Skip to main content
Top

2018 | OriginalPaper | Chapter

2. Fundamental Principles of Variational Analysis

Author : Boris S. Mordukhovich

Published in: Variational Analysis and Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter is devoted to the exposition and developments of the fundamental principles of variational analysis, which play a crucial role in resolving many issues of variational theory and applications by employing optimization ideas and techniques.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
50.
go back to reference T. Q. Bao (2013), On a nonconvex separation theorem and the approximate extremal principle in Asplund spaces, Acta Math. Vietnam. 38, 279–291. T. Q. Bao (2013), On a nonconvex separation theorem and the approximate extremal principle in Asplund spaces, Acta Math. Vietnam. 38, 279–291.
71.
go back to reference H. H. Bauschke, D. R. Luke, H. M. Phan and X. Wang (2013), Restricted normal cones and the method of alternating projections: theory, Set-Valued Var. Anal. 21, 431–473. H. H. Bauschke, D. R. Luke, H. M. Phan and X. Wang (2013), Restricted normal cones and the method of alternating projections: theory, Set-Valued Var. Anal. 21, 431–473.
72.
go back to reference H. H. Bauschke, D. R. Luke, H. M. Phan and X. Wang (2013), Restricted normal cones and the method of alternating projections: applications, Set-Valued Var. Anal. 21, 475–501. H. H. Bauschke, D. R. Luke, H. M. Phan and X. Wang (2013), Restricted normal cones and the method of alternating projections: applications, Set-Valued Var. Anal. 21, 475–501.
73.
go back to reference H. H. Bauschke, D. R. Luke, H. M. Phan and X. Wang (2014), Restricted normal cones and sparsity optimization with affine constraints, Found. Comput. Math. 14, 63–83. H. H. Bauschke, D. R. Luke, H. M. Phan and X. Wang (2014), Restricted normal cones and sparsity optimization with affine constraints, Found. Comput. Math. 14, 63–83.
102.
go back to reference J. M. Borwein and A. Jofré (1988), Nonconvex separation property in Banach spaces, Math. Methods Oper. Res. 48, 169–179. J. M. Borwein and A. Jofré (1988), Nonconvex separation property in Banach spaces, Math. Methods Oper. Res. 48, 169–179.
106.
go back to reference J. M. Borwein, Y. Lucet and B. S. Mordukhovich (2000), Compactly epi-Lipschitzian convex sets and functions in normed spaces, J. Convex Anal. 7, 375–393. J. M. Borwein, Y. Lucet and B. S. Mordukhovich (2000), Compactly epi-Lipschitzian convex sets and functions in normed spaces, J. Convex Anal. 7, 375–393.
107.
go back to reference J. M. Borwein, B. S. Mordukhovich and Y. Shao (1999), On the equivalence of some basic principles of variational analysis, J. Math. Anal. Appl. 229, 228–257. J. M. Borwein, B. S. Mordukhovich and Y. Shao (1999), On the equivalence of some basic principles of variational analysis, J. Math. Anal. Appl. 229, 228–257.
108.
go back to reference J. M. Borwein and D. Preiss (1987), A smooth variational principle with applications to subdifferentiability and differentiability of convex functions, Trans. Amer. Math. Soc. 303, 517–527. J. M. Borwein and D. Preiss (1987), A smooth variational principle with applications to subdifferentiability and differentiability of convex functions, Trans. Amer. Math. Soc. 303, 517–527.
109.
go back to reference J. M. Borwein and H. M. Strójwas (1985), Tangential approximations, Nonlinear Anal. 9, 1347–1366. J. M. Borwein and H. M. Strójwas (1985), Tangential approximations, Nonlinear Anal. 9, 1347–1366.
114.
go back to reference J. M. Borwein and Q. J. Zhu (2005), Techniques of Variational Analysis, Springer, New York.MATH J. M. Borwein and Q. J. Zhu (2005), Techniques of Variational Analysis, Springer, New York.MATH
187.
go back to reference M. Cúth and M. Fabian (2016), Asplund spaces characterized by rich families and separable reduction of Fréchet subdifferentiability, J. Funct. Anal. 270, 1361–1378. M. Cúth and M. Fabian (2016), Asplund spaces characterized by rich families and separable reduction of Fréchet subdifferentiability, J. Funct. Anal. 270, 1361–1378.
