Skip to main content
Top

2024 | OriginalPaper | Chapter

Fundamental Loss of Current Efficiency During Aluminium Electrolysis and Its Correlation with Sodium Content Dissolved in the Aluminium

Authors : Lukas Dion, Paul Desclaux

Published in: Light Metals 2024

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Primary aluminium producers are inclined to maximize the cells’ current efficiency in order to enhance metal production and reduce production cost. For timely decisions, sodium content of the cathodic aluminium has been used as a performance indicator related to individual cell performances. This paper pinpoints the straightforward quantitative theoretical relation which exists between sodium content and current efficiency. This relation is based on the fundamental thermodynamics of the changing bath composition in the boundary layers and on mass transfers at the anodic and cathodic interfaces. Few simplifying hypotheses are used to predict the cell’s optimal current efficiency under a specific set of operating conditions. The proposed calculation methodology is described and a critical discussion is performed to highlight the impact of different factors on the current efficiency along with future considerations necessary to improve the current efficiency estimations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lillebuen, B., et al., Current efficiency and back reaction in aluminium electrolysis. Electrochimica Acta, 1980. 25(2): pp. 131–137. Lillebuen, B., et al., Current efficiency and back reaction in aluminium electrolysis. Electrochimica Acta, 1980. 25(2): pp. 131–137.
2.
go back to reference El-Demerdash, M.F., S.M. El-Raghy, and F.M. El-Daw, Three dimensional model for current efficiency based on the rate of aluminium transfer to anode, in TMS - Light metals, C. Eckert, Editor. 1999. p. p. 353–358. El-Demerdash, M.F., S.M. El-Raghy, and F.M. El-Daw, Three dimensional model for current efficiency based on the rate of aluminium transfer to anode, in TMS - Light metals, C. Eckert, Editor. 1999. p. p. 353–358.
3.
go back to reference Haarberg, G.M., Formation of Metal Fog and Dissolved Metals During Electrodeposition from Molten Salts. ECS Proceedings Volumes, 2002. 2002–19(1): p. 789. Haarberg, G.M., Formation of Metal Fog and Dissolved Metals During Electrodeposition from Molten Salts. ECS Proceedings Volumes, 2002. 2002–19(1): p. 789.
4.
go back to reference Liu, Z., et al., Current efficiency predictive model and its calibration and validation, in TMS - Light metals, C. Suarez, Editor. 2012. p. 935–938. Liu, Z., et al., Current efficiency predictive model and its calibration and validation, in TMS - Light metals, C. Suarez, Editor. 2012. p. 935–938.
5.
go back to reference Dassylva-Raymond, V., Prédiction de l'efficacité de courant du procédé Hall-Héroult, in Applied science. 2009, Université du Québec à Chicoutimi: Chicoutimi. Dassylva-Raymond, V., Prédiction de l'efficacité de courant du procédé Hall-Héroult, in Applied science. 2009, Université du Québec à Chicoutimi: Chicoutimi.
6.
go back to reference Keller, R. Mass transfer in advanced aluminum electrolysis. 1984. Keller, R. Mass transfer in advanced aluminum electrolysis. 1984.
7.
go back to reference Keller, R., Laboratory study on the reaction of impurities in aluminum electrolysis. Light Metals, 1982: p. 295–298. Keller, R., Laboratory study on the reaction of impurities in aluminum electrolysis. Light Metals, 1982: p. 295–298.
8.
go back to reference Sterten, A., P.A. Solli, and A. Solheim, in Al-Symposium. 1995: Donovaly, Slovakia. p. 209–219. Sterten, A., P.A. Solli, and A. Solheim, in Al-Symposium. 1995: Donovaly, Slovakia. p. 209–219.
9.
go back to reference Sterten, A., P.A. Solli, and E. SkyBakmoen, Influence of aluminium impurities on current efficiency in aluminium electrolysis cells. Journal of Applied Electrochemistry, 1998. 28: p. 781–789. Sterten, A., P.A. Solli, and E. SkyBakmoen, Influence of aluminium impurities on current efficiency in aluminium electrolysis cells. Journal of Applied Electrochemistry, 1998. 28: p. 781–789.
10.
