Skip to main content
Top
Published in:
Cover of the book

2018 | OriginalPaper | Chapter

1. Functional Micro-/Nanomaterials for Imaging Technology

Authors : Waner Chen, Wei Ma, Chunpeng Zou, Yan Yang, Gaoyi Yang, Li Liu, Zhe Liu

Published in: Advances in Functional Micro-/Nanoimaging Probes

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Functional micro-/nanomaterials, in particular, micro-/nanoimaging probes, have emerged as a hot topic in terms of both basic research and biomedical applications. More importantly, innovations and clinical translations of advanced imaging probes have substantially revolutionalized diagnostic techniques and therapy strategies addressing critical diseases. Therefore, this chapter presents a comprehensive description of the development history of biomedical imaging technology over the past decades and discusses various types of imaging probes corresponding to versatile imaging modalities.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Goodspeed, A.W.: Experiments on the Roentgen X-rays. Science 4, 236–237 (1896)CrossRef Goodspeed, A.W.: Experiments on the Roentgen X-rays. Science 4, 236–237 (1896)CrossRef
2.
go back to reference Weissleder, R.: Molecular imaging: exploring the next frontier. Radiology 212, 609–614 (1999)CrossRef Weissleder, R.: Molecular imaging: exploring the next frontier. Radiology 212, 609–614 (1999)CrossRef
3.
go back to reference Massoud, T.F., Gambhir, S.S.: Integrating noninvasive molecular imaging into molecular medicine: an evolving paradigm. Trends Mol. Med. 13, 183–191 (2007)CrossRef Massoud, T.F., Gambhir, S.S.: Integrating noninvasive molecular imaging into molecular medicine: an evolving paradigm. Trends Mol. Med. 13, 183–191 (2007)CrossRef
4.
go back to reference Padmanabhan, P., Kumar, A., Kumar, S., Chaudhary, R.K., Gulyas, B.: Nanoparticles in practice for molecular-imaging applications: an overview. Acta Biomater. 41, 1 (2016)CrossRef Padmanabhan, P., Kumar, A., Kumar, S., Chaudhary, R.K., Gulyas, B.: Nanoparticles in practice for molecular-imaging applications: an overview. Acta Biomater. 41, 1 (2016)CrossRef
5.
go back to reference Weissleder, R., Pittet, M.J.: Imaging in the era of molecular oncology. Nature 452, 580–589 (2008)CrossRef Weissleder, R., Pittet, M.J.: Imaging in the era of molecular oncology. Nature 452, 580–589 (2008)CrossRef
6.
go back to reference Appel, A.A., Anastasio, M.A., Larson, J.C., Brey, E.M.: Imaging challenges in biomaterials and tissue engineering. Biomaterials 34, 6615–6630 (2013)CrossRef Appel, A.A., Anastasio, M.A., Larson, J.C., Brey, E.M.: Imaging challenges in biomaterials and tissue engineering. Biomaterials 34, 6615–6630 (2013)CrossRef
7.
go back to reference Lee, D.E., Koo, H., Sun, I.C., Ryu, J.H., Kim, K., Kwon, I.C.: Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem. Soc. Rev. 41, 2656 (2012)CrossRef Lee, D.E., Koo, H., Sun, I.C., Ryu, J.H., Kim, K., Kwon, I.C.: Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem. Soc. Rev. 41, 2656 (2012)CrossRef
8.
go back to reference Lu, F.M., Yuan, Z.: PET/SPECT molecular imaging in clinical neuroscience: recent advances in the investigation of CNS diseases. Quant. Imaging Med. Surg. 5, 433–447 (2015) Lu, F.M., Yuan, Z.: PET/SPECT molecular imaging in clinical neuroscience: recent advances in the investigation of CNS diseases. Quant. Imaging Med. Surg. 5, 433–447 (2015)
9.
go back to reference Trequesser, Q.L., Seznec, H., Delville, M.: Functionalized nanomaterials: their use as contrast agents in bioimaging: mono- and multimodal approaches. Nanotech. Rev. 2, 125–169 (2013)CrossRef Trequesser, Q.L., Seznec, H., Delville, M.: Functionalized nanomaterials: their use as contrast agents in bioimaging: mono- and multimodal approaches. Nanotech. Rev. 2, 125–169 (2013)CrossRef
10.
go back to reference Herrling, P.L., Alex, M.M.D., Rudin, M.: Imaging in drug discovery and early clinical trials. J. Nucl. Med. 2006, 48 (1037) Herrling, P.L., Alex, M.M.D., Rudin, M.: Imaging in drug discovery and early clinical trials. J. Nucl. Med. 2006, 48 (1037)
11.
go back to reference Baker, M.: Whole-animal imaging: the whole picture. Nature 463, 977–980 (2010)CrossRef Baker, M.: Whole-animal imaging: the whole picture. Nature 463, 977–980 (2010)CrossRef
12.
go back to reference Suetens, P.: Fundamentals of Medical Imaging, 2nd edn. Cambridge University Press, New York, USA (2009)CrossRef Suetens, P.: Fundamentals of Medical Imaging, 2nd edn. Cambridge University Press, New York, USA (2009)CrossRef
13.
go back to reference Smith, L., Kuncic, Z., Ostrikov, K., Kumar, S.: Nanoparticles in cancer imaging and therapy. J. Nanomater. 2012, 10 (2012)CrossRef Smith, L., Kuncic, Z., Ostrikov, K., Kumar, S.: Nanoparticles in cancer imaging and therapy. J. Nanomater. 2012, 10 (2012)CrossRef
14.
go back to reference Chi, X., Huang, D., Zhao, Z., Zhou, Z., Yin, Z., Gao, J.: Nanoprobes for invitro, diagnostics of cancer and infectious diseases. Biomaterials 33, 189–206 (2012)CrossRef Chi, X., Huang, D., Zhao, Z., Zhou, Z., Yin, Z., Gao, J.: Nanoprobes for invitro, diagnostics of cancer and infectious diseases. Biomaterials 33, 189–206 (2012)CrossRef
15.
go back to reference Li, K., Liu, B.: Polymer encapsulated conjugated polymer nanoparticles for fluorescence bioimaging. J. Mater. Chem. 22, 1257–1264 (2011)CrossRef Li, K., Liu, B.: Polymer encapsulated conjugated polymer nanoparticles for fluorescence bioimaging. J. Mater. Chem. 22, 1257–1264 (2011)CrossRef
16.
go back to reference Mao, X., Xu, J., Cui, H.: Functional nanoparticles for magnetic resonance imaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 8, 814–841 (2016)CrossRef Mao, X., Xu, J., Cui, H.: Functional nanoparticles for magnetic resonance imaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 8, 814–841 (2016)CrossRef
17.
go back to reference Hung, A.H., Duch, M.C., Parigi, G., Rotz, M.W., Manus, L.M., Mastarone, D.J.: Mechanisms of gadographene-mediated proton spin relaxation. J. Phys. Chem. C 117, 16263–16273 (2013)CrossRef Hung, A.H., Duch, M.C., Parigi, G., Rotz, M.W., Manus, L.M., Mastarone, D.J.: Mechanisms of gadographene-mediated proton spin relaxation. J. Phys. Chem. C 117, 16263–16273 (2013)CrossRef
18.
go back to reference Matosziuk, L.M., Leibowitz, J.H., Heffern, M.C., Macrenaris, K.W., Ratner, M.A., Meade, T.J.: Structural optimization of Zn(II)-activated magnetic resonance imaging probes. Inorg. Chem. 52, 12250 (2013)CrossRef Matosziuk, L.M., Leibowitz, J.H., Heffern, M.C., Macrenaris, K.W., Ratner, M.A., Meade, T.J.: Structural optimization of Zn(II)-activated magnetic resonance imaging probes. Inorg. Chem. 52, 12250 (2013)CrossRef
19.