205.
go back to reference R. Deville, G. Godefroy and V. Zizler (1993), Smoothness and Renorming in Banach Spaces, Wiley, New York.MATH R. Deville, G. Godefroy and V. Zizler (1993), Smoothness and Renorming in Banach Spaces, Wiley, New York.MATH
207.
go back to reference J. Diestel (1984), Sequences and Series in Banach Spaces, Springer, New York.CrossRef J. Diestel (1984), Sequences and Series in Banach Spaces, Springer, New York.CrossRef
229.
go back to reference D. Drusvyatskiy, A. D. Ioffe and A. S. Lewis (2015), Transversality and alternating projections for nonconvex sets, Found. Comput. Math. 15, 1637–1651. D. Drusvyatskiy, A. D. Ioffe and A. S. Lewis (2015), Transversality and alternating projections for nonconvex sets, Found. Comput. Math. 15, 1637–1651.
234.
go back to reference A. Y. Dubovitskii and A. A. Milyutin (1965), Extremum problems in the presence of restrictions, USSR Comput. Maths. Math. Phys. 5, 1–80. A. Y. Dubovitskii and A. A. Milyutin (1965), Extremum problems in the presence of restrictions, USSR Comput. Maths. Math. Phys. 5, 1–80.
245.
go back to reference G. Eichfelder (2014), Variable Ordering Structures in Vector Optimization, Springer, Berlin.CrossRef G. Eichfelder (2014), Variable Ordering Structures in Vector Optimization, Springer, Berlin.CrossRef
248.
go back to reference I. Ekeland (1972), Sur les problémes variationnels, C. R. Acad. Sci. Paris 275, 1057–1059. I. Ekeland (1972), Sur les problémes variationnels, C. R. Acad. Sci. Paris 275, 1057–1059.
249.
go back to reference I. Ekeland (1974), On the variational principle, J. Math. Anal. Appl. 47, 324–353. I. Ekeland (1974), On the variational principle, J. Math. Anal. Appl. 47, 324–353.
250.
go back to reference I. Ekeland (1979), Nonconvex minimization problems, Bull. Amer. Math. Soc. 1, 432–467. I. Ekeland (1979), Nonconvex minimization problems, Bull. Amer. Math. Soc. 1, 432–467.
254.
go back to reference M. Fabian (1989), Subdifferentiability and trustworthiness in the light of a new variational principle of Borwein and Preiss, Acta Univ. Carolina, Ser. Math. Phys. 30, 51–56. M. Fabian (1989), Subdifferentiability and trustworthiness in the light of a new variational principle of Borwein and Preiss, Acta Univ. Carolina, Ser. Math. Phys. 30, 51–56.
257.
go back to reference M. Fabian and B. S. Mordukhovich (1998), Smooth variational principles and characterizations of Asplund spaces, Set-Valued Anal. 6, 381–406. M. Fabian and B. S. Mordukhovich (1998), Smooth variational principles and characterizations of Asplund spaces, Set-Valued Anal. 6, 381–406.
258.
go back to reference M. Fabian and B. S. Mordukhovich (2002), Separable reduction and extremal principles in variational analysis, Nonlinear Anal. 49, 265–292. M. Fabian and B. S. Mordukhovich (2002), Separable reduction and extremal principles in variational analysis, Nonlinear Anal. 49, 265–292.
259.
go back to reference M. Fabian and B. S. Mordukhovich (2003), Sequential normal compactness versus topological normal compactness in variational analysis, Nonlinear Anal. 54, 1057–1067. M. Fabian and B. S. Mordukhovich (2003), Sequential normal compactness versus topological normal compactness in variational analysis, Nonlinear Anal. 54, 1057–1067.
265.
go back to reference S. D. Flåm (2006), Upward slopes and inf-convolutions, Math. Oper. Res. 31, 188–198. S. D. Flåm (2006), Upward slopes and inf-convolutions, Math. Oper. Res. 31, 188–198.
