Skip to main content
Top

2023 | OriginalPaper | Chapter

2. Fundamental Physics of Planar Inductors, Embedded Planar Transformers, and Planar (Patch) Antennas

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter provides a comprehensive review of the existing information|knowledge of planar spiral inductors, embedded planar transformers, and planar (patch) antennas. The review starts with examining Maxwell’s laws of electrodynamics that govern propagation of electromagnetic waves through conductors and dielectrics (insulators)—here the focus is on electromagnetic wave propagation through conductors. This key knowledge is then applied to analyze and understand the properties and performance metrics of planar spiral inductors, embedded planar transformers, and planar (patch) antennas.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Long, J. R., & Cop. (1997). In addition, a periodic structure of transverse slots is used to suppress excitation of the fundamental even mode. Figure 9 shows the cross section of the antenna’s electric field profile with and without the mode suppressor. In the top figure, a substantial amount of asymmetry in the vertical field can be observed, indicating that both the fundamental (even) and the leakyeland, M. A. The Modeling, Characterization and Design of Monolithic Inductors for Silicon RF ICs. IEEE Journal of Solid-State Circuits, 32, 357–369. Long, J. R., & Cop. (1997). In addition, a periodic structure of transverse slots is used to suppress excitation of the fundamental even mode. Figure 9 shows the cross section of the antenna’s electric field profile with and without the mode suppressor. In the top figure, a substantial amount of asymmetry in the vertical field can be observed, indicating that both the fundamental (even) and the leakyeland, M. A. The Modeling, Characterization and Design of Monolithic Inductors for Silicon RF ICs. IEEE Journal of Solid-State Circuits, 32, 357–369.
2.
go back to reference Niknejad, A. M., & Meyer, R. G. (1998). Analysis, design, and optimization of spiral inductors and transformers for Si RF ICs. IEEE Journal of Solid-State Circuits, 33, 1470–1481.CrossRef Niknejad, A. M., & Meyer, R. G. (1998). Analysis, design, and optimization of spiral inductors and transformers for Si RF ICs. IEEE Journal of Solid-State Circuits, 33, 1470–1481.CrossRef
3.
go back to reference Reyes, A. C., El-Ghazaly, S. M., Dorn, S. J., Dydyk, M., Schrider, D. K., & Patterson, H. (1995). Coplanar waveguides and microwave inductors on silicon substrates. IEEE Transactions on Microwave Theory and Technology, 43, 2016–2022.CrossRef Reyes, A. C., El-Ghazaly, S. M., Dorn, S. J., Dydyk, M., Schrider, D. K., & Patterson, H. (1995). Coplanar waveguides and microwave inductors on silicon substrates. IEEE Transactions on Microwave Theory and Technology, 43, 2016–2022.CrossRef
4.
go back to reference Ashby, K. B., Koullias, I. C., Finley, W. C., Bastek, J. J., & Moinian, S. (1996). High Q inductors for wireless applications in a complementary silicon bipolar process. IEEE Journal of Solid-State Circuits, 31, 4–9.CrossRef Ashby, K. B., Koullias, I. C., Finley, W. C., Bastek, J. J., & Moinian, S. (1996). High Q inductors for wireless applications in a complementary silicon bipolar process. IEEE Journal of Solid-State Circuits, 31, 4–9.CrossRef
5.
go back to reference Lu, L. H., Ponchak, G. E., Bhattacharya, P., & Katehi, L. (2000). High-Q X-band and K‘-band micromachined spiral inductors for use in Si-based integrated circuits. Proceedings of Silicon Monolithic Integrated Circuits RF Systems, 108–112. Lu, L. H., Ponchak, G. E., Bhattacharya, P., & Katehi, L. (2000). High-Q X-band and K‘-band micromachined spiral inductors for use in Si-based integrated circuits. Proceedings of Silicon Monolithic Integrated Circuits RF Systems, 108–112.
