) Direct oxidation of liquid fuels in a solid oxide fuel cell. J Electrochem Soc 148(7):A693–A695CrossRef Kim H, Park S, Vohs JM, Gorte RJ (2001) Direct oxidation of liquid fuels in a solid oxide fuel cell. J Electrochem Soc 148(7):A693–A695CrossRef
48.
go back to reference Hou X, Marin-Flores O, Kwon BW, Kim J, Norton MG, Ha S (2014) Gasoline-fueled solid oxide fuel cell with high power density. J Power Sources 268:546–549CrossRef Hou X, Marin-Flores O, Kwon BW, Kim J, Norton MG, Ha S (2014) Gasoline-fueled solid oxide fuel cell with high power density. J Power Sources 268:546–549CrossRef
49.
go back to reference Zhou ZF, Gallo C, Pargue MB, Schobert H, Lvov SN (2004) Direct oxidation of jet fuels and Pennsylvania crude oil in a solid oxide fuel cell. J Power Sources 133:181–187CrossRef Zhou ZF, Gallo C, Pargue MB, Schobert H, Lvov SN (2004) Direct oxidation of jet fuels and Pennsylvania crude oil in a solid oxide fuel cell. J Power Sources 133:181–187CrossRef
50.
go back to reference Shiratori Y, Oshima T, Sasaki K (2008) Feasibility of direct-biogas SOFC. Int J Hydrogen Energy 33:6316–6321CrossRef Shiratori Y, Oshima T, Sasaki K (2008) Feasibility of direct-biogas SOFC. Int J Hydrogen Energy 33:6316–6321CrossRef
51.
go back to reference Shiratori Y, Ijichi T, Oshima T, Sasaki K (2010) Internal reforming SOFC running on biogas. Int J Hydrogen Energy 35:7905–7912CrossRef Shiratori Y, Ijichi T, Oshima T, Sasaki K (2010) Internal reforming SOFC running on biogas. Int J Hydrogen Energy 35:7905–7912CrossRef
52.
go back to reference Tran TQ, Shiratori Y, Sasaki K (2013) Feasibility of palm-biodiesel fuel for a direct internal reforming solid oxide fuel cell. Int J Energy Res 37:609–616CrossRef Tran TQ, Shiratori Y, Sasaki K (2013) Feasibility of palm-biodiesel fuel for a direct internal reforming solid oxide fuel cell. Int J Energy Res 37:609–616CrossRef
53.
go back to reference Staniforth J, Kendall K (1998) Biogas powering a small tubular solid oxide fuel cell. J Power Sources 71:275–277CrossRef Staniforth J, Kendall K (1998) Biogas powering a small tubular solid oxide fuel cell. J Power Sources 71:275–277CrossRef
54.
go back to reference Staniforth J, Kendall K (2000) Cannock landfill gas powering a small tubular solid oxide fuel cell—a case study. J Power Sources 86:401–403CrossRef Staniforth J, Kendall K (2000) Cannock landfill gas powering a small tubular solid oxide fuel cell—a case study. J Power Sources 86:401–403CrossRef
55.
go back to reference Staniforth J, Ormerod RM (2003) Running solid oxide fuel cells on biogas. Ionics 9:336–341CrossRef Staniforth J, Ormerod RM (2003) Running solid oxide fuel cells on biogas. Ionics 9:336–341CrossRef
56.
go back to reference Nahar G, Kendall K (2011) Biodiesel formulations as fuel for internally reforming solid oxide fuel cell. Fuel Process Technol 92:1345–1354CrossRef Nahar G, Kendall K (2011) Biodiesel formulations as fuel for internally reforming solid oxide fuel cell. Fuel Process Technol 92:1345–1354CrossRef
57.
go back to reference Lanzini A, Leone P (2010) Experimental investigation of direct internal reforming of biogas in solid oxide fuel cells. J Power Sources 35:2463–2476 Lanzini A, Leone P (2010) Experimental investigation of direct internal reforming of biogas in solid oxide fuel cells. J Power Sources 35:2463–2476
58.
go back to reference Guerra C, Lanzini A, Leone P, Santarelli M, Beretta D (2013) Experimental study of dry reforming of biogas in a tubular anode-supported solid oxide fuel cell. Int J Hydrogen Energy 38:10559–10566CrossRef Guerra C, Lanzini A, Leone P, Santarelli M, Beretta D (2013) Experimental study of dry reforming of biogas in a tubular anode-supported solid oxide fuel cell. Int J Hydrogen Energy 38:10559–10566CrossRef
59.