go back to reference Jacobs, R.E., Papan, C., Ruffins, S., Tyszka, J.M., Fraser, S.E.: MRI: Volumetric imaging for vital imaging and atlas construction. Nat. Rev. Mol. Cell Biol. 4(Suppl. 1), SS10 (2003) Jacobs, R.E., Papan, C., Ruffins, S., Tyszka, J.M., Fraser, S.E.: MRI: Volumetric imaging for vital imaging and atlas construction. Nat. Rev. Mol. Cell Biol. 4(Suppl. 1), SS10 (2003)
20.
go back to reference Artemov, D.: Molecular magnetic resonance imaging with targeted contrast agents. J. Cell. Biochem. 90, 518–524 (2003)CrossRef Artemov, D.: Molecular magnetic resonance imaging with targeted contrast agents. J. Cell. Biochem. 90, 518–524 (2003)CrossRef
21.
go back to reference Potter, K.: Magnetic resonance microscopy approaches to molecular imaging: sensitivity vs. specificity. J. Cell. Biochem. 87(Suppl. 39), 147–153 (2002)CrossRef Potter, K.: Magnetic resonance microscopy approaches to molecular imaging: sensitivity vs. specificity. J. Cell. Biochem. 87(Suppl. 39), 147–153 (2002)CrossRef
22.
go back to reference Aime, S., Cabella, C., Colombatto, S., Geninatti, C.S., Gianolio, E., Maggioni, F.: Insights into the use of paramagnetic Gd(III) complexes in MR-molecular imaging investigations. J. Magn. Reson. Imaging 16, 394–406 (2002)CrossRef Aime, S., Cabella, C., Colombatto, S., Geninatti, C.S., Gianolio, E., Maggioni, F.: Insights into the use of paramagnetic Gd(III) complexes in MR-molecular imaging investigations. J. Magn. Reson. Imaging 16, 394–406 (2002)CrossRef
23.
go back to reference Caravan, P., Ellison, J.J., Mcmurry, T.J., Lauffer, R.B.: Gadolinium (III) chelates as MRI contrast agents: structure, dynamics, and applications. Cheminform 99, 2293 (1999) Caravan, P., Ellison, J.J., Mcmurry, T.J., Lauffer, R.B.: Gadolinium (III) chelates as MRI contrast agents: structure, dynamics, and applications. Cheminform 99, 2293 (1999)
24.
go back to reference Kabalka, G.W., Davis, M.A., Moss, T.H., Buonocore, E., Hubner, K., Holmberg, E.: Gadolinium-labeled liposomes containing various amphiphilic Gd-DTPA derivatives: targeted MRI contrast enhancement agents for the liver. Magn. Reson. Med. 19, 406–415 (1991)CrossRef Kabalka, G.W., Davis, M.A., Moss, T.H., Buonocore, E., Hubner, K., Holmberg, E.: Gadolinium-labeled liposomes containing various amphiphilic Gd-DTPA derivatives: targeted MRI contrast enhancement agents for the liver. Magn. Reson. Med. 19, 406–415 (1991)CrossRef
25.
go back to reference Guenoun, J., Koning, G.A., Doeswijk, G., Bosman, L., Wielopolski, P.A., Krestin, G.P.: Cationic Gd-DTPA liposomes for highly efficient labeling of mesenchymal stem cells and cell tracking with MRI. Cell Transplant. 21, 191–205 (2012)CrossRef Guenoun, J., Koning, G.A., Doeswijk, G., Bosman, L., Wielopolski, P.A., Krestin, G.P.: Cationic Gd-DTPA liposomes for highly efficient labeling of mesenchymal stem cells and cell tracking with MRI. Cell Transplant. 21, 191–205 (2012)CrossRef
26.
go back to reference Cheng, Z., Thorek, D.L.J., Tsourkas, A.: Gd-conjugated dendrimer nanoclusters as a tumor-targeted T1 magnetic resonance imaging contrast agent. Angew. Chem. 49, 346–350 (2010)CrossRef Cheng, Z., Thorek, D.L.J., Tsourkas, A.: Gd-conjugated dendrimer nanoclusters as a tumor-targeted T1 magnetic resonance imaging contrast agent. Angew. Chem. 49, 346–350 (2010)CrossRef
27.
go back to reference Huang, C.H., Nwe, K., Al, Z.A., Brechbiel, M.W., Tsourkas, A.: Biodegradable polydisulfide dendrimer nanoclusters as MRI contrast agents. ACS Nano 6, 9416 (2012)CrossRef Huang, C.H., Nwe, K., Al, Z.A., Brechbiel, M.W., Tsourkas, A.: Biodegradable polydisulfide dendrimer nanoclusters as MRI contrast agents. ACS Nano 6, 9416 (2012)CrossRef
28.
go back to reference Yang, H., Santra, S., Walter, G., Holloway, P.: Gd(III)-functionalized fluorescent quantum dots as multimodal imaging probes. Adv. Mater. 18, 2890–2894 (2006)CrossRef Yang, H., Santra, S., Walter, G., Holloway, P.: Gd(III)-functionalized fluorescent quantum dots as multimodal imaging probes. Adv. Mater. 18, 2890–2894 (2006)CrossRef
29.
go back to reference Yang, W., Guo, W., Gong, X., Zhang, B., Wang, S., Chen, N.: Facile synthesis of Gd-Cu-In-S/ZnS bimodal quantum dots with optimized properties for tumor targeted fluorescence/mr in vivo imaging. ACS Appl. Mater. Interfaces 7, 18759–18768 (2015)CrossRef Yang, W., Guo, W., Gong, X., Zhang, B., Wang, S., Chen, N.: Facile synthesis of Gd-Cu-In-S/ZnS bimodal quantum dots with optimized properties for tumor targeted fluorescence/mr in vivo imaging. ACS Appl. Mater. Interfaces 7, 18759–18768 (2015)CrossRef
30.
go back to reference Vivero-Escoto, J.L., Taylor-Pashow, K.M.L., Huxford, R.C., Della Rocca, J., Okoruwa, C., An, H.: Multifunctional mesoporous silica nanospheres with cleavable Gd(III) chelates as mri contrast agents: synthesis, characterization, target-specificity and renal clearance. Small 7, 3519–3528 (2011)CrossRef Vivero-Escoto, J.L., Taylor-Pashow, K.M.L., Huxford, R.C., Della Rocca, J., Okoruwa, C., An, H.: Multifunctional mesoporous silica nanospheres with cleavable Gd(III) chelates as mri contrast agents: synthesis, characterization, target-specificity and renal clearance. Small 7, 3519–3528 (2011)CrossRef
31.
go back to reference Huang, C.C., Tsai, C.Y., Sheu, H.S., Chuang, K.Y., Su, C.H., Jeng, U.S.: Enhancing transversal relaxation for magnetite nanoparticles in mr imaging using Gd3+-chelated mesoporous silica shells. ACS Nano 5, 3905–3916 (2011)CrossRef Huang, C.C., Tsai, C.Y., Sheu, H.S., Chuang, K.Y., Su, C.H., Jeng, U.S.: Enhancing transversal relaxation for magnetite nanoparticles in mr imaging using Gd3+-chelated mesoporous silica shells. ACS Nano 5, 3905–3916 (2011)CrossRef
32.
go back to reference Ghaghada, K.B., Ravoori, M., Sabapathy, D., Bankson, J., Kundra, V., Annapragada, A.: New dual mode gadolinium nanoparticle contrast agent for magnetic resonance imaging. PLoS ONE 4, e7628 (2009)CrossRef Ghaghada, K.B., Ravoori, M., Sabapathy, D., Bankson, J., Kundra, V., Annapragada, A.: New dual mode gadolinium nanoparticle contrast agent for magnetic resonance imaging. PLoS ONE 4, e7628 (2009)CrossRef
33.
go back to reference Lu, J., Ma, S., Sun, J., Xia, C., Liu, C., Wang, Z.: Manganese ferrite nanoparticle micellar nanocomposites as MRI contrast agent for liver imaging. Biomaterials 30, 2919 (2009)CrossRef Lu, J., Ma, S., Sun, J., Xia, C., Liu, C., Wang, Z.: Manganese ferrite nanoparticle micellar nanocomposites as MRI contrast agent for liver imaging. Biomaterials 30, 2919 (2009)CrossRef
34.