6.
go back to reference Bahl, I. J. (1999). Improved quality factor spiral inductor on GaAs substrates. IEEE Microwave Guided Wave Letters, 9, 398–400.CrossRef Bahl, I. J. (1999). Improved quality factor spiral inductor on GaAs substrates. IEEE Microwave Guided Wave Letters, 9, 398–400.CrossRef
7.
go back to reference Ribas, R. P., Lescot, J., Leclercq, J. L., Bernnouri, N., Karam, J. M., & Courtois, B. (1998). Micromachined planar spiral inductor in standard GaAs HEMT MMIC technology. IEEE Electron Device Letters, 19, 285–287.CrossRef Ribas, R. P., Lescot, J., Leclercq, J. L., Bernnouri, N., Karam, J. M., & Courtois, B. (1998). Micromachined planar spiral inductor in standard GaAs HEMT MMIC technology. IEEE Electron Device Letters, 19, 285–287.CrossRef
8.
go back to reference Takenaka, H., & Ueda, D. (1996). 0.15μm T-shaped gate fabrication for GaAs MODFET using phase shift lithography. IEEE Transactions on Electron Devices, 43, 238–244.CrossRef Takenaka, H., & Ueda, D. (1996). 0.15μm T-shaped gate fabrication for GaAs MODFET using phase shift lithography. IEEE Transactions on Electron Devices, 43, 238–244.CrossRef
9.
go back to reference Chiou, M. H., & Hsu, K. Y. J. (2006). A new wideband modeling technique for spiral inductors. IET Microwave, Antennas, and Propagation, 151, 115–120.CrossRef Chiou, M. H., & Hsu, K. Y. J. (2006). A new wideband modeling technique for spiral inductors. IET Microwave, Antennas, and Propagation, 151, 115–120.CrossRef
10.
go back to reference Lu, H.-C., Chan, T. B., Chen, C. C. P., & Liu, C. M. (2010). Spiral inductor synthesis and optimization with measurement. IEEE Transactions on Advanced Packaging, 33. Lu, H.-C., Chan, T. B., Chen, C. C. P., & Liu, C. M. (2010). Spiral inductor synthesis and optimization with measurement. IEEE Transactions on Advanced Packaging, 33.
11.
go back to reference Talwalkar, N. A., Yue, C. P., & Wong, S. S. (2005). Analysis and synthesis of on-chip spiral inductors. IEEE Transactions on Electron Devices, 52, 176–182.CrossRef Talwalkar, N. A., Yue, C. P., & Wong, S. S. (2005). Analysis and synthesis of on-chip spiral inductors. IEEE Transactions on Electron Devices, 52, 176–182.CrossRef
12.
go back to reference Mukherjee, S., Mutnury, S., Dalmia, S., & Swaminathan, M. (2005). Layout-level synthesis of RF inductors and filters in LCP substrate for Wi-fi applications. IEEE Transactions on Microwave Theory and Technology, 53, 2196–2210.CrossRef Mukherjee, S., Mutnury, S., Dalmia, S., & Swaminathan, M. (2005). Layout-level synthesis of RF inductors and filters in LCP substrate for Wi-fi applications. IEEE Transactions on Microwave Theory and Technology, 53, 2196–2210.CrossRef
13.
go back to reference Kulkarni, J. P., Augustine, C., Jung, C., & Roy, K. (2010). Nano spiral inductors for low-power digital spintronic circuits. IEEE Trans. on Magnetics, 46, 1898–1901.CrossRef Kulkarni, J. P., Augustine, C., Jung, C., & Roy, K. (2010). Nano spiral inductors for low-power digital spintronic circuits. IEEE Trans. on Magnetics, 46, 1898–1901.CrossRef
14.
go back to reference Greenhouse, H. M. (1974). Design of planar rectangular microelectronic inductors. IEEE Transactions on Parts, Hybrids and Packaging, 10, 101–109.CrossRef Greenhouse, H. M. (1974). Design of planar rectangular microelectronic inductors. IEEE Transactions on Parts, Hybrids and Packaging, 10, 101–109.CrossRef
16.