go back to reference Yentekakis IV (2006) Open- and closed-circuit study of an intermediate temperature SOFC directly fueled with simulated biogas mixtures. J Power Sources 160:422–425CrossRef Yentekakis IV (2006) Open- and closed-circuit study of an intermediate temperature SOFC directly fueled with simulated biogas mixtures. J Power Sources 160:422–425CrossRef
60.
go back to reference Papadam T, Goula G, Yentekakis IV (2012) Long-term operation stability tests of intermediate and high temperature Ni-based anodes’ SOFCs directly fueled with simulated biogas mixtures. Int J Hydrogen Energy 37:16680–16685CrossRef Papadam T, Goula G, Yentekakis IV (2012) Long-term operation stability tests of intermediate and high temperature Ni-based anodes’ SOFCs directly fueled with simulated biogas mixtures. Int J Hydrogen Energy 37:16680–16685CrossRef
61.
go back to reference Xu C, Zondlo JW, Gong M, Elizalde-Blancas F, Liu X, Celik IB (2010) Tolerance tests of H2S-laden biogas fuel on solid oxide fuel cells. J Power Sources 195:4583–4592CrossRef Xu C, Zondlo JW, Gong M, Elizalde-Blancas F, Liu X, Celik IB (2010) Tolerance tests of H2S-laden biogas fuel on solid oxide fuel cells. J Power Sources 195:4583–4592CrossRef
62.
go back to reference McPhee WAG, Boucher M, Stuart J, Parnas RS, Koslowske M, Tao T, Wilhite BA (2009) Demonstration of a liquid-tin anode solid-oxide fuel cell (LTA-SOFC) operating from biodiesel fuel. Energy Fuels 23:5036–5041CrossRef McPhee WAG, Boucher M, Stuart J, Parnas RS, Koslowske M, Tao T, Wilhite BA (2009) Demonstration of a liquid-tin anode solid-oxide fuel cell (LTA-SOFC) operating from biodiesel fuel. Energy Fuels 23:5036–5041CrossRef
63.
go back to reference Wang F, Wang W, Ran R, Tade MO, Shao Z (2014) Alumina oxide as a dual-functional modifier of Ni-based anodes of solid oxide fuel cells for operating on simulated biogas. J Power Sources 268:787–793CrossRef Wang F, Wang W, Ran R, Tade MO, Shao Z (2014) Alumina oxide as a dual-functional modifier of Ni-based anodes of solid oxide fuel cells for operating on simulated biogas. J Power Sources 268:787–793CrossRef
64.
go back to reference Wang W, Su C, Ran R, Park HJ, Kwak C, Shao Z (2011) Physically mixed LiLaNi-Al2O3 and copper as conductive anode catalysts in a solid oxide fuel cell for methane internal reforming and partial oxidation. Int J Hydrogen Energy 36:5632–5643CrossRef Wang W, Su C, Ran R, Park HJ, Kwak C, Shao Z (2011) Physically mixed LiLaNi-Al2O3 and copper as conductive anode catalysts in a solid oxide fuel cell for methane internal reforming and partial oxidation. Int J Hydrogen Energy 36:5632–5643CrossRef
65.
go back to reference Wang W, Ran R, Shao Z (2011) Combustion-synthesized Ru-Al2O3 composites as anode catalyst layer of a solid oxide fuel cell operating on methane. Int J Hydrogen Energy 36:755–764CrossRef Wang W, Ran R, Shao Z (2011) Combustion-synthesized Ru-Al2O3 composites as anode catalyst layer of a solid oxide fuel cell operating on methane. Int J Hydrogen Energy 36:755–764CrossRef
66.
go back to reference Szymcewska D, Karcrewski J, Bochentyn B, Chrzan A, Gazda M, Jasinski P (2015) Investigation of catalytic layer on anode solid oxide fuel cells operating with synthetic biogas. Solid State Ionics 271:109–115CrossRef Szymcewska D, Karcrewski J, Bochentyn B, Chrzan A, Gazda M, Jasinski P (2015) Investigation of catalytic layer on anode solid oxide fuel cells operating with synthetic biogas. Solid State Ionics 271:109–115CrossRef
67.
go back to reference Assabumrungrat S, Laosiripojana N, Piroonlerkgul P (2006) Determination of the boundary of carbon formation for dry reforming of methane in a solid oxide fuel cell. J Power Sources 159:1274–1284CrossRef Assabumrungrat S, Laosiripojana N, Piroonlerkgul P (2006) Determination of the boundary of carbon formation for dry reforming of methane in a solid oxide fuel cell. J Power Sources 159:1274–1284CrossRef
68.