278.
go back to reference C. Gerstewitz (Tammer) (1983), Ninchtkonvexe dualität in der vectoroptimierung, Wissenschaftliche Zeitschrift der TH Leuna-Merseburg 25, 357–364 (in German). C. Gerstewitz (Tammer) (1983), Ninchtkonvexe dualität in der vectoroptimierung, Wissenschaftliche Zeitschrift der TH Leuna-Merseburg 25, 357–364 (in German).
279.
go back to reference C. Gerth (Tammer) and P. Weidner (1990), Nonconvex separation theorems and some applications in vector optimization, J. Optim. Theory Appl. 67, 297–320. C. Gerth (Tammer) and P. Weidner (1990), Nonconvex separation theorems and some applications in vector optimization, J. Optim. Theory Appl. 67, 297–320.
300.
go back to reference A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu (2003), Variational Methods in Partially Ordered Spaces, Springer, New York.MATH A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu (2003), Variational Methods in Partially Ordered Spaces, Springer, New York.MATH
321.
go back to reference T. X. D. Ha (2012), The Fermat rule and Lagrange multiplier rule for various effective solutions to set-valued optimization problems expressed in terms of coderivatives, in Recent Developments in Vector Optimization, edited by Q. H. Ansari and J.-C. Yao, pp. 417–466, Springer, Berlin.CrossRef T. X. D. Ha (2012), The Fermat rule and Lagrange multiplier rule for various effective solutions to set-valued optimization problems expressed in terms of coderivatives, in Recent Developments in Vector Optimization, edited by Q. H. Ansari and J.-C. Yao, pp. 417–466, Springer, Berlin.CrossRef
349.
go back to reference J.-B. Hiriart-Urruty (1983), A short proof of the variational principle for approximate solutions of a minimization problem, Amer. Math. Monthly 90, 206–207. J.-B. Hiriart-Urruty (1983), A short proof of the variational principle for approximate solutions of a minimization problem, Amer. Math. Monthly 90, 206–207.
364.
go back to reference A. D. Ioffe (1981), Calculus of Dini subdifferentials, CEREMADE Publication 8110, Universiteé de Paris IX “Dauphine”. A. D. Ioffe (1981), Calculus of Dini subdifferentials, CEREMADE Publication 8110, Universiteé de Paris IX “Dauphine”.
365.
go back to reference A. D. Ioffe (1981), Approximate subdifferentials of nonconvex functions, CEREMADE Publication 8120, Universiteé de Paris IX “Dauphine.” A. D. Ioffe (1981), Approximate subdifferentials of nonconvex functions, CEREMADE Publication 8120, Universiteé de Paris IX “Dauphine.”
367.
go back to reference A. D. Ioffe (1983), On subdifferentiability spaces, Ann. New York Acad. Sci. 410, 107–119. A. D. Ioffe (1983), On subdifferentiability spaces, Ann. New York Acad. Sci. 410, 107–119.
368.
go back to reference A. D. Ioffe (1984), Approximate subdifferentials and applications, I: the finite dimensional theory, Trans. Amer. Math. Soc. 281, 389–415. A. D. Ioffe (1984), Approximate subdifferentials and applications, I: the finite dimensional theory, Trans. Amer. Math. Soc. 281, 389–415.
369.
go back to reference A. D. Ioffe (1989), Approximate subdifferentials and applications, III: the metric theory, Mathematika 36, 1–38. A. D. Ioffe (1989), Approximate subdifferentials and applications, III: the metric theory, Mathematika 36, 1–38.
371.
go back to reference A. D. Ioffe (2000), Codirectional compactness, metric regularity and subdifferential calculus, in Constructive, Experimental and Nonlinear Analysis, edited by M. Théra, pp. 123–164, American Mathematical Society, Providence, Rhode Island.MATH A. D. Ioffe (2000), Codirectional compactness, metric regularity and subdifferential calculus, in Constructive, Experimental and Nonlinear Analysis, edited by M. Théra, pp. 123–164, American Mathematical Society, Providence, Rhode Island.MATH
375.
go back to reference A. D. Ioffe (2017), Variational Analysis of Regular Mappings: Theory and Applications (2017), Springer, Cham, Switzerland.CrossRef A. D. Ioffe (2017), Variational Analysis of Regular Mappings: Theory and Applications (2017), Springer, Cham, Switzerland.CrossRef
376.
go back to reference A. D. Ioffe and J. V. Outrata (2008), On metric and calmness qualification conditions in subdifferential calculus, Set-Valued Anal. 16, 199–228. A. D. Ioffe and J. V. Outrata (2008), On metric and calmness qualification conditions in subdifferential calculus, Set-Valued Anal. 16, 199–228.