go back to reference Jenei, S., Nauwelaers, B. K. J. C., & Decoutere, S. (2002). Physics-based closed-form inductance expression for compact modeling of integrated spiral inductors. IEEE Journal of Solid-State Circuits, 37, 77–80.CrossRef Jenei, S., Nauwelaers, B. K. J. C., & Decoutere, S. (2002). Physics-based closed-form inductance expression for compact modeling of integrated spiral inductors. IEEE Journal of Solid-State Circuits, 37, 77–80.CrossRef
17.
go back to reference Asgaran, S. (2002). New accurate physics-based closed-form expressions for compact modeling and design of on-chip spiral inductors. Proceedings of the 14th International Conference on Microelectronics, 247–250. Asgaran, S. (2002). New accurate physics-based closed-form expressions for compact modeling and design of on-chip spiral inductors. Proceedings of the 14th International Conference on Microelectronics, 247–250.
18.
go back to reference Mohan, S. S., Hershenson, M. M., Boyd, S. P., & Lee, T. H. (1999). Simple accurate expressions for planar spiral inductance. IEEE Journal of Solid-State Circuits, 34, 1419–1424.CrossRef Mohan, S. S., Hershenson, M. M., Boyd, S. P., & Lee, T. H. (1999). Simple accurate expressions for planar spiral inductance. IEEE Journal of Solid-State Circuits, 34, 1419–1424.CrossRef
19.
go back to reference Chen, C. C., Huang, J. K., & Cheng, Y. T. (2005). A closed-form integral model of spiral inductor using the Kramers-Kronig relations. IEEE Microwave and Wireless Components Letters, 15. Chen, C. C., Huang, J. K., & Cheng, Y. T. (2005). A closed-form integral model of spiral inductor using the Kramers-Kronig relations. IEEE Microwave and Wireless Components Letters, 15.
20.
go back to reference Sieiro, J., Lopez-Villegas, J. M., Cabanillas, J., Osorio, J. A., & Samitier, J. (2002). A physical frequency-dependent compact model for RF integrated inductors. IEEE Transactions on Microwave Theory and Technology, 50, 384–392.CrossRef Sieiro, J., Lopez-Villegas, J. M., Cabanillas, J., Osorio, J. A., & Samitier, J. (2002). A physical frequency-dependent compact model for RF integrated inductors. IEEE Transactions on Microwave Theory and Technology, 50, 384–392.CrossRef
21.
go back to reference Sun, H., Liu, Z., Zhao, J., Wang, L., & Zhu, J. (2008). The enhancement of Q-factor of planar spiral inductor with low-temperature annealing. IEEE Transactions on Electron Devices, 55, 931–936.CrossRef Sun, H., Liu, Z., Zhao, J., Wang, L., & Zhu, J. (2008). The enhancement of Q-factor of planar spiral inductor with low-temperature annealing. IEEE Transactions on Electron Devices, 55, 931–936.CrossRef
22.
go back to reference Tsai, H. S., Lin, L., Frye, R. C., Tai, K. L., Lau, M. Y., Kossives, D., Hrycenko, F., & Chen, Y. K. (1997). Investigation of current crowding effect on spiral inductors. IEEE MTT-S Symposium on Technologies to Wireless Applications, 139–142. Tsai, H. S., Lin, L., Frye, R. C., Tai, K. L., Lau, M. Y., Kossives, D., Hrycenko, F., & Chen, Y. K. (1997). Investigation of current crowding effect on spiral inductors. IEEE MTT-S Symposium on Technologies to Wireless Applications, 139–142.
23.
go back to reference Bushyager, N., Davis, M., Dalton, E., Laskar, J., & Tentzeris, M. (2002). Q-factor and optimization of multilayer inductors for RF packaging microsystems using time domain techniques. Electronic Components and Technology Conference, 1718–1721. Bushyager, N., Davis, M., Dalton, E., Laskar, J., & Tentzeris, M. (2002). Q-factor and optimization of multilayer inductors for RF packaging microsystems using time domain techniques. Electronic Components and Technology Conference, 1718–1721.
