Skip to main content
Top

2016 | OriginalPaper | Chapter

13. Fundamentals

Author : Etsuo Akiba

Published in: Hydrogen Energy Engineering

Publisher: Springer Japan

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter describes fundamental knowledge indispensable for hydride-based hydrogen storage, including the physical and chemical properties of hydrogen, phase diagrams of metal-hydrogen systems, hydrogen-material interaction, as well as thermodynamic stability and the reaction kinetics of hydrides.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Flanagan TB, Oates WA (1988) Thermodynamics of intermetallic compound-hydrogen systems. In: Schlapbach L (ed) Hydrogen in intermetallic compounds I. Springer, Berlin, pp 49–85CrossRef Flanagan TB, Oates WA (1988) Thermodynamics of intermetallic compound-hydrogen systems. In: Schlapbach L (ed) Hydrogen in intermetallic compounds I. Springer, Berlin, pp 49–85CrossRef
2.
go back to reference Griessen R, Riesterer T (1988) Heat of formation models. In: Schlapbach L (ed) Hydrogen in intermetallic compounds I. Springer, Berlin, pp 219–284CrossRef Griessen R, Riesterer T (1988) Heat of formation models. In: Schlapbach L (ed) Hydrogen in intermetallic compounds I. Springer, Berlin, pp 219–284CrossRef
3.
go back to reference Lynch JF, Reilly JJ (1982) Behavior of H-LaNi5 solid solutions. J Less-Common Met 87:225–236CrossRef Lynch JF, Reilly JJ (1982) Behavior of H-LaNi5 solid solutions. J Less-Common Met 87:225–236CrossRef
4.
go back to reference Osumi Y, Suzuki H, Kato A, Oguro K, Nakane M (1981) Effect of metal-substitution on hydrogen storage properties for mischmetal-nickel alloys. Nippon Kagaku Kaishi 124:1493–1502CrossRef Osumi Y, Suzuki H, Kato A, Oguro K, Nakane M (1981) Effect of metal-substitution on hydrogen storage properties for mischmetal-nickel alloys. Nippon Kagaku Kaishi 124:1493–1502CrossRef
5.
go back to reference Murray JJ, Post ML, Taylor JB (1980) Differential heat flow calorimetry of the hydrides of intermetallic compounds. J Less-Common Met 73:33–40CrossRef Murray JJ, Post ML, Taylor JB (1980) Differential heat flow calorimetry of the hydrides of intermetallic compounds. J Less-Common Met 73:33–40CrossRef
6.
go back to reference Murray JJ, Post ML, Taylor JB (1983) The thermodynamics of the system CaNi5-H2 using differential heat conduction calorimetry. J Less-Common Met 90:65–73CrossRef Murray JJ, Post ML, Taylor JB (1983) The thermodynamics of the system CaNi5-H2 using differential heat conduction calorimetry. J Less-Common Met 90:65–73CrossRef
7.
go back to reference Post ML, Murray JJ, Taylor JB (1984) Metal hydride studies at the National Research Council of Canada. Int J Hydrogen Energy 9:137–145CrossRef Post ML, Murray JJ, Taylor JB (1984) Metal hydride studies at the National Research Council of Canada. Int J Hydrogen Energy 9:137–145CrossRef
8.
go back to reference Post ML, Murray JJ, Grant DM (1989) The LaNi5—H2 System at T = 358 K: an investigation by heat-conduction calorimetry. Z Phys Chem N F 163:135–140CrossRef Post ML, Murray JJ, Grant DM (1989) The LaNi5—H2 System at T = 358 K: an investigation by heat-conduction calorimetry. Z Phys Chem N F 163:135–140CrossRef
9.
go back to reference Wenzl H, Lebsanft E (1980) Phase diagram and thermodynamic parameters of the quasibinary interstitial alloy Fe0.5Ti0.5Hx in equilibrium with hydrogen gas. J Phys F 10:2147–2156CrossRef Wenzl H, Lebsanft E (1980) Phase diagram and thermodynamic parameters of the quasibinary interstitial alloy Fe0.5Ti0.5Hx in equilibrium with hydrogen gas. J Phys F 10:2147–2156CrossRef
10.