385.
go back to reference J. Jahn (2004), Vector Optimization: Theory, Applications and Extensions, Springer, Berlin.CrossRef J. Jahn (2004), Vector Optimization: Theory, Applications and Extensions, Springer, Berlin.CrossRef
389.
go back to reference V. Jeyakumar and D. T. Luc (2008), Nonsmooth Vector Functions and Continuous Optimization, Springer, New York.MATH V. Jeyakumar and D. T. Luc (2008), Nonsmooth Vector Functions and Continuous Optimization, Springer, New York.MATH
398.
go back to reference A. Jourani and L. Thibault (1996), Metric regularity and subdifferential calculus in Banach spaces, Set-Valued Anal. 3, 87–100. A. Jourani and L. Thibault (1996), Metric regularity and subdifferential calculus in Banach spaces, Set-Valued Anal. 3, 87–100.
399.
go back to reference A. Jourani and L. Thibault (1996), Extensions of subdifferential calculus rules in Banach spaces, Canad. J. Math. 48, 834–848. A. Jourani and L. Thibault (1996), Extensions of subdifferential calculus rules in Banach spaces, Canad. J. Math. 48, 834–848.
407.
go back to reference R. Kasimbeyli (2010), A nonlinear cone separation theorem and scalarization in nonconvex vector optimization, SIAM J. Optim. 20, 1591–1619. R. Kasimbeyli (2010), A nonlinear cone separation theorem and scalarization in nonconvex vector optimization, SIAM J. Optim. 20, 1591–1619.
409.
go back to reference A. A. Khan, C. Tammer and C. Zălinescu (2015), Set-Valued Optimization. An Introduction with Applications, Springer, Berlin.MATH A. A. Khan, C. Tammer and C. Zălinescu (2015), Set-Valued Optimization. An Introduction with Applications, Springer, Berlin.MATH
428.
go back to reference A. Y. Kruger (1981), Generalized differentials of nonsmooth functions, Depon. VINITI #1332-81, Moscow (in Russian). A. Y. Kruger (1981), Generalized differentials of nonsmooth functions, Depon. VINITI #1332-81, Moscow (in Russian).
430.
go back to reference A. Y. Kruger (1985), Generalized differentials of nonsmooth functions and necessary conditions for an extremum, Siberian Math. J. 26, 370–379. A. Y. Kruger (1985), Generalized differentials of nonsmooth functions and necessary conditions for an extremum, Siberian Math. J. 26, 370–379.
433.
go back to reference A. Y. Kruger (2009), About stationarity and regularity in variational analysis, Taiwanese J. Math. 13, 1737–1785. A. Y. Kruger (2009), About stationarity and regularity in variational analysis, Taiwanese J. Math. 13, 1737–1785.
436.
go back to reference A. Y. Kruger and M. A. López (2012), Stationarity and regularity of infinite collections of sets, J. Optim. Theory Appl. 154, 339–369. A. Y. Kruger and M. A. López (2012), Stationarity and regularity of infinite collections of sets, J. Optim. Theory Appl. 154, 339–369.
437.
go back to reference A. Y. Kruger and M. A. López (2012), Stationarity and regularity of infinite collections of sets. Applications to infinitely constrained optimization, J. Optim. Theory Appl. 155, 390–416. A. Y. Kruger and M. A. López (2012), Stationarity and regularity of infinite collections of sets. Applications to infinitely constrained optimization, J. Optim. Theory Appl. 155, 390–416.