24.
go back to reference Eroglu, A., & Lee, J. K. (2008). The complete design of microstrip directional couplers using the synthesis technique. IEEE Transactions on Instrumentation and Measurement, 12, 2756–2761.CrossRef Eroglu, A., & Lee, J. K. (2008). The complete design of microstrip directional couplers using the synthesis technique. IEEE Transactions on Instrumentation and Measurement, 12, 2756–2761.CrossRef
25.
go back to reference Costa, E. M. M. (2009). Parasitic capacitances on planar coil. Journal of Electromagnetic Waves and Applications, 23(17–18), 2339–2350.CrossRef Costa, E. M. M. (2009). Parasitic capacitances on planar coil. Journal of Electromagnetic Waves and Applications, 23(17–18), 2339–2350.CrossRef
26.
go back to reference Nguyen, N. M., & Meyer, R. G. (1990). Si IC-compatible inductors and LC passive filter. IEEE Journal of Solid-State Circuits, 27(10), 1028–1031.CrossRef Nguyen, N. M., & Meyer, R. G. (1990). Si IC-compatible inductors and LC passive filter. IEEE Journal of Solid-State Circuits, 27(10), 1028–1031.CrossRef
27.
go back to reference Zu, L., Lu, Y., Frye, R. C., Law, Y., Chen, S., Kossiva, D., Lin, J., & Tai, K. L. (1996). High Q-factor inductors integrated on MCM Si substrates. IEEE Transactions on Components. Packaging and Manufacturing Technology, Part B: Advanced Packaging, 19(3), 635–643. Zu, L., Lu, Y., Frye, R. C., Law, Y., Chen, S., Kossiva, D., Lin, J., & Tai, K. L. (1996). High Q-factor inductors integrated on MCM Si substrates. IEEE Transactions on Components. Packaging and Manufacturing Technology, Part B: Advanced Packaging, 19(3), 635–643.
28.
go back to reference Burghartz, J. N., Soyuer, M., & Jenkins, K. (1996). Microwave inductors and capacitors in standard multilevel interconnect silicon technology. IEEE Transactions on Microwave Theory and Technology, 44(1), 100–103.CrossRef Burghartz, J. N., Soyuer, M., & Jenkins, K. (1996). Microwave inductors and capacitors in standard multilevel interconnect silicon technology. IEEE Transactions on Microwave Theory and Technology, 44(1), 100–103.CrossRef
29.
go back to reference Merrill, R. B., Lee, T. W., You, H., Rasmussen, R., & Moberly, L. A. (1995). Optimization of high Q integrated inductors for multi-level metal CMOS. IEDM, 38.7.1–38.7.3. Merrill, R. B., Lee, T. W., You, H., Rasmussen, R., & Moberly, L. A. (1995). Optimization of high Q integrated inductors for multi-level metal CMOS. IEDM, 38.7.1–38.7.3.
30.
go back to reference Chang, J. Y. C., & Abidi, A. A. (1993). Large suspended inductors on silicon and their use in a 2 μm CMOS RF amplifier. IEEE Electron Device Letters, 14(5), 246–248.CrossRef Chang, J. Y. C., & Abidi, A. A. (1993). Large suspended inductors on silicon and their use in a 2 μm CMOS RF amplifier. IEEE Electron Device Letters, 14(5), 246–248.CrossRef
31.
go back to reference Craninckx, J., & Steyaert, M. (1997). A 1.8-GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors. IEEE Journal of Solid-State Circuits, 32(5), 736–745.CrossRef Craninckx, J., & Steyaert, M. (1997). A 1.8-GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors. IEEE Journal of Solid-State Circuits, 32(5), 736–745.CrossRef
32.
go back to reference Lovelace, D., & Camilleri, N. (1994). Silicon MMIC inductor modeling for high volume, low cost applications. Microwave Journal, 60–71. Lovelace, D., & Camilleri, N. (1994). Silicon MMIC inductor modeling for high volume, low cost applications. Microwave Journal, 60–71.