go back to reference Cassidy, P.J., Radda, G.K.: Molecular imaging perspectives. J. R. Soc. Interface 2, 133 (2005)CrossRef Cassidy, P.J., Radda, G.K.: Molecular imaging perspectives. J. R. Soc. Interface 2, 133 (2005)CrossRef
35.
go back to reference Babes, L., Denizot, B., Tanguy, G., Le, J.J., Jallet, P.: Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J. Colloid Interface Sci. 212, 474 (1999)CrossRef Babes, L., Denizot, B., Tanguy, G., Le, J.J., Jallet, P.: Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J. Colloid Interface Sci. 212, 474 (1999)CrossRef
36.
go back to reference Gramiak, R., Shah, P.M.: Echocardiography of the aortic root. Invest. Radiol. 3, 356–366 (1968)CrossRef Gramiak, R., Shah, P.M.: Echocardiography of the aortic root. Invest. Radiol. 3, 356–366 (1968)CrossRef
37.
go back to reference Feinstein, S.B., Cheirif, J., Tencate, F.J., Silverman, P.R., Heidenreich, P.A., Dick, C., Desir, R.M., Armstrong, W.F., Quinones, M.A., Shah, P.M.: Safety and efficacy of a new transpulmonary ultrasound contrast agent: initial multicenter clinical results. J. Am. Coll. Cardiol. 16, 316–324 (1990)CrossRef Feinstein, S.B., Cheirif, J., Tencate, F.J., Silverman, P.R., Heidenreich, P.A., Dick, C., Desir, R.M., Armstrong, W.F., Quinones, M.A., Shah, P.M.: Safety and efficacy of a new transpulmonary ultrasound contrast agent: initial multicenter clinical results. J. Am. Coll. Cardiol. 16, 316–324 (1990)CrossRef
38.
go back to reference Kaneko, O.F., Willmann, J.K.: Ultrasound for molecular imaging and therapy in cancer. Quant. Imaging Med. Surg. 2, 87–97 (2012) Kaneko, O.F., Willmann, J.K.: Ultrasound for molecular imaging and therapy in cancer. Quant. Imaging Med. Surg. 2, 87–97 (2012)
39.
go back to reference Appis, A.W., Tracy, M.J., Feinstein, S.B.: Update on the safety and efficacy of commercial ultrasound contrast agents in cardiac applications. Echo Res. Pract. 2, R55–R62 (2015)CrossRef Appis, A.W., Tracy, M.J., Feinstein, S.B.: Update on the safety and efficacy of commercial ultrasound contrast agents in cardiac applications. Echo Res. Pract. 2, R55–R62 (2015)CrossRef
40.
go back to reference Unger, E., Porter, T., Lindner, J., Grayburn, P.: Cardiovascular drug delivery with ultrasound and microbubbles. Adv. Drug Deliv. Rev. 72, 110–126 (2014)CrossRef Unger, E., Porter, T., Lindner, J., Grayburn, P.: Cardiovascular drug delivery with ultrasound and microbubbles. Adv. Drug Deliv. Rev. 72, 110–126 (2014)CrossRef
41.
go back to reference Lindner, J.R.: Microbubbles in medical imaging: current applications and future directions. Nat. Rev. Drug Discov. 3, 527–532 (2004)CrossRef Lindner, J.R.: Microbubbles in medical imaging: current applications and future directions. Nat. Rev. Drug Discov. 3, 527–532 (2004)CrossRef
42.
go back to reference Keller, M.W., Glasheen, W., Kaul, S.: Albunex: a safe and effective commercially produced agent for myocardial contrast echocardiography. J. Am. Soc. Echocardiogr. 2, 48–52 (1989)CrossRef Keller, M.W., Glasheen, W., Kaul, S.: Albunex: a safe and effective commercially produced agent for myocardial contrast echocardiography. J. Am. Soc. Echocardiogr. 2, 48–52 (1989)CrossRef
43.
go back to reference Podell, S., Burrascano, C., Gaal, M., Golec, B., Maniquis, J., Mehlhaff, P.: Physical and biochemical stability of optison, an injectable ultrasound contrast agent. Biotech. Appl. Biochem. 30, 213–223 (1999) Podell, S., Burrascano, C., Gaal, M., Golec, B., Maniquis, J., Mehlhaff, P.: Physical and biochemical stability of optison, an injectable ultrasound contrast agent. Biotech. Appl. Biochem. 30, 213–223 (1999)
44.
go back to reference Goertz, D.E., Jong, N.D., Steen, A.V.D.: Attenuation and size distribution measurements of definity™ and manipulated definity™ populations. Ultrasound Med. Biol. 33, 1376–1388 (2007)CrossRef Goertz, D.E., Jong, N.D., Steen, A.V.D.: Attenuation and size distribution measurements of definity™ and manipulated definity™ populations. Ultrasound Med. Biol. 33, 1376–1388 (2007)CrossRef
45.
go back to reference Schneider, M.: Sonovue, a new ultrasound contrast agent. Eur. Radiol. 9(Suppl. 3), 347–348 (1999)CrossRef Schneider, M.: Sonovue, a new ultrasound contrast agent. Eur. Radiol. 9(Suppl. 3), 347–348 (1999)CrossRef
46.
go back to reference Sontum, P.C.: Physicochemical characteristics of sonazoid, a new contrast agent for ultrasound imaging. Ultrasound Med. Biol. 34, 824–833 (2008)CrossRef Sontum, P.C.: Physicochemical characteristics of sonazoid, a new contrast agent for ultrasound imaging. Ultrasound Med. Biol. 34, 824–833 (2008)CrossRef
47.
go back to reference Bhutani, M.S., Hoffman, B.J., Van, V.A., Hawes, R.H.: Contrast-enhanced endoscopic ultrasonography with galactose microparticles: SHU508 a (Levovist). Endoscopy 29, 635–639 (1997)CrossRef Bhutani, M.S., Hoffman, B.J., Van, V.A., Hawes, R.H.: Contrast-enhanced endoscopic ultrasonography with galactose microparticles: SHU508 a (Levovist). Endoscopy 29, 635–639 (1997)CrossRef
48.
go back to reference Hoff, L., Sontum, P.C., Hoff, B.: Acoustic properties of shell-encapsulated, gas-filled ultrasound contrast agents. Ultrason. Symp. Proc. 2, 1441–1444 (1996) Hoff, L., Sontum, P.C., Hoff, B.: Acoustic properties of shell-encapsulated, gas-filled ultrasound contrast agents. Ultrason. Symp. Proc. 2, 1441–1444 (1996)
49.
go back to reference Kiessling, F., Mertens, M.E., Grimm, J., Lammers, T.: Nanoparticles for imaging: top or flop? Radiology 273, 10 (2014)CrossRef Kiessling, F., Mertens, M.E., Grimm, J., Lammers, T.: Nanoparticles for imaging: top or flop? Radiology 273, 10 (2014)CrossRef
50.
go back to reference Paefgen, V., Doleschel, D., Kiessling, F.: Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery. Front. Pharm. 6, 197 (2015)CrossRef Paefgen, V., Doleschel, D., Kiessling, F.: Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery. Front. Pharm. 6, 197 (2015)CrossRef
51.
go back to reference Wei, S., Fu, N., Sun, Y., Yang, Z., Lei, L., Huang, P.: Targeted contrast-enhanced ultrasound imaging of angiogenesis in an orthotopic mouse tumor model of renal carcinoma. Ultrasound Med. Biol. 40, 1250–1259 (2014)CrossRef Wei, S., Fu, N., Sun, Y., Yang, Z., Lei, L., Huang, P.: Targeted contrast-enhanced ultrasound imaging of angiogenesis in an orthotopic mouse tumor model of renal carcinoma. Ultrasound Med. Biol. 40, 1250–1259 (2014)CrossRef
52.