go back to reference Takahashi Y, Shiratori Y, Furuta S, Sasaki K (2012) Thermo-mechanical reliability and catalytic activity of Ni-zirconia anode supports in internal reforming SOFC running on biogas. Solid State Ionics 225:113–117CrossRef Takahashi Y, Shiratori Y, Furuta S, Sasaki K (2012) Thermo-mechanical reliability and catalytic activity of Ni-zirconia anode supports in internal reforming SOFC running on biogas. Solid State Ionics 225:113–117CrossRef
69.
go back to reference Smith TR, Wood A, Birss VI (2009) Effect of hydrogen sulfide on the direct internal reforming of methane in solid oxide fuel cells. Appl Catal A 354:1–7CrossRef Smith TR, Wood A, Birss VI (2009) Effect of hydrogen sulfide on the direct internal reforming of methane in solid oxide fuel cells. Appl Catal A 354:1–7CrossRef
70.
go back to reference Silva ALD, Heck NC (2015) Oxide incorporation into Ni-based solid oxide fuel cell anodes for enhanced sulfur tolerance during operation on hydrogen or biogas fuels: a comprehensive thermodynamic study. Int J Hydrogen Energy 40:2334–2353CrossRef Silva ALD, Heck NC (2015) Oxide incorporation into Ni-based solid oxide fuel cell anodes for enhanced sulfur tolerance during operation on hydrogen or biogas fuels: a comprehensive thermodynamic study. Int J Hydrogen Energy 40:2334–2353CrossRef
71.
go back to reference Zhan Z, Barnett SA (2005) An octane-fueled solid oxide fuel cell. Science 308:844–847CrossRef Zhan Z, Barnett SA (2005) An octane-fueled solid oxide fuel cell. Science 308:844–847CrossRef
72.
go back to reference Shiratori Y, Ijichi T, Oshima T, Sasaki K (2009) Generation of electricity from organic bio-wastes using solid oxide fuel cell. ECS Trans 25:1051–1060CrossRef Shiratori Y, Ijichi T, Oshima T, Sasaki K (2009) Generation of electricity from organic bio-wastes using solid oxide fuel cell. ECS Trans 25:1051–1060CrossRef
73.
go back to reference Liu JH, Fu XZ, Luo JL, Chuang KT, Sanger AR (2012) Application of BaTiO3 as anode materials for H2S-containing CH4 fueled solid oxide fuel cells. J Power Sources 213:69–77CrossRef Liu JH, Fu XZ, Luo JL, Chuang KT, Sanger AR (2012) Application of BaTiO3 as anode materials for H2S-containing CH4 fueled solid oxide fuel cells. J Power Sources 213:69–77CrossRef
74.
go back to reference Kim H, Lu C, Worrell WL, Vohs JM, Gorte RJ (2002) Cu-Ni cermet anodes for direct oxidation of methane in solid-oxide fuel cells. J Electrochem Soc 149:A247–A250CrossRef Kim H, Lu C, Worrell WL, Vohs JM, Gorte RJ (2002) Cu-Ni cermet anodes for direct oxidation of methane in solid-oxide fuel cells. J Electrochem Soc 149:A247–A250CrossRef
75.
go back to reference Singh A, Hill JM (2012) Carbon tolerance, electrochemical performance and stability of solid oxide fuel cells with Ni/yttria stabilized zirconia anodes impregnated with Sn and operated with methane. J Power Sources 214:185–194CrossRef Singh A, Hill JM (2012) Carbon tolerance, electrochemical performance and stability of solid oxide fuel cells with Ni/yttria stabilized zirconia anodes impregnated with Sn and operated with methane. J Power Sources 214:185–194CrossRef
76.
go back to reference ShiratoriY Tran TQ, Sasaki K (2013) Performance enhancement of biodiesel fueled SOFC using paper-structured catalyst. Int J Hydrogen Energy 38:9856–9866CrossRef ShiratoriY Tran TQ, Sasaki K (2013) Performance enhancement of biodiesel fueled SOFC using paper-structured catalyst. Int J Hydrogen Energy 38:9856–9866CrossRef
77.
go back to reference Shiratori Y, Tran TQ, Takahashi Y, Sasaki K (2011) Application of biofuels to solid oxide fuel cell. ECS Trans 35:2641–2651CrossRef Shiratori Y, Tran TQ, Takahashi Y, Sasaki K (2011) Application of biofuels to solid oxide fuel cell. ECS Trans 35:2641–2651CrossRef
Metadata
Title
Fuel Cells with Biofuels
Authors
Yusuke Shiratori
Quang-Tuyen Tran
Copyright Year
2016
Publisher
Springer Japan
DOI
https://doi.org/10.1007/978-4-431-56042-5_38