438.
go back to reference A. Y. Kruger, D. R. Luke and N. M. Thao (2017), Set regularities and feasibility problems, Math. Program., DOI 10.1007/s10107-016-1039-x.CrossRefMATH A. Y. Kruger, D. R. Luke and N. M. Thao (2017), Set regularities and feasibility problems, Math. Program., DOI 10.1007/s10107-016-1039-x.CrossRefMATH
440.
go back to reference A. Y. Kruger and B. S. Mordukhovich (1980), Generalized normals and derivatives, and necessary optimality conditions in nondifferential programming, I&II, Depon. VINITI: I# 408-80, II# 494-80, Moscow (in Russian). A. Y. Kruger and B. S. Mordukhovich (1980), Generalized normals and derivatives, and necessary optimality conditions in nondifferential programming, I&II, Depon. VINITI: I# 408-80, II# 494-80, Moscow (in Russian).
441.
go back to reference A. Y. Kruger and B. S. Mordukhovich (1980), Extremal points and the Euler equation in nonsmooth optimization, Dokl. Akad. Nauk BSSR 24, 684–687 (in Russian). A. Y. Kruger and B. S. Mordukhovich (1980), Extremal points and the Euler equation in nonsmooth optimization, Dokl. Akad. Nauk BSSR 24, 684–687 (in Russian).
458.
go back to reference A. S. Lewis, D. R. Luke, and J. Malick (2009), Local linear convergence for alternating and averaged nonconvex projections, Found. Comput. Math. 9, 485–513. A. S. Lewis, D. R. Luke, and J. Malick (2009), Local linear convergence for alternating and averaged nonconvex projections, Found. Comput. Math. 9, 485–513.
459.
go back to reference A. S. Lewis and J. Malick (2008), Alternating projection on manifolds, Math. Oper. Res. 33, 216–234. A. S. Lewis and J. Malick (2008), Alternating projection on manifolds, Math. Oper. Res. 33, 216–234.
468.
go back to reference G. Li, K. F. Ng and X. Y. Zheng (2007), Unified approach to some geometric results in variational analysis, J. Funct. Anal. 248 (2007), 317–343. G. Li, K. F. Ng and X. Y. Zheng (2007), Unified approach to some geometric results in variational analysis, J. Funct. Anal. 248 (2007), 317–343.
480.
go back to reference D. R. Luke (2012), Local linear convergence of approximate projections onto regularized sets, Nonlinear Anal. 75, 1531–1546. D. R. Luke (2012), Local linear convergence of approximate projections onto regularized sets, Nonlinear Anal. 75, 1531–1546.
481.
go back to reference D. R. Luke, N. H. Thao and M. K. Tam (2017), Quantitative convergence analysis of iterated expansive, set-valued mappings, to appear in Math. Oper. Res., arXiv:1605.05725. D. R. Luke, N. H. Thao and M. K. Tam (2017), Quantitative convergence analysis of iterated expansive, set-valued mappings, to appear in Math. Oper. Res., arXiv:1605.05725.
502.
go back to reference B. S. Mordukhovich (1976), Maximum principle in problems of time optimal control with nonsmooth constraints, J. Appl. Math. Mech. 40, 960–969. B. S. Mordukhovich (1976), Maximum principle in problems of time optimal control with nonsmooth constraints, J. Appl. Math. Mech. 40, 960–969.
504.
go back to reference B. S. Mordukhovich (1980), Metric approximations and necessary optimality conditions for general classes of extremal problems, Soviet Math. Dokl. 22, 526–530. B. S. Mordukhovich (1980), Metric approximations and necessary optimality conditions for general classes of extremal problems, Soviet Math. Dokl. 22, 526–530.
505.
go back to reference B. S. Mordukhovich (1984), Nonsmooth analysis with nonconvex generalized differentials and adjoint mappings, Dokl. Akad. Nauk BSSR 28, 976–979 (in Russian). B. S. Mordukhovich (1984), Nonsmooth analysis with nonconvex generalized differentials and adjoint mappings, Dokl. Akad. Nauk BSSR 28, 976–979 (in Russian).
507.
go back to reference B. S. Mordukhovich (1988), Approximation Methods in Problems of Optimization and Control, Nauka, Moscow (in Russian).MATH B. S. Mordukhovich (1988), Approximation Methods in Problems of Optimization and Control, Nauka, Moscow (in Russian).MATH
511.
go back to reference B. S. Mordukhovich (1994), Generalized differential calculus for nonsmooth and set-valued mappings, J. Math. Anal. Appl. 183, 250–288. B. S. Mordukhovich (1994), Generalized differential calculus for nonsmooth and set-valued mappings, J. Math. Anal. Appl. 183, 250–288.