go back to reference Murray JJ, Post ML, Taylor JB (1981) The thermodynamics of the LaNi5-H2 system by differential heat flow calorimetry I: Techniques; the α + β two-phase region. J Less-Common Met 80:201–209 Murray JJ, Post ML, Taylor JB (1981) The thermodynamics of the LaNi5-H2 system by differential heat flow calorimetry I: Techniques; the α + β two-phase region. J Less-Common Met 80:201–209
11.
go back to reference Buschow KHJ, van Mal HH (1972) Phase relations and hydrogen absorption in the lanthanum-nickel system. J Less-Common Met 29:203–210 Buschow KHJ, van Mal HH (1972) Phase relations and hydrogen absorption in the lanthanum-nickel system. J Less-Common Met 29:203–210
12.
go back to reference Mendelsohn (1977) LaNi5-xAlx is a versatile alloy system for metal hydride applications. Nature 269:45–47 Mendelsohn (1977) LaNi5-xAlx is a versatile alloy system for metal hydride applications. Nature 269:45–47
13.
go back to reference Osumi Y, Suzuki H, Kato A, Nakane M, Miyake Y (1978) Absorption-desorption characteristics of hydrogen for mischmetal based alloys. Nihon Kagaku Kaishi 1472–1477 (in Japanese) Osumi Y, Suzuki H, Kato A, Nakane M, Miyake Y (1978) Absorption-desorption characteristics of hydrogen for mischmetal based alloys. Nihon Kagaku Kaishi 1472–1477 (in Japanese)
14.
go back to reference Reilly JJ, Wiswall (1974) Formation and properties of iron titanium hydride. Inorg Chem 13:218–222 Reilly JJ, Wiswall (1974) Formation and properties of iron titanium hydride. Inorg Chem 13:218–222
15.
go back to reference Osumi Y, Suzuki H, Kato A, Nakane M, Miyake Y (1979) Absorption-desorption characteristics of hydrogen for titanium-cobalt alloys. Nihon Kagaku Kaishi 855–860 (in Japanese) Osumi Y, Suzuki H, Kato A, Nakane M, Miyake Y (1979) Absorption-desorption characteristics of hydrogen for titanium-cobalt alloys. Nihon Kagaku Kaishi 855–860 (in Japanese)
16.
go back to reference Gamo T, Moriwaki Y, Yanagihara N, Yamashita T, Iwaki T (1985) Formation and properties of titanium-manganese alloy hydrides. Int J Hydrogen Energy 10:39–47 Gamo T, Moriwaki Y, Yanagihara N, Yamashita T, Iwaki T (1985) Formation and properties of titanium-manganese alloy hydrides. Int J Hydrogen Energy 10:39–47
17.
go back to reference Ishido Y, Nishimiya N, Suzuki Y (1977) Preparation and equilibrium study on ZrMn2Hx. Denki Kagaku 45:52–54 Ishido Y, Nishimiya N, Suzuki Y (1977) Preparation and equilibrium study on ZrMn2Hx. Denki Kagaku 45:52–54
18.
go back to reference Shaltiel D, Jacob I, Davidov D (1977) Hydrogen absorption properties of AB2 Laves-phase pseudobinary compounds. J Less-Common Met 53:117–131 Shaltiel D, Jacob I, Davidov D (1977) Hydrogen absorption properties of AB2 Laves-phase pseudobinary compounds. J Less-Common Met 53:117–131
19.
go back to reference Chase MW Jr, Davis CA, Downey JR Jr, Frurip DJ, McDonald RA, Syverud AN (1985) J Phys Chem Ref Data 14, Suppl No 1:1266 Chase MW Jr, Davis CA, Downey JR Jr, Frurip DJ, McDonald RA, Syverud AN (1985) J Phys Chem Ref Data 14, Suppl No 1:1266
20.
go back to reference Nomura K, Akiba E, Ono S, Suda S (1979) Kinteics of the reaction between Mg2Ni and H2. In: JIMIS-2 Hydrogen in Metals, Minakami, Japan. The Japan Institute of Metals, Sendai, pp 353–356 Nomura K, Akiba E, Ono S, Suda S (1979) Kinteics of the reaction between Mg2Ni and H2. In: JIMIS-2 Hydrogen in Metals, Minakami, Japan. The Japan Institute of Metals, Sendai, pp 353–356
21.
go back to reference Sandrock GD, Murray JJ, Post ML, Taylor JB (1982) Hydrides and deuteride of CaNi5. Mat Res Bul 17:887–894 Sandrock GD, Murray JJ, Post ML, Taylor JB (1982) Hydrides and deuteride of CaNi5. Mat Res Bul 17:887–894