go back to reference Hu, Q., Wang, X.Y., Kang, L.K., Wei, H.M., Xu, C.M., Wang, T.: RGD-targeted ultrasound contrast agent for longitudinal assessment of Hep2 tumor angiogenesis in vivo. PLoS ONE 11, e0149075 (2016)CrossRef Hu, Q., Wang, X.Y., Kang, L.K., Wei, H.M., Xu, C.M., Wang, T.: RGD-targeted ultrasound contrast agent for longitudinal assessment of Hep2 tumor angiogenesis in vivo. PLoS ONE 11, e0149075 (2016)CrossRef
53.
go back to reference Yuan, B., Rychak, J.: Tumor functional and molecular imaging utilizing ultrasound and ultrasound-mediated optical techniques. Am. J. Pathology 182, 305 (2013)CrossRef Yuan, B., Rychak, J.: Tumor functional and molecular imaging utilizing ultrasound and ultrasound-mediated optical techniques. Am. J. Pathology 182, 305 (2013)CrossRef
54.
go back to reference Xu, J.S., Huang, J., Qin, R., Hinkle, G.H., Povoski, S.P., Martin, E.W.: Synthesizing and binding dual-mode poly (lactic-co-glycolic acid) (PLGA) nanobubbles for cancer targeting and imaging. Biomaterials 31, 1716–1722 (2009)CrossRef Xu, J.S., Huang, J., Qin, R., Hinkle, G.H., Povoski, S.P., Martin, E.W.: Synthesizing and binding dual-mode poly (lactic-co-glycolic acid) (PLGA) nanobubbles for cancer targeting and imaging. Biomaterials 31, 1716–1722 (2009)CrossRef
55.
go back to reference Campbell, R.B.: Tumor physiology and delivery of nano pharmaceuticals. Anti-Cancer Agents Med. Chem. 6, 503–512 (2006)CrossRef Campbell, R.B.: Tumor physiology and delivery of nano pharmaceuticals. Anti-Cancer Agents Med. Chem. 6, 503–512 (2006)CrossRef
56.
go back to reference Kang, E., Min, H.S., Lee, J.: Nanobubbles from gas-generating polymeric nanoparticles: ultrasound imaging of living subjects. Angew. Chem. 49, 524–528 (2010)CrossRef Kang, E., Min, H.S., Lee, J.: Nanobubbles from gas-generating polymeric nanoparticles: ultrasound imaging of living subjects. Angew. Chem. 49, 524–528 (2010)CrossRef
57.
go back to reference Min, K.H., Min, H.S., Lee, H.J., Park, D.J., Yhee, J.Y., Kim, K.: pH-controlled gas-generating mineralized nanoparticles: a theranostic agent for ultrasound imaging and therapy of cancers. ACS Nano 9, 134–145 (2015)CrossRef Min, K.H., Min, H.S., Lee, H.J., Park, D.J., Yhee, J.Y., Kim, K.: pH-controlled gas-generating mineralized nanoparticles: a theranostic agent for ultrasound imaging and therapy of cancers. ACS Nano 9, 134–145 (2015)CrossRef
58.
go back to reference Haller, C., Hizoh, I.: The cytotoxicity of iodinated radiocontrast agents on renal cells in vitro. Invest. Radiol. 39, 149 (2004)CrossRef Haller, C., Hizoh, I.: The cytotoxicity of iodinated radiocontrast agents on renal cells in vitro. Invest. Radiol. 39, 149 (2004)CrossRef
59.
go back to reference Liu, Y., Ai, K., Lu, L.: Nanoparticulate X-ray computed tomography contrast agents: from design validation to in vivo applications. Acc. Chem. Res. 45, 1817–1827 (2012)CrossRef Liu, Y., Ai, K., Lu, L.: Nanoparticulate X-ray computed tomography contrast agents: from design validation to in vivo applications. Acc. Chem. Res. 45, 1817–1827 (2012)CrossRef
60.
go back to reference Kong, W.H., Lee, W.J., Cui, Z.Y., Bae, K.H., Park, T.G., Kim, J.H.: Nanoparticulate carrier containing water-insoluble iodinated oil as a multifunctional contrast agent for computed tomography imaging. Biomaterials 28, 5555–5561 (2007)CrossRef Kong, W.H., Lee, W.J., Cui, Z.Y., Bae, K.H., Park, T.G., Kim, J.H.: Nanoparticulate carrier containing water-insoluble iodinated oil as a multifunctional contrast agent for computed tomography imaging. Biomaterials 28, 5555–5561 (2007)CrossRef
61.
go back to reference Badea, C.T., Athreya, K.K., Espinosa, G., Clark, D., Ghafoori, A.P., Li, Y.: Computed tomography imaging of primary lung cancer in mice using a liposomal-iodinated contrast agent. PLoS ONE 7, e34496 (2012)CrossRef Badea, C.T., Athreya, K.K., Espinosa, G., Clark, D., Ghafoori, A.P., Li, Y.: Computed tomography imaging of primary lung cancer in mice using a liposomal-iodinated contrast agent. PLoS ONE 7, e34496 (2012)CrossRef
62.
go back to reference Kim, D., Park, S., Lee, J.H., Jeong, Y.Y., Jon, S.: Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J. Am. Chem. Soc. 129, 7661 (2007)CrossRef Kim, D., Park, S., Lee, J.H., Jeong, Y.Y., Jon, S.: Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J. Am. Chem. Soc. 129, 7661 (2007)CrossRef
63.
go back to reference Xiao, M., Nyagilo, J., Arora, V., Kulkarni, P., Xu, D., Sun, X.: Gold nanotags for combined multi-colored Raman spectroscopy and X-ray computed tomography. Nanotechnology 21, 035101 (2010)CrossRef Xiao, M., Nyagilo, J., Arora, V., Kulkarni, P., Xu, D., Sun, X.: Gold nanotags for combined multi-colored Raman spectroscopy and X-ray computed tomography. Nanotechnology 21, 035101 (2010)CrossRef
64.
go back to reference Huo, D., Ding, J., Cui, Y.X., Xia, L.Y., Li, H., He, J.: X-ray CT and pneumonia inhibition properties of gold–silver nanoparticles for targeting MRSA, induced pneumonia. Biomaterials 35, 7032 (2014)CrossRef Huo, D., Ding, J., Cui, Y.X., Xia, L.Y., Li, H., He, J.: X-ray CT and pneumonia inhibition properties of gold–silver nanoparticles for targeting MRSA, induced pneumonia. Biomaterials 35, 7032 (2014)CrossRef
65.
go back to reference Rabin, O., Manuel, P.J., Grimm, J., Wojtkiewicz, G., Weissleder, R.: An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat. Mater. 5, 118–122 (2006)CrossRef Rabin, O., Manuel, P.J., Grimm, J., Wojtkiewicz, G., Weissleder, R.: An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat. Mater. 5, 118–122 (2006)CrossRef
66.
go back to reference Kinsella, J.M., Jimenez, R.E., Karmali, P.P., Rush, A.M., Kotamraju, V.R., Gianneschi, N.C.: X-ray computed tomography imaging of breast cancer by using targeted peptide-labeled bismuth sulfide nanoparticles. Angew. Chem. 50, 12308 (2011)CrossRef Kinsella, J.M., Jimenez, R.E., Karmali, P.P., Rush, A.M., Kotamraju, V.R., Gianneschi, N.C.: X-ray computed tomography imaging of breast cancer by using targeted peptide-labeled bismuth sulfide nanoparticles. Angew. Chem. 50, 12308 (2011)CrossRef
67.
go back to reference Jin, Y., Li, Y., Ma, X., Zha, Z., Shi, L., Tian, J.: Encapsulating tantalum oxide into polypyrrole nanoparticles for X-ray ct/photoacoustic bimodal imaging-guided photothermal ablation of cancer. Biomaterials 35, 5795–5804 (2014)CrossRef Jin, Y., Li, Y., Ma, X., Zha, Z., Shi, L., Tian, J.: Encapsulating tantalum oxide into polypyrrole nanoparticles for X-ray ct/photoacoustic bimodal imaging-guided photothermal ablation of cancer. Biomaterials 35, 5795–5804 (2014)CrossRef
68.