33.
go back to reference Kamon, M., Tsulk, M. J., & White, J. K. (1994). FASTHENRY a multipole accelerated 3-D inductance extraction program. IEEE Transactions on Microwave Theory and Technology, 42(9), 1750–1757.CrossRef Kamon, M., Tsulk, M. J., & White, J. K. (1994). FASTHENRY a multipole accelerated 3-D inductance extraction program. IEEE Transactions on Microwave Theory and Technology, 42(9), 1750–1757.CrossRef
34.
go back to reference Pettenpaul, E., Kapusta, H., .Weisgerber, A., Mampe, H., Luginsland, J., Wolff, I. (1988). CAD models of lumped elements on GaAs up to 18 GHz, IEEE Transactions of Microwave Theory and Technology, 36(2) 294–304.CrossRef Pettenpaul, E., Kapusta, H., .Weisgerber, A., Mampe, H., Luginsland, J., Wolff, I. (1988). CAD models of lumped elements on GaAs up to 18 GHz, IEEE Transactions of Microwave Theory and Technology, 36(2) 294–304.CrossRef
35.
go back to reference Howard, G. E., Yang, J. J., & Chow, Y. L. (1992). A multipipe model of general strip transmission lines for rapid convergence of integral equation singularities. IEEE Transactions on Microwave Theory Technology, 40(4), 628–636.CrossRef Howard, G. E., Yang, J. J., & Chow, Y. L. (1992). A multipipe model of general strip transmission lines for rapid convergence of integral equation singularities. IEEE Transactions on Microwave Theory Technology, 40(4), 628–636.CrossRef
36.
go back to reference Gharpurey, R. Modeling and Analysis of Substrate Coupling in Integrated Circuits Doctoral. Thesis, University of California. Gharpurey, R. Modeling and Analysis of Substrate Coupling in Integrated Circuits Doctoral. Thesis, University of California.
37.
go back to reference Stetzler, T., Post, I., Havens, J., & Koyama, M. (1995). A 2.7V to 4.5V single-chip GSM transceiver RF integrated circuit. IEEE International Solid-State Circuits Conference, 150–151. Stetzler, T., Post, I., Havens, J., & Koyama, M. (1995). A 2.7V to 4.5V single-chip GSM transceiver RF integrated circuit. IEEE International Solid-State Circuits Conference, 150–151.
38.
go back to reference Kim, B. K., Ko, B. K., Lee, K., Jeong, J. W., Lee, K.-S., & Kim, S. C. (1995). Monolithic planar RF inductor and waveguide structures on silicon with performance comparable to those in GaAs MMIC. IEDM, 29.4.1–29.4.4. Kim, B. K., Ko, B. K., Lee, K., Jeong, J. W., Lee, K.-S., & Kim, S. C. (1995). Monolithic planar RF inductor and waveguide structures on silicon with performance comparable to those in GaAs MMIC. IEDM, 29.4.1–29.4.4.
39.
go back to reference Krafesik, D., & Dawson, D. (1986). A closed-form expression for representing the distributed nature of the spiral inductor. Proceedings of the IEEE-MTT Monolithic Circuits Symposium, 87–91. Krafesik, D., & Dawson, D. (1986). A closed-form expression for representing the distributed nature of the spiral inductor. Proceedings of the IEEE-MTT Monolithic Circuits Symposium, 87–91.
40.
go back to reference Kuhn, W. B., Elshabini-Riad, A., & Stephenson, F. W. (1995). Centre-tapped spiral inductors for monolithic bandpass filters. Electronics Letters, 31(8), 625–626.CrossRef Kuhn, W. B., Elshabini-Riad, A., & Stephenson, F. W. (1995). Centre-tapped spiral inductors for monolithic bandpass filters. Electronics Letters, 31(8), 625–626.CrossRef
43.
go back to reference Mohri, K., Uchitama, T., Panina, L. V., Yamamoto, M., & Bushida, K. Recent Advances of Amorphous Wire CMOS IC Magneto-Impedance Sensors: Innovative High-Performance Micromagnetic Sensor Chip Copyright © 2015 Kaneo Mohri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided that it is properly cited. Mohri, K., Uchitama, T., Panina, L. V., Yamamoto, M., & Bushida, K. Recent Advances of Amorphous Wire CMOS IC Magneto-Impedance Sensors: Innovative High-Performance Micromagnetic Sensor Chip Copyright © 2015 Kaneo Mohri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided that it is properly cited.