22.
go back to reference van Mal HH, Buschow KHJ, Miedcma AR (1974) Hydrogen absorption in LaNi5 and related compounds: experimental observations and their explanation. J Less-Common Met 35:65–76CrossRef van Mal HH, Buschow KHJ, Miedcma AR (1974) Hydrogen absorption in LaNi5 and related compounds: experimental observations and their explanation. J Less-Common Met 35:65–76CrossRef
23.
go back to reference Didisheim JJ, Zolliker P, Yvon K, Fischer P, Schefer J, Gubelmann M, Williams AF (1984) Dimagnesium iron(II) hydride, Mg2FeH6, containing octahedral FeH 6 4- anions. Inorg Chem 23:1953–1957CrossRef Didisheim JJ, Zolliker P, Yvon K, Fischer P, Schefer J, Gubelmann M, Williams AF (1984) Dimagnesium iron(II) hydride, Mg2FeH6, containing octahedral FeH 6 4- anions. Inorg Chem 23:1953–1957CrossRef
24.
go back to reference Zolliker P, Yvon K, Fischer P, Schefer J (1985) Dimagnesium cobalt(I) pentahydride, Mg2CoH5, containing square-pyramidal pentahydrocobaltate(4-) (CoH 5 4- ) anions. Inorg Chem 24:4177–4180CrossRef Zolliker P, Yvon K, Fischer P, Schefer J (1985) Dimagnesium cobalt(I) pentahydride, Mg2CoH5, containing square-pyramidal pentahydrocobaltate(4-) (CoH 5 4- ) anions. Inorg Chem 24:4177–4180CrossRef
25.
go back to reference Flanagan TB (1978) Thermodynamics of metal, alloy and intermetallic/hydrogen systems. In: Andresen AF, Maeland AJ (eds) Hydrides for energy storage: proceedings of an international symposium, Geilo, August 1977. Oxford, Pergamon, pp 43–59 Flanagan TB (1978) Thermodynamics of metal, alloy and intermetallic/hydrogen systems. In: Andresen AF, Maeland AJ (eds) Hydrides for energy storage: proceedings of an international symposium, Geilo, August 1977. Oxford, Pergamon, pp 43–59
26.
go back to reference Rudman PS (1979) Hydrogen-diffusion-rate-limited hydriding and dehydriding kinetics. J Appl Phys 50:7195–7199CrossRef Rudman PS (1979) Hydrogen-diffusion-rate-limited hydriding and dehydriding kinetics. J Appl Phys 50:7195–7199CrossRef
27.
go back to reference Boulet JM, Gerard N (1983) The mechanism and kinetics of hydride formation in Mg-10 wt%Ni and CeMg12. J Less-Common Met 89:151–161CrossRef Boulet JM, Gerard N (1983) The mechanism and kinetics of hydride formation in Mg-10 wt%Ni and CeMg12. J Less-Common Met 89:151–161CrossRef
28.
go back to reference Mintz MH, Bloch J (1985) Evaluation of the kinetics and mechanisms of hybriding reactions. Prog Solid State Chem 16:163–194CrossRef Mintz MH, Bloch J (1985) Evaluation of the kinetics and mechanisms of hybriding reactions. Prog Solid State Chem 16:163–194CrossRef
29.
go back to reference Rudman PS (1983) Hydriding and dehydriding kinetics. J Less-Common Met 89:93–110CrossRef Rudman PS (1983) Hydriding and dehydriding kinetics. J Less-Common Met 89:93–110CrossRef
30.
go back to reference Sharp JH, Brindley GW, Achar BNA (1966) Numerical data for some commonly used solid state reaction equations. J Am Ceram Soc 49:379–382CrossRef Sharp JH, Brindley GW, Achar BNA (1966) Numerical data for some commonly used solid state reaction equations. J Am Ceram Soc 49:379–382CrossRef
31.
go back to reference Hancock JD, Sharp JH (1972) Method of comparing solid-state kinetic data and its application to the decomposition of Kaolinite, Brucite and BaCO3. J Am Ceram Soc 55:74–77CrossRef Hancock JD, Sharp JH (1972) Method of comparing solid-state kinetic data and its application to the decomposition of Kaolinite, Brucite and BaCO3. J Am Ceram Soc 55:74–77CrossRef
Metadata
Title
Fundamentals
Author
Etsuo Akiba
Copyright Year
2016
Publisher
Springer Japan
DOI
https://doi.org/10.1007/978-4-431-56042-5_13