515.
go back to reference B. S. Mordukhovich (2000), Abstract extremal principle with applications to welfare economics, J. Math. Anal. Appl. 251, 187–216. B. S. Mordukhovich (2000), Abstract extremal principle with applications to welfare economics, J. Math. Anal. Appl. 251, 187–216.
518.
go back to reference B. S. Mordukhovich (2004), Coderivative analysis of variational systems, J. Global Optim. 28, 347–362. B. S. Mordukhovich (2004), Coderivative analysis of variational systems, J. Global Optim. 28, 347–362.
522.
go back to reference B. S. Mordukhovich (2006), Variational Analysis and Generalized Differentiation, I: Basic Theory, Springer, Berlin. B. S. Mordukhovich (2006), Variational Analysis and Generalized Differentiation, I: Basic Theory, Springer, Berlin.
523.
go back to reference B. S. Mordukhovich (2006), Variational Analysis and Generalized Differentiation, II: Applications, Springer, Berlin. B. S. Mordukhovich (2006), Variational Analysis and Generalized Differentiation, II: Applications, Springer, Berlin.
533.
go back to reference B. S. Mordukhovich and N. M. Nam (2009), Variational analysis of generalized equations via coderivative calculus in Asplund spaces, J. Math. Anal. Appl. 350, 663–679. B. S. Mordukhovich and N. M. Nam (2009), Variational analysis of generalized equations via coderivative calculus in Asplund spaces, J. Math. Anal. Appl. 350, 663–679.
538.
go back to reference B. S. Mordukhovich and N. M. Nam (2017), Extremality of convex sets with some applications, Optim. Lett. 11, 1201–1215. B. S. Mordukhovich and N. M. Nam (2017), Extremality of convex sets with some applications, Optim. Lett. 11, 1201–1215.
541.
go back to reference B. S. Mordukhovich, N. M. Nam, R. B. Rector and T. Tran (2017), Variational geometric approach to generalized differential and conjugate calculi in convex analysis, Set-Valued Var. Anal. 25, 731–755. B. S. Mordukhovich, N. M. Nam, R. B. Rector and T. Tran (2017), Variational geometric approach to generalized differential and conjugate calculi in convex analysis, Set-Valued Var. Anal. 25, 731–755.
546.
go back to reference B. S. Mordukhovich, N. M. Nam and N. D. Yen (2006), Fréchet subdifferential calculus and optimality conditions in nondifferentiable programming, Optimization 55, 685–396. B. S. Mordukhovich, N. M. Nam and N. D. Yen (2006), Fréchet subdifferential calculus and optimality conditions in nondifferentiable programming, Optimization 55, 685–396.
567.
go back to reference B. S. Mordukhovich and H. M. Phan (2011), Rated extremal principle for finite and infinite systems with applications to optimization, Optimization 60, 893–924. B. S. Mordukhovich and H. M. Phan (2011), Rated extremal principle for finite and infinite systems with applications to optimization, Optimization 60, 893–924.
568.
go back to reference B. S. Mordukhovich and H. M. Phan (2012), Tangential extremal principle for finite and infinite systems, I: basic theory, Math. Program. 136, 31–63. B. S. Mordukhovich and H. M. Phan (2012), Tangential extremal principle for finite and infinite systems, I: basic theory, Math. Program. 136, 31–63.
569.
go back to reference B. S. Mordukhovich and H. M. Phan (2012), Tangential extremal principle for finite and infinite systems, II: applications to semi-infinite and multiobjective optimization, Math. Program. 136, 31–63. B. S. Mordukhovich and H. M. Phan (2012), Tangential extremal principle for finite and infinite systems, II: applications to semi-infinite and multiobjective optimization, Math. Program. 136, 31–63.
578.
go back to reference B. S. Mordukhovich and Y. Shao (1995), Differential characterizations of covering, metric regularity, and Lipschitzian properties of multifunctions between Banach spaces, Nonlinear Anal. 25, 1401–1424. B. S. Mordukhovich and Y. Shao (1995), Differential characterizations of covering, metric regularity, and Lipschitzian properties of multifunctions between Banach spaces, Nonlinear Anal. 25, 1401–1424.