go back to reference Ai, K., Liu, Y., Liu, J., Yuan, Q., He, Y., Lu, L.: Large-scale synthesis of Bi2S3 nanodots as a contrast agent for in vivo X-ray computed tomography imaging. Adv. Mater. 23, 4886–4891 (2011)CrossRef Ai, K., Liu, Y., Liu, J., Yuan, Q., He, Y., Lu, L.: Large-scale synthesis of Bi2S3 nanodots as a contrast agent for in vivo X-ray computed tomography imaging. Adv. Mater. 23, 4886–4891 (2011)CrossRef
69.
go back to reference Cherry, S.R.: The 2006 Henry N. Wagner lecture: of mice and men (and positrons)–advances in PET imaging technology. J. Nucl. Med. 47, 1735–1745 (2006) Cherry, S.R.: The 2006 Henry N. Wagner lecture: of mice and men (and positrons)–advances in PET imaging technology. J. Nucl. Med. 47, 1735–1745 (2006)
70.
go back to reference Stockhofe, K., Postema, J.M., Schieferstein, H., Ross, T.L.: Radiolabeling of nanoparticles and polymers for pet imaging. Pharmaceuticals 7, 392–418 (2014)CrossRef Stockhofe, K., Postema, J.M., Schieferstein, H., Ross, T.L.: Radiolabeling of nanoparticles and polymers for pet imaging. Pharmaceuticals 7, 392–418 (2014)CrossRef
71.
go back to reference Herth, M.M., Barz, M., Moderegger, D., Allmeroth, M., Jahn, M., Thews, O.: Radioactive labeling of defined HPMA-based polymeric structures using [18F]fetos for in vivo imaging by positron emission tomography. Biomacromol 10, 1697–1703 (2009)CrossRef Herth, M.M., Barz, M., Moderegger, D., Allmeroth, M., Jahn, M., Thews, O.: Radioactive labeling of defined HPMA-based polymeric structures using [18F]fetos for in vivo imaging by positron emission tomography. Biomacromol 10, 1697–1703 (2009)CrossRef
72.
go back to reference Liu, Q., Sun, Y., Li, C., Zhou, J., Li, C., Yang, T.: 18F-labeled magnetic-upconversion nanophosphors via rare-earth cation-assisted ligand assembly. ACS Nano 5, 3146–3157 (2011)CrossRef Liu, Q., Sun, Y., Li, C., Zhou, J., Li, C., Yang, T.: 18F-labeled magnetic-upconversion nanophosphors via rare-earth cation-assisted ligand assembly. ACS Nano 5, 3146–3157 (2011)CrossRef
73.
go back to reference Sang, B.L., Kim, H.L., Jeong, H.J., Lim, S.T., Sohn, M.H., Kim, D.W.: Mesoporous silica nanoparticle pretargeting for pet imaging based on a rapid bioorthogonal reaction in a living body. Angew. Chem. 52, 10549 (2013)CrossRef Sang, B.L., Kim, H.L., Jeong, H.J., Lim, S.T., Sohn, M.H., Kim, D.W.: Mesoporous silica nanoparticle pretargeting for pet imaging based on a rapid bioorthogonal reaction in a living body. Angew. Chem. 52, 10549 (2013)CrossRef
74.
go back to reference Allmeroth, M., Moderegger, D., Gundel, D., Buchholz, H.G., Mohr, N., Koynov, K.: Pegylation of HPMA-based block copolymers enhances tumor accumulation in vivo: a quantitative study using radiolabeling and positron emission tomography. J. Control. Release 172, 77–85 (2013)CrossRef Allmeroth, M., Moderegger, D., Gundel, D., Buchholz, H.G., Mohr, N., Koynov, K.: Pegylation of HPMA-based block copolymers enhances tumor accumulation in vivo: a quantitative study using radiolabeling and positron emission tomography. J. Control. Release 172, 77–85 (2013)CrossRef
75.
go back to reference Yang, X., Hong, H., Grailer, J.J., Rowland, I.J., Javadi, A., Hurley, S.A.: cRGD-functionalized, DOX-conjugated, and Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials 32, 4151 (2011)CrossRef Yang, X., Hong, H., Grailer, J.J., Rowland, I.J., Javadi, A., Hurley, S.A.: cRGD-functionalized, DOX-conjugated, and Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials 32, 4151 (2011)CrossRef
76.
go back to reference Pressly, E.D., Pierce, R.A., Connal, L.A., Hawker, C.J., Liu, Y.: Nanoparticle PET/CT imaging of natriuretic peptide clearance receptor in prostate cancer. Bioconjug. Chem. 24, 196 (2013)CrossRef Pressly, E.D., Pierce, R.A., Connal, L.A., Hawker, C.J., Liu, Y.: Nanoparticle PET/CT imaging of natriuretic peptide clearance receptor in prostate cancer. Bioconjug. Chem. 24, 196 (2013)CrossRef
77.
go back to reference Locatelli, E., Gil, L., Israel, L.L., Passoni, L., Naddaka, M., Pucci, A.: Biocompatible nanocomposite for PET/MRI hybrid imaging. Int. J. Nanomed. 7, 6021–6033 (2012) Locatelli, E., Gil, L., Israel, L.L., Passoni, L., Naddaka, M., Pucci, A.: Biocompatible nanocomposite for PET/MRI hybrid imaging. Int. J. Nanomed. 7, 6021–6033 (2012)
78.
go back to reference Kim, S.M., Chae, M.K., Yim, M.S., Jeong, I.H., Cho, J., Lee, C.: Hybrid PET/MR imaging of tumors using an oleanolic acid-conjugated nanoparticle. Biomaterials 34, 8114 (2013)CrossRef Kim, S.M., Chae, M.K., Yim, M.S., Jeong, I.H., Cho, J., Lee, C.: Hybrid PET/MR imaging of tumors using an oleanolic acid-conjugated nanoparticle. Biomaterials 34, 8114 (2013)CrossRef
79.
go back to reference Lee, D.E., Na, J.H., Lee, S., Kang, C.M., Kim, H.N., Han, S.J.: Facile method to radiolabel glycol chitosan nanoparticles with (64)Cu via copper-free click chemistry for micropet imaging. Mol. Pharm. 10, 2190 (2013)CrossRef Lee, D.E., Na, J.H., Lee, S., Kang, C.M., Kim, H.N., Han, S.J.: Facile method to radiolabel glycol chitosan nanoparticles with (64)Cu via copper-free click chemistry for micropet imaging. Mol. Pharm. 10, 2190 (2013)CrossRef
80.
go back to reference Liu, Y., Welch, M.J.: Nanoparticles labeled with positron emitting nuclides: advantages, methods, and applications. Bioconjug. Chem. 23, 671–682 (2012)CrossRef Liu, Y., Welch, M.J.: Nanoparticles labeled with positron emitting nuclides: advantages, methods, and applications. Bioconjug. Chem. 23, 671–682 (2012)CrossRef
81.
go back to reference Zeng, D., Lee, N.S., Liu, Y., Zhou, D., Dence, C.S., Wooley, K.L.: 64Cu core-labeled nanoparticles with high specific activity via metal-free click chemistry. ACS Nano 6, 5209–5219 (2012)CrossRef Zeng, D., Lee, N.S., Liu, Y., Zhou, D., Dence, C.S., Wooley, K.L.: 64Cu core-labeled nanoparticles with high specific activity via metal-free click chemistry. ACS Nano 6, 5209–5219 (2012)CrossRef
82.
go back to reference Zhao, Y., Sultan, D., Detering, L., Cho, S., Sun, G., Pierce, R.: Copper-64-alloyed gold nanoparticles for cancer imaging: improved radiolabel stability and diagnostic accuracy. Angew. Chem. 53, 156–159 (2013)CrossRef Zhao, Y., Sultan, D., Detering, L., Cho, S., Sun, G., Pierce, R.: Copper-64-alloyed gold nanoparticles for cancer imaging: improved radiolabel stability and diagnostic accuracy. Angew. Chem. 53, 156–159 (2013)CrossRef
83.