go back to reference Chollier-Brym, M.-J., et al., Factors Influencing the Distribution of Impurities in the Metal of Hall–Héroult Pots and Their Impacts on Current Efficiency. JOM, 2019. 71(3): p. 1169–1174. Chollier-Brym, M.-J., et al., Factors Influencing the Distribution of Impurities in the Metal of Hall–Héroult Pots and Their Impacts on Current Efficiency. JOM, 2019. 71(3): p. 1169–1174.
11.
go back to reference Haarberg, G.M., et al., The role of dissolved metal during electrodeposition of aluminium from cryolite-alumina melts, in TMS - Light metals, W. Schneider, Editor. 2002. p. p. 1083–1089. Haarberg, G.M., et al., The role of dissolved metal during electrodeposition of aluminium from cryolite-alumina melts, in TMS - Light metals, W. Schneider, Editor. 2002. p. p. 1083–1089.
12.
go back to reference Morris, D.R., A Mathematical Model of the Alumina Reduction Cell. ECS Proceedings Volumes, 1976. 1976–6(1): p. 469. Morris, D.R., A Mathematical Model of the Alumina Reduction Cell. ECS Proceedings Volumes, 1976. 1976–6(1): p. 469.
13.
go back to reference Dewing, E.W. and K. Yoshida, Electronic conductivity in cryolite-alumina melts? Canadian Metallurgical Quarterly, 1976. 15(4): p. 299–303. Dewing, E.W. and K. Yoshida, Electronic conductivity in cryolite-alumina melts? Canadian Metallurgical Quarterly, 1976. 15(4): p. 299–303.
14.
go back to reference Hyland, W., The Current Efficiency of a Shorted Anode in a Prebake Cell. Light Metals, 1984: p. 711–720. Hyland, W., The Current Efficiency of a Shorted Anode in a Prebake Cell. Light Metals, 1984: p. 711–720.
15.
go back to reference Côté, P., et al., Predicting Instability and Current Efficiency of Industrial Cells, in Light Metals 2017. 2017. p. 623–629. Côté, P., et al., Predicting Instability and Current Efficiency of Industrial Cells, in Light Metals 2017. 2017. p. 623–629.
16.
go back to reference Tabereaux, A., in The international Harald A. Oye Symposium. 1995: Trondheim, Norway. p. 115–127. Tabereaux, A., in The international Harald A. Oye Symposium. 1995: Trondheim, Norway. p. 115–127.
17.
go back to reference Tabereaux, A.T., The role of Sodium in Aluminium Electrolysis : A possible indicator of cell performance, in TMS - Light Metals, W.R. Hale, Editor. 1996. p. 319–326. Tabereaux, A.T., The role of Sodium in Aluminium Electrolysis : A possible indicator of cell performance, in TMS - Light Metals, W.R. Hale, Editor. 1996. p. 319–326.
18.
go back to reference Thonstad, J., et al., The content of sodium in aluminium in laboratory and in industrial cells. TMS - Light Metals, 2001. Thonstad, J., et al., The content of sodium in aluminium in laboratory and in industrial cells. TMS - Light Metals, 2001.
19.
go back to reference Haupin, W.E., Understanding boundary layers, in TMS - light metals, R. Huglen, Editor. 1997. p. 319–323. Haupin, W.E., Understanding boundary layers, in TMS - light metals, R. Huglen, Editor. 1997. p. 319–323.
20.
go back to reference Danielik, V., P. Fellner, and J. Thonstad, Content of sodium and lithium in aluminium during electrolysis of cryolite-based melts. Journal of Applied Electrochemistry, 1998. 28: p. 1265-1268. Danielik, V., P. Fellner, and J. Thonstad, Content of sodium and lithium in aluminium during electrolysis of cryolite-based melts. Journal of Applied Electrochemistry, 1998. 28: p. 1265-1268.
21.
go back to reference Fellner, P., et al., The content of sodium in aluminium during electrolysis of the molten systems Na3AlF6–NaCl–Al2O3 and NaF–NaCl. Electrochimica Acta, 2004. 49(9–10): p. 1505–1511. Fellner, P., et al., The content of sodium in aluminium during electrolysis of the molten systems Na3AlF6–NaCl–Al2O3 and NaF–NaCl. Electrochimica Acta, 2004. 49(9–10): p. 1505–1511.
22.
go back to reference Keller, R., J.W. Burgman, and P.j. Sides, in Light Metals. 1988. p. 629–631. Keller, R., J.W. Burgman, and P.j. Sides, in Light Metals. 1988. p. 629–631.
23.
go back to reference Solheim, A., Crystallization of cryolithe and alumina at metal-bath interface in aluminium reduction cells, in TMS - Light Metals, W. Schneider, Editor. 2002. p. 225–230. Solheim, A., Crystallization of cryolithe and alumina at metal-bath interface in aluminium reduction cells, in TMS - Light Metals, W. Schneider, Editor. 2002. p. 225–230.
24.
go back to reference Kent, J.H., Journal of Metals (JOM), 1970. 22(11): p. 30–36. Kent, J.H., Journal of Metals (JOM), 1970. 22(11): p. 30–36.
25.