579.
go back to reference B. S. Mordukhovich and Y. Shao (1996), Extremal characterizations of Asplund spaces, Proc. Amer. Math. Soc. 124, 197–205. B. S. Mordukhovich and Y. Shao (1996), Extremal characterizations of Asplund spaces, Proc. Amer. Math. Soc. 124, 197–205.
580.
go back to reference B. S. Mordukhovich and Y. Shao (1996), Nonsmooth sequential analysis in Asplund spaces, Trans. Amer. Math. Soc. 348, 1235–1280. B. S. Mordukhovich and Y. Shao (1996), Nonsmooth sequential analysis in Asplund spaces, Trans. Amer. Math. Soc. 348, 1235–1280.
581.
go back to reference B. S. Mordukhovich and Y. Shao (1996), Nonconvex coderivative calculus for infinite-dimensional multifunctions, Set-Valued Anal. 4, 205–136. B. S. Mordukhovich and Y. Shao (1996), Nonconvex coderivative calculus for infinite-dimensional multifunctions, Set-Valued Anal. 4, 205–136.
582.
go back to reference B. S. Mordukhovich and Y. Shao (1997), Stability of multifunctions in infinite dimensions: point criteria and applications, SIAM J. Control Optim. 35, 285–314. B. S. Mordukhovich and Y. Shao (1997), Stability of multifunctions in infinite dimensions: point criteria and applications, SIAM J. Control Optim. 35, 285–314.
583.
go back to reference B. S. Mordukhovich and Y. Shao (1997), Fuzzy calculus for coderivatives of multifunctions, Nonlinear Anal. 29, 605–626. B. S. Mordukhovich and Y. Shao (1997), Fuzzy calculus for coderivatives of multifunctions, Nonlinear Anal. 29, 605–626.
586.
go back to reference B. S. Mordukhovich, J. S. Treiman and Q. J. Zhu (2003), An extended extremal principle with applications to multiobjective optimization, SIAM J. Optim. 14, 359–379. B. S. Mordukhovich, J. S. Treiman and Q. J. Zhu (2003), An extended extremal principle with applications to multiobjective optimization, SIAM J. Optim. 14, 359–379.
587.
go back to reference B. S. Mordukhovich and B. Wang (2002), Necessary optimality and suboptimality conditions in nondifferentiable programming via variational principles, SIAM J. Control Optim. 41, 623–640. B. S. Mordukhovich and B. Wang (2002), Necessary optimality and suboptimality conditions in nondifferentiable programming via variational principles, SIAM J. Control Optim. 41, 623–640.
588.
go back to reference B. S. Mordukhovich and B. Wang (2002), Extensions of generalized differential calculus in Asplund spaces, J. Math. Anal. Appl. 272, 164–186. B. S. Mordukhovich and B. Wang (2002), Extensions of generalized differential calculus in Asplund spaces, J. Math. Anal. Appl. 272, 164–186.
589.
go back to reference B. S. Mordukhovich and B. Wang (2003), Calculus of sequential normal compactness in variational analysis, J. Math. Anal. Appl. 282, 63–84. B. S. Mordukhovich and B. Wang (2003), Calculus of sequential normal compactness in variational analysis, J. Math. Anal. Appl. 282, 63–84.
610.
go back to reference N. V. Ngai and M. Théra (2001), Metric regularity, subdifferential calculus and applications, Set-Valued Anal. 9, 187–216. N. V. Ngai and M. Théra (2001), Metric regularity, subdifferential calculus and applications, Set-Valued Anal. 9, 187–216.
617.
go back to reference D. Noll and A. Rondepierre (2016), On local convergence of the method of alternating projections, Found. Comput. Math. 16, 425–455. D. Noll and A. Rondepierre (2016), On local convergence of the method of alternating projections, Found. Comput. Math. 16, 425–455.
635.
go back to reference J.-P. Penot (1998), Compactness properties, openness criteria and coderivatives, Set-Valued Anal. 6, 363–380. J.-P. Penot (1998), Compactness properties, openness criteria and coderivatives, Set-Valued Anal. 6, 363–380.