go back to reference Wang, J., Mi, P., Lin, G., Wang, Y.X., Liu, G., Chen, X.: Imaging guided delivery of RNAi for anticancer treatment. Adv. Drug Deliv. Rev. 104, 44–60 (2016)CrossRef Wang, J., Mi, P., Lin, G., Wang, Y.X., Liu, G., Chen, X.: Imaging guided delivery of RNAi for anticancer treatment. Adv. Drug Deliv. Rev. 104, 44–60 (2016)CrossRef
84.
go back to reference Black, K.C.L., Akers, W.J., Sudlow, G., Xu, B., Laforest, R., Achilefu, S.: Dual-radiolabeled nanoparticle SPECT probes for bioimaging. Nanoscale 7, 440–444 (2015)CrossRef Black, K.C.L., Akers, W.J., Sudlow, G., Xu, B., Laforest, R., Achilefu, S.: Dual-radiolabeled nanoparticle SPECT probes for bioimaging. Nanoscale 7, 440–444 (2015)CrossRef
85.
go back to reference Chrastina, A., Schnitzer, J.E.: Iodine-125 radiolabeling of silver nanoparticles for in vivo SPECT imaging. Int. J. Nanomed. 5, 653–659 (2010) Chrastina, A., Schnitzer, J.E.: Iodine-125 radiolabeling of silver nanoparticles for in vivo SPECT imaging. Int. J. Nanomed. 5, 653–659 (2010)
86.
go back to reference Perrier, M., Busson, M., Massasso, G., Long, J., Boudousq, V., Pouget, J.P.: 201Tl+-labelled prussian blue nanoparticles as contrast agents for SPECT scintigraphy. Nanoscale 6, 13425 (2014)CrossRef Perrier, M., Busson, M., Massasso, G., Long, J., Boudousq, V., Pouget, J.P.: 201Tl+-labelled prussian blue nanoparticles as contrast agents for SPECT scintigraphy. Nanoscale 6, 13425 (2014)CrossRef
87.
go back to reference Karina, B.H.B., Maeda, O.J.M., Roberta, L.G., Batista, A.C., Coral, D.O.C.E., Ehara, W.M.A.: Molecular markers for breast cancer: prediction on tumor behavior. Dis. Markers 513158 (2014) Karina, B.H.B., Maeda, O.J.M., Roberta, L.G., Batista, A.C., Coral, D.O.C.E., Ehara, W.M.A.: Molecular markers for breast cancer: prediction on tumor behavior. Dis. Markers 513158 (2014)
88.
go back to reference Zhao, Y., Pang, B., Luehmann, H., Detering, L., Yang, X., Sultan, D.: Gold nanoparticles doped with (199) au atoms and their use for targeted cancer imaging by SPECT. Adv. Healthc. Mater. 5, 928 (2016)CrossRef Zhao, Y., Pang, B., Luehmann, H., Detering, L., Yang, X., Sultan, D.: Gold nanoparticles doped with (199) au atoms and their use for targeted cancer imaging by SPECT. Adv. Healthc. Mater. 5, 928 (2016)CrossRef
89.
go back to reference Piwnica-Worms, D.: On in vivo imaging in cancer. Cold Spring Harbor Persp. Biol. 2, a003848 (2010) Piwnica-Worms, D.: On in vivo imaging in cancer. Cold Spring Harbor Persp. Biol. 2, a003848 (2010)
90.
go back to reference Oleinikov, V.A.: Semiconductor fluorescent nanocrystals (quantum dots) in biological biochips. Bioorg. Khim. 37, 171–189 (2011) Oleinikov, V.A.: Semiconductor fluorescent nanocrystals (quantum dots) in biological biochips. Bioorg. Khim. 37, 171–189 (2011)
91.
go back to reference Chan, W.C., Nie, S.: Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281 (2016) Chan, W.C., Nie, S.: Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281 (2016)
92.
go back to reference Bruchez, M., Moronne, M., Gin, P.: Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998)CrossRef Bruchez, M., Moronne, M., Gin, P.: Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998)CrossRef
93.
go back to reference Valizadeh, A., Mikaeili, H., Samiei, M., Farkhani, S.M., Zarghami, N., Kouhi, M.: Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res. Lett. 7, 480 (2012)CrossRef Valizadeh, A., Mikaeili, H., Samiei, M., Farkhani, S.M., Zarghami, N., Kouhi, M.: Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res. Lett. 7, 480 (2012)CrossRef
94.
go back to reference Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J.: Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538 (2005)CrossRef Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J.: Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538 (2005)CrossRef
95.
go back to reference Dubertret, B., Skourides, P., Norris, D.J., Noireaux, V., Brivanlou, A.H., Libchaber, A.: In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298, 1759 (2002)CrossRef Dubertret, B., Skourides, P., Norris, D.J., Noireaux, V., Brivanlou, A.H., Libchaber, A.: In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298, 1759 (2002)CrossRef
96.
go back to reference Larson, D.R., Zipfel, W.R., Williams, R.M., Clark, S.W., Bruchez, M.P., Wise, F.W.: Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300, 1434 (2003)CrossRef Larson, D.R., Zipfel, W.R., Williams, R.M., Clark, S.W., Bruchez, M.P., Wise, F.W.: Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300, 1434 (2003)CrossRef
97.
go back to reference Gao, X., Yang, L., Petros, J.A., Marshall, F.F., Simons, J.W., Nie, S.: In vivo, molecular and cellular imaging with quantum dots. Curr. Opin. Biotech. 16, 63–72 (2005)CrossRef Gao, X., Yang, L., Petros, J.A., Marshall, F.F., Simons, J.W., Nie, S.: In vivo, molecular and cellular imaging with quantum dots. Curr. Opin. Biotech. 16, 63–72 (2005)CrossRef
98.
go back to reference Ballou, B., Lagerholm, B.C., Ernst, L.A., Bruchez, M.P., Waggoner, A.S.: Noninvasive imaging of quantum dots in mice. Bioconjug. Chem. 15, 79–86 (2004)CrossRef Ballou, B., Lagerholm, B.C., Ernst, L.A., Bruchez, M.P., Waggoner, A.S.: Noninvasive imaging of quantum dots in mice. Bioconjug. Chem. 15, 79–86 (2004)CrossRef
99.
go back to reference Cai, W., Shin, D., Chen, K., Olivier, G., Cao, Q., Wang, X.: Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett. 6, 669 (2006)CrossRef Cai, W., Shin, D., Chen, K., Olivier, G., Cao, Q., Wang, X.: Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett. 6, 669 (2006)CrossRef
100.
go back to reference Gao, X., Cui, Y., Levenson, R.M., Chung, L.W., Nie, S.: In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotech. 22, 969 (2004)CrossRef Gao, X., Cui, Y., Levenson, R.M., Chung, L.W., Nie, S.: In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotech. 22, 969 (2004)CrossRef
101.
go back to reference Lim, S.Y., Shen, W., Gao, Z.: Carbon quantum dots and their applications. Chem. Soc. Rev. 44, 362–381 (2015)CrossRef Lim, S.Y., Shen, W., Gao, Z.: Carbon quantum dots and their applications. Chem. Soc. Rev. 44, 362–381 (2015)CrossRef
102.
go back to reference Liu, R., Wu, D., Liu, S., Koynov, K., Knoll, W., Li, Q.: An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew. Chem. 48, 4598–4601 (2010)CrossRef Liu, R., Wu, D., Liu, S., Koynov, K., Knoll, W., Li, Q.: An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew. Chem. 48, 4598–4601 (2010)CrossRef
103.
go back to reference Baker, S., Baker, G.: Luminescent carbon nanodots: emergent nanolights. Angew. Chem. 49, 6726–6744 (2010)CrossRef Baker, S., Baker, G.: Luminescent carbon nanodots: emergent nanolights. Angew. Chem. 49, 6726–6744 (2010)CrossRef
104.