go back to reference Thonstad, J., The solubility of aluminium in NaF-AlF3-Al2O3 melts. Canadian Journal of Chemistry, 1965. 43(12). Thonstad, J., The solubility of aluminium in NaF-AlF3-Al2O3 melts. Canadian Journal of Chemistry, 1965. 43(12).
26.
go back to reference Yoshida, K. and E.W. Dewing, The apparent solubility of aluminium in cryolite melts. Metallurgical Transactions, 1972. 2(July): p. 1817–1821. Yoshida, K. and E.W. Dewing, The apparent solubility of aluminium in cryolite melts. Metallurgical Transactions, 1972. 2(July): p. 1817–1821.
27.
go back to reference Danielik, V., et al., Solubility of Aluminum in Cryolite-Based Melts. Metallurgical and Materials Transactions B, 2009. 41(2): p. 430–436. Danielik, V., et al., Solubility of Aluminum in Cryolite-Based Melts. Metallurgical and Materials Transactions B, 2009. 41(2): p. 430–436.
28.
go back to reference Arthur, A.M., The Solubility of Aluminum in Cryolite-Alumina Melts and the Mechanism of Metal Loss. Metallurgical transactions, 1974. 5: p. 1225–1230. Arthur, A.M., The Solubility of Aluminum in Cryolite-Alumina Melts and the Mechanism of Metal Loss. Metallurgical transactions, 1974. 5: p. 1225–1230.
29.
go back to reference Bale, C., et al., FactSage 6.1. 1976–2010. Bale, C., et al., FactSage 6.1. 1976–2010.
30.
go back to reference Levich, V.G.e., Physicochemical Hydrodynamics, ed. I. Prentice-Hall. 1962, United States of America. Levich, V.G.e., Physicochemical Hydrodynamics, ed. I. Prentice-Hall. 1962, United States of America.
31.
go back to reference Odegard, R., On the Electrochemistry of Dissolved Aluminium in Cryolitic Melts. Electrochimica Acta, 1988. 33(4): p. 527–535. Odegard, R., On the Electrochemistry of Dissolved Aluminium in Cryolitic Melts. Electrochimica Acta, 1988. 33(4): p. 527–535.
32.
go back to reference Nai Xiang, F., K. Grjotheim, and H. Kvandet, Current Efficiency Measurements in Laboratory Aluminium Cells—VIII. Current, Temperature and Cathode Alloy Composition (Al–Cu), Al-Diffusivity. Canadian Metallurgical Quarterly, 1986. 25(4): p. 287–291. Nai Xiang, F., K. Grjotheim, and H. Kvandet, Current Efficiency Measurements in Laboratory Aluminium Cells—VIII. Current, Temperature and Cathode Alloy Composition (Al–Cu), Al-Diffusivity. Canadian Metallurgical Quarterly, 1986. 25(4): p. 287–291.
33.
go back to reference Alarie, J., et al., Determination of the alumina diffusivity and dissolution rate for alumina samples immersed in a cryolitic bath. Materiala, 2023. Alarie, J., et al., Determination of the alumina diffusivity and dissolution rate for alumina samples immersed in a cryolitic bath. Materiala, 2023.
34.
go back to reference Chollier-Brym, M.-J., et al. Factors Affecting Current Efficiency of Hall-Héroult Process Based on the Variation of Sodium Content in Pot Metal. in ICSOBA. 2016. Quebec City. Chollier-Brym, M.-J., et al. Factors Affecting Current Efficiency of Hall-Héroult Process Based on the Variation of Sodium Content in Pot Metal. in ICSOBA. 2016. Quebec City.
35.
go back to reference Yao, P.C. and D.J. Fray, Sodium activity determinations in molten 99.5% aluminium using solid electrolytes. Journal of Applied Electrochemistry, 1985. 15: pp. 379–386. Yao, P.C. and D.J. Fray, Sodium activity determinations in molten 99.5% aluminium using solid electrolytes. Journal of Applied Electrochemistry, 1985. 15: pp. 379–386.
36.
go back to reference Dewing, E.W., Thermodynamics of the System NaF-AIF3: Part VI. Revision. Metallurgical Transactions B, 1990. 21B(April): p. 285–294. Dewing, E.W., Thermodynamics of the System NaF-AIF3: Part VI. Revision. Metallurgical Transactions B, 1990. 21B(April): p. 285–294.
37.
go back to reference Dion, L., et al., Sodium content in aluminum and current efficiency—Correlation through multivariate analysis, in Light Metals, M. Cootsey, Editor. 2013: San Antonio, Tx, USA. Dion, L., et al., Sodium content in aluminum and current efficiency—Correlation through multivariate analysis, in Light Metals, M. Cootsey, Editor. 2013: San Antonio, Tx, USA.
Metadata
Title
Fundamental Loss of Current Efficiency During Aluminium Electrolysis and Its Correlation with Sodium Content Dissolved in the Aluminium
Authors
Lukas Dion
Paul Desclaux
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-50308-5_81

Premium Partners