637.
638.
go back to reference R. R. Phelps (1993), Convex Functions, Monotone Operators and Differentiability, 2nd edition, Springer, Berlin.MATH R. R. Phelps (1993), Convex Functions, Monotone Operators and Differentiability, 2nd edition, Springer, Berlin.MATH
667.
go back to reference R. T. Rockafellar (1970), Convex Analysis, Princeton University Press, Princeton, New Jersey.CrossRef R. T. Rockafellar (1970), Convex Analysis, Princeton University Press, Princeton, New Jersey.CrossRef
669.
go back to reference R. T. Rockafellar (1979), Directional Lipschitzian functions and subdifferential calculus, Proc. London Math. Soc. 39, 331–355. R. T. Rockafellar (1979), Directional Lipschitzian functions and subdifferential calculus, Proc. London Math. Soc. 39, 331–355.
670.
go back to reference R. T. Rockafellar (1980), Generalized directional derivatives and subgradients of nonconvex functions, Canad. J. Math. 32, 157–180. R. T. Rockafellar (1980), Generalized directional derivatives and subgradients of nonconvex functions, Canad. J. Math. 32, 157–180.
675.
go back to reference R. T. Rockafellar (1985), Extensions of subgradient calculus with applications to optimization, Nonlinear Anal. 9, 665–698. R. T. Rockafellar (1985), Extensions of subgradient calculus with applications to optimization, Nonlinear Anal. 9, 665–698.
678.
go back to reference R. T. Rockafellar and R. J-B. Wets (1998), Variational Analysis, Springer, Berlin.CrossRef R. T. Rockafellar and R. J-B. Wets (1998), Variational Analysis, Springer, Berlin.CrossRef
731.
go back to reference B. Wang and X. Yang (2016), Weak differentiability with applications to variational analysis, Set-Valued Var. Anal. 24, 299–321. B. Wang and X. Yang (2016), Weak differentiability with applications to variational analysis, Set-Valued Var. Anal. 24, 299–321.
732.
go back to reference B. Wang and D. Wang (2015), Generalized sequential normal compactness in Asplund spaces, Applic. Anal. 94, 99–107. B. Wang and D. Wang (2015), Generalized sequential normal compactness in Asplund spaces, Applic. Anal. 94, 99–107.
773.
go back to reference X. Y. Zheng and K. F. Ng (2005), The Fermat rule for multifunctions in Banach spaces, Math. Program. 104, 69–90. X. Y. Zheng and K. F. Ng (2005), The Fermat rule for multifunctions in Banach spaces, Math. Program. 104, 69–90.
774.
go back to reference X. Y. Zheng and K. F. Ng (2006), The Lagrange multiplier rule for multifunctions in Banach spaces, SIAM J. Optim. 17, 1154–1175. X. Y. Zheng and K. F. Ng (2006), The Lagrange multiplier rule for multifunctions in Banach spaces, SIAM J. Optim. 17, 1154–1175.
777.
go back to reference X. Y. Zheng and K. F. Ng (2011), A unified separation theorem for closed sets in a Banach spaces and optimality conditions for vector optimization, SIAM J. Optim. 21, 886–911. X. Y. Zheng and K. F. Ng (2011), A unified separation theorem for closed sets in a Banach spaces and optimality conditions for vector optimization, SIAM J. Optim. 21, 886–911.
786.
go back to reference Q. J. Zhu (1998), The equivalence of several basic theorems for subdifferentials, Set-Valued Anal. 6, 171–185. Q. J. Zhu (1998), The equivalence of several basic theorems for subdifferentials, Set-Valued Anal. 6, 171–185.
787.
go back to reference Q. J. Zhu (2004), Nonconvex separation theorem for multifunctions, subdifferential calculus and applications, Set-Valued Anal. 12, 275–290. Q. J. Zhu (2004), Nonconvex separation theorem for multifunctions, subdifferential calculus and applications, Set-Valued Anal. 12, 275–290.
Metadata
Title
Fundamental Principles of Variational Analysis
Author
Boris S. Mordukhovich
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-92775-6_2

Premium Partner