go back to reference Liu, Z., Chen, W., Li, Y., Xu, Q.: Integrin αvβ3-targeted C-dot nanocomposites as multifunctional agents for cell targeting and photoacoustic imaging of superficial malignant tumors. Anal. Chem. 88, 11955 (2016)CrossRef Liu, Z., Chen, W., Li, Y., Xu, Q.: Integrin αvβ3-targeted C-dot nanocomposites as multifunctional agents for cell targeting and photoacoustic imaging of superficial malignant tumors. Anal. Chem. 88, 11955 (2016)CrossRef
105.
go back to reference Yang, S.T., Cao, L., Luo, P.G., Lu, F., Wang, X., Wang, H.: Carbon dots for optical imaging in vivo. J. Am. Chem. Soc. 131, 11308 (2009)CrossRef Yang, S.T., Cao, L., Luo, P.G., Lu, F., Wang, X., Wang, H.: Carbon dots for optical imaging in vivo. J. Am. Chem. Soc. 131, 11308 (2009)CrossRef
106.
go back to reference Wu, L., Luderer, M., Yang, X., Swain, C., Zhang, H., Nelson, K.: Surface passivation of carbon nanoparticles with branched macromolecules influences near infrared bioimaging. Theranostics 3, 677–686 (2013)CrossRef Wu, L., Luderer, M., Yang, X., Swain, C., Zhang, H., Nelson, K.: Surface passivation of carbon nanoparticles with branched macromolecules influences near infrared bioimaging. Theranostics 3, 677–686 (2013)CrossRef
107.
go back to reference Huang, Y.F., Zhou, X., Zhou, R., Zhang, H., Kang, K.B., Zhao, M.: One-pot synthesis of highly luminescent carbon quantum dots and their nontoxic ingestion by zebrafish for in vivo imaging. Chemistry 20, 5640 (2014)CrossRef Huang, Y.F., Zhou, X., Zhou, R., Zhang, H., Kang, K.B., Zhao, M.: One-pot synthesis of highly luminescent carbon quantum dots and their nontoxic ingestion by zebrafish for in vivo imaging. Chemistry 20, 5640 (2014)CrossRef
108.
go back to reference Zheng, M., Ruan, S., Liu, S., Sun, T., Qu, D., Zhao, H.: Self-targeting fluorescent carbon dots for diagnosis of brain cancer cells. ACS Nano 9, 11455 (2015)CrossRef Zheng, M., Ruan, S., Liu, S., Sun, T., Qu, D., Zhao, H.: Self-targeting fluorescent carbon dots for diagnosis of brain cancer cells. ACS Nano 9, 11455 (2015)CrossRef
110.
go back to reference Smith, B.R., Gambhir, S.S.: Nanomaterials for in vivo imaging. Chem. Rev. 117, 901 (2017)CrossRef Smith, B.R., Gambhir, S.S.: Nanomaterials for in vivo imaging. Chem. Rev. 117, 901 (2017)CrossRef
111.
go back to reference Liu, T., Shi, S., Liang, C., Shen, S., Cheng, L., Wang, C.: Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy. ACS Nano 9, 950–960 (2015)CrossRef Liu, T., Shi, S., Liang, C., Shen, S., Cheng, L., Wang, C.: Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy. ACS Nano 9, 950–960 (2015)CrossRef
112.
go back to reference Fang, C., Zhang, M.: Nanoparticle-based theragnostics: integrating diagnostic and therapeutic potentials in nanomedicine. J. Control. Release 146, 2 (2010)CrossRef Fang, C., Zhang, M.: Nanoparticle-based theragnostics: integrating diagnostic and therapeutic potentials in nanomedicine. J. Control. Release 146, 2 (2010)CrossRef
113.
go back to reference Mccarthy, J.R., Weissleder, R.: Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv. Drug Deliv. Rev. 60, 1241–1251 (2008)CrossRef Mccarthy, J.R., Weissleder, R.: Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv. Drug Deliv. Rev. 60, 1241–1251 (2008)CrossRef
114.
go back to reference Hong, G., Diao, S., Antaris, A.L., Dai, H.: Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev. 115, 10816 (2015)CrossRef Hong, G., Diao, S., Antaris, A.L., Dai, H.: Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev. 115, 10816 (2015)CrossRef
115.
go back to reference Huang, X., Elsayed, I.H., Qian, W., Elsayed, M.A.: Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115 (2006)CrossRef Huang, X., Elsayed, I.H., Qian, W., Elsayed, M.A.: Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115 (2006)CrossRef
116.
go back to reference Everts, M., Saini, V., Leddon, J.L., Kok, R.J., Stoff-Khalili, M., Preuss, M.A., Milican, C.L., Perkins, G., Brown, J.M., Bagaria, H., Nikles, D.E., Johnson, D.T., Zharov, V.P., Curiel, D.T.: Covalently linked au nanoparticles to a viral vector: potential for combined photothermal and gene cancer therapy. Nano Lett. 6, 587 (2006)CrossRef Everts, M., Saini, V., Leddon, J.L., Kok, R.J., Stoff-Khalili, M., Preuss, M.A., Milican, C.L., Perkins, G., Brown, J.M., Bagaria, H., Nikles, D.E., Johnson, D.T., Zharov, V.P., Curiel, D.T.: Covalently linked au nanoparticles to a viral vector: potential for combined photothermal and gene cancer therapy. Nano Lett. 6, 587 (2006)CrossRef
117.
go back to reference Khlebtsov, B., Zharov, V., Melnikov, A., Tuchin, V., Khlebtsov, N.: Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters. Nanotechnology 17, 5167 (2006)CrossRef Khlebtsov, B., Zharov, V., Melnikov, A., Tuchin, V., Khlebtsov, N.: Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters. Nanotechnology 17, 5167 (2006)CrossRef
118.
go back to reference Zerda, A.D.L., Zavaleta, C., Keren, S., Vaithilingam, S., Bodapati, S., Liu, Z.: Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotech. 3, 557–562 (2008)CrossRef Zerda, A.D.L., Zavaleta, C., Keren, S., Vaithilingam, S., Bodapati, S., Liu, Z.: Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotech. 3, 557–562 (2008)CrossRef
119.
go back to reference Chamberland, D.L., Agarwal, A., Kotov, N., Brian, F.J., Carson, P.L., Wang, X.: Photoacoustic tomography of joints aided by an etanercept-conjugated gold nanoparticle contrast agent-an ex vivo preliminary rat study. Nanotechnology 19, 095101 (2008)CrossRef Chamberland, D.L., Agarwal, A., Kotov, N., Brian, F.J., Carson, P.L., Wang, X.: Photoacoustic tomography of joints aided by an etanercept-conjugated gold nanoparticle contrast agent-an ex vivo preliminary rat study. Nanotechnology 19, 095101 (2008)CrossRef
120.
go back to reference Wang, Y., Xie, X., Wang, X., Ku, G., Gill, K.L., O’Neal, D.P., Stoica, G., Wang, L.V.: Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain. Nano Lett. 4, 1689–1692 (2004)CrossRef Wang, Y., Xie, X., Wang, X., Ku, G., Gill, K.L., O’Neal, D.P., Stoica, G., Wang, L.V.: Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain. Nano Lett. 4, 1689–1692 (2004)CrossRef
121.
go back to reference Agarwal, A., Huang, S.W., Odonnell, M., Day, K.C.: Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J. Appl. Phys. 102, 064701-064701-4 (2007) Agarwal, A., Huang, S.W., Odonnell, M., Day, K.C.: Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J. Appl. Phys. 102, 064701-064701-4 (2007)
122.
go back to reference Kim, J.W., Galanzha, E.I., Shashkov, E.V., Moon, H.M., Zharov, V.P.: Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat. Nanotech. 4, 688–694 (2009)CrossRef Kim, J.W., Galanzha, E.I., Shashkov, E.V., Moon, H.M., Zharov, V.P.: Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat. Nanotech. 4, 688–694 (2009)CrossRef
123.