44.
go back to reference Kurup, H. B., Dinesh, S., Ramesh, M., & Rodrigues, M. (2020). Low profile dual-frequency shorted patch antenna. International Journal of recent Technology and Engineering, 8(5), 2277–3878. Kurup, H. B., Dinesh, S., Ramesh, M., & Rodrigues, M. (2020). Low profile dual-frequency shorted patch antenna. International Journal of recent Technology and Engineering, 8(5), 2277–3878.
45.
go back to reference Mishra, A., Singh, P., Yadav, N. P., Ansari, J. A., & Viswakarma, B. R. (2009). Compact shorted microstrip patch antenna for dual band operation. Progress In Electromagnetics Research C, 9, 171–182.CrossRef Mishra, A., Singh, P., Yadav, N. P., Ansari, J. A., & Viswakarma, B. R. (2009). Compact shorted microstrip patch antenna for dual band operation. Progress In Electromagnetics Research C, 9, 171–182.CrossRef
46.
go back to reference Ansari, J. A., Singh, P., Yadav, N. P., & Viswakarma, B. R. (2009). Analysis of shorting pin loaded half disk patch antenna for wideband operation. Progress in Electromagnetics Research C, 6, 179–192.CrossRef Ansari, J. A., Singh, P., Yadav, N. P., & Viswakarma, B. R. (2009). Analysis of shorting pin loaded half disk patch antenna for wideband operation. Progress in Electromagnetics Research C, 6, 179–192.CrossRef
49.
go back to reference Tripathi, A. K., Bhatt, P. K., & Pandey, A. K. (2012). A comparative study of rectangular and triangular patch antenna using HFSS and CADFEKO. International Journal of Computer Science and Information Technologies, 3(6), 5356–5358. Tripathi, A. K., Bhatt, P. K., & Pandey, A. K. (2012). A comparative study of rectangular and triangular patch antenna using HFSS and CADFEKO. International Journal of Computer Science and Information Technologies, 3(6), 5356–5358.
50.
go back to reference Li, R. L., Wu, T., Pan, B., Lim, K., Laskar, J., & Tentzeris, M. M. (2009). Equivalent circuit analysis of a broadband printed dipole with adjusted integrated balun and array for base station applications. IEEE Transactions on Antennas and Propagation, 57(7). Li, R. L., Wu, T., Pan, B., Lim, K., Laskar, J., & Tentzeris, M. M. (2009). Equivalent circuit analysis of a broadband printed dipole with adjusted integrated balun and array for base station applications. IEEE Transactions on Antennas and Propagation, 57(7).
51.
go back to reference Application Note 639 Design of Printed Trace Differential Loop Antennas Copyright 2021 Silicon Laboratories Inc. Application Note 639 Design of Printed Trace Differential Loop Antennas Copyright 2021 Silicon Laboratories Inc.
53.
go back to reference Balanis, C. A. (2016). Antenna theory analysis and design fourth edition. Wiley. Library of Congress Cataloging-in-Publication Data:ISBN 978-1-118-642060-1 (cloth) 1. Antennas (Electronics) I. Title.TK7871.6.B354 2016 621.382. Balanis, C. A. (2016). Antenna theory analysis and design fourth edition. Wiley. Library of Congress Cataloging-in-Publication Data:ISBN 978-1-118-642060-1 (cloth) 1. Antennas (Electronics) I. Title.TK7871.6.B354 2016 621.382.
Metadata
Title
Fundamental Physics of Planar Inductors, Embedded Planar Transformers, and Planar (Patch) Antennas
Author
Amal Banerjee
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-08778-3_2