go back to reference Sheng, Z., Hu, D., Xue, M., He, M., Gong, P., Cai, L.: Indocyanine green nanoparticles for theranostic applications. Nano-Micro Lett. 5, 145–150 (2013)CrossRef Sheng, Z., Hu, D., Xue, M., He, M., Gong, P., Cai, L.: Indocyanine green nanoparticles for theranostic applications. Nano-Micro Lett. 5, 145–150 (2013)CrossRef
124.
go back to reference Sheng, Z., Hu, D., Zheng, M., Zhao, P., Liu, H., Gao, D.: Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy. ACS Nano 8, 12310 (2014)CrossRef Sheng, Z., Hu, D., Zheng, M., Zhao, P., Liu, H., Gao, D.: Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy. ACS Nano 8, 12310 (2014)CrossRef
125.
go back to reference Savic, R., Luo, L., Eisenberg, L., Maysinger, D.: Micellar nanocontainers distribute to definedcytoplasmic organelles. Science 300, 615–618 (2003)CrossRef Savic, R., Luo, L., Eisenberg, L., Maysinger, D.: Micellar nanocontainers distribute to definedcytoplasmic organelles. Science 300, 615–618 (2003)CrossRef
126.
go back to reference Torchilin, V.P.: Micellar nanocarriers: pharmaceutical perspectives. Pharm. Res. 24, 1 (2007)CrossRef Torchilin, V.P.: Micellar nanocarriers: pharmaceutical perspectives. Pharm. Res. 24, 1 (2007)CrossRef
127.
go back to reference Miura, Y., Tsuji, A.B., Sugyo, A., Sudo, H., Aoki, I., Inubushi, M.: Polymeric micelle platform for multimodal tomographic imaging to detect scirrhous gastric cancer. ACS Biomater. Sci. Eng. 1, 1067–1076 (2015)CrossRef Miura, Y., Tsuji, A.B., Sugyo, A., Sudo, H., Aoki, I., Inubushi, M.: Polymeric micelle platform for multimodal tomographic imaging to detect scirrhous gastric cancer. ACS Biomater. Sci. Eng. 1, 1067–1076 (2015)CrossRef
128.
go back to reference Lu, A.H., Salabas, E.L., Schuth, F.: Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 46, 1222 (2007)CrossRef Lu, A.H., Salabas, E.L., Schuth, F.: Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 46, 1222 (2007)CrossRef
129.
go back to reference Frimpong, R.A., Hilt, J.Z.: Magnetic nanoparticles in biomedicine: synthesis, functionalization and applications. Nanomedicine 5, 1401 (2010)CrossRef Frimpong, R.A., Hilt, J.Z.: Magnetic nanoparticles in biomedicine: synthesis, functionalization and applications. Nanomedicine 5, 1401 (2010)CrossRef
130.
go back to reference Sinha, R., Kim, G.J., Nie, S., Shin, D.M.: Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol. Cancer Ther. 2006, 5 (1909) Sinha, R., Kim, G.J., Nie, S., Shin, D.M.: Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol. Cancer Ther. 2006, 5 (1909)
131.
go back to reference Li, J., Wang, Y., Liang, R., An, X., Wang, K., Shen, G.: Recent advances in targeted nanoparticles drug delivery to melanoma. Nanomed. Nanotech. Biol. Med. 11, 769–794 (2015)CrossRef Li, J., Wang, Y., Liang, R., An, X., Wang, K., Shen, G.: Recent advances in targeted nanoparticles drug delivery to melanoma. Nanomed. Nanotech. Biol. Med. 11, 769–794 (2015)CrossRef
132.
go back to reference Sailor, M.J., Park, J.H.: Hybrid nanoparticles for detection and treatment of cancer. Adv. Mater. 24, 3779 (2012)CrossRef Sailor, M.J., Park, J.H.: Hybrid nanoparticles for detection and treatment of cancer. Adv. Mater. 24, 3779 (2012)CrossRef
133.
go back to reference Smith, B.R., Kempen, P., Bouley, D., Xu, A., Liu, Z., Melosh, N., Dai, H., Sinclair, R., Gambhir, S.S.: Shape matters: intravital microscopy reveals surprising geometrical dependence for nanoparticles in tumor models of extravasation. Nano Lett. 12, 3369–3377 (2012)CrossRef Smith, B.R., Kempen, P., Bouley, D., Xu, A., Liu, Z., Melosh, N., Dai, H., Sinclair, R., Gambhir, S.S.: Shape matters: intravital microscopy reveals surprising geometrical dependence for nanoparticles in tumor models of extravasation. Nano Lett. 12, 3369–3377 (2012)CrossRef
134.
go back to reference Lobatto, M.E., Calcagno, C., Millon, A., Senders, M.L., Fay, F., Robson, P.M.: Atherosclerotic plaque targeting mechanism of long-circulating nanoparticles established by multimodal imaging. ACS Nano 9, 1837–1847 (2015)CrossRef Lobatto, M.E., Calcagno, C., Millon, A., Senders, M.L., Fay, F., Robson, P.M.: Atherosclerotic plaque targeting mechanism of long-circulating nanoparticles established by multimodal imaging. ACS Nano 9, 1837–1847 (2015)CrossRef
135.
go back to reference Prabhakar, U., Maeda, H., Jain, R.K., Sevickmuraca, E.M., Zamboni, W., Farokhzad, O.C.: Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 73, 2412 (2013)CrossRef Prabhakar, U., Maeda, H., Jain, R.K., Sevickmuraca, E.M., Zamboni, W., Farokhzad, O.C.: Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 73, 2412 (2013)CrossRef
136.
go back to reference Toy, R., Bauer, L., Hoimes, C., Ghaghada, K.B., Karathanasis, E.: Targeted nanotechnology for cancer imaging. Adv. Drug Deliv. Rev. 76, 79 (2014)CrossRef Toy, R., Bauer, L., Hoimes, C., Ghaghada, K.B., Karathanasis, E.: Targeted nanotechnology for cancer imaging. Adv. Drug Deliv. Rev. 76, 79 (2014)CrossRef
137.
go back to reference Louie, A.: Multimodality imaging probes: design and challenges. Chem. Rev. 110, 3146–3195 (2010)CrossRef Louie, A.: Multimodality imaging probes: design and challenges. Chem. Rev. 110, 3146–3195 (2010)CrossRef
138.
go back to reference Kim, J., Park, S., Lee, J.E., Jin, S.M., Lee, J.H., Lee, I.S.: Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy. Angew. Chem. 45, 7754–7758 (2006)CrossRef Kim, J., Park, S., Lee, J.E., Jin, S.M., Lee, J.H., Lee, I.S.: Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy. Angew. Chem. 45, 7754–7758 (2006)CrossRef
139.
go back to reference Kelkar, S.S., Reineke, T.M.: Theranostics: combining imaging and therapy. Bioconjug. Chem. 22, 1879–1903 (2011)CrossRef Kelkar, S.S., Reineke, T.M.: Theranostics: combining imaging and therapy. Bioconjug. Chem. 22, 1879–1903 (2011)CrossRef
140.
go back to reference Kim, J., Kim, H.S., Lee, N., Kim, T., Kim, H., Yu, T.: Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew. Chem. 47, 8438 (2008)CrossRef Kim, J., Kim, H.S., Lee, N., Kim, T., Kim, H., Yu, T.: Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew. Chem. 47, 8438 (2008)CrossRef
141.
go back to reference Kelkar, S.S., Reineke, T.M.: Theranostics: combining imaging and therapy. Bioconjug. Chem. 2011, 22 (1879) Kelkar, S.S., Reineke, T.M.: Theranostics: combining imaging and therapy. Bioconjug. Chem. 2011, 22 (1879)
Metadata
Title
Functional Micro-/Nanomaterials for Imaging Technology
Authors
Waner Chen
Wei Ma
Chunpeng Zou
Yan Yang
Gaoyi Yang
Li Liu
Zhe Liu
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-4804-3_1

Premium Partners