Skip to main content
Top

2017 | OriginalPaper | Chapter

11. Future Perspectives of Bioactive Glasses for the Clinical Applications

Authors : V. Kumar, G. Pickrell, S.G. Waldrop, N. Sriranganathan

Published in: Bioactive Glasses

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Tissue engineering is continuously evolving as an exciting and multidisciplinary field aiming to develop biological substitutes to restore, replace, or regenerate defective tissues. Scaffolds, cells, and growth-stimulating signals are the basic components of tissue engineering. However, researchers often encounter an enormous variety of choices when selecting scaffolds for tissue engineering. Typically, glass, ceramics, or polymeric biomaterials are used for making scaffolds, which provide the structural support for cell attachment and subsequent tissue development.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Denrya I, Liisa T (2016) Kuhn design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering. Dent Mater 32:43–53 Denrya I, Liisa T (2016) Kuhn design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering. Dent Mater 32:43–53
go back to reference Bakry AS, Takahashid H, Otsukie M, Tagamie J (2014) Evaluation of new treatment for incipient enamel demineralization using 45S5 bioglass. Oper Dent Mater 30:314–320 Bakry AS, Takahashid H, Otsukie M, Tagamie J (2014) Evaluation of new treatment for incipient enamel demineralization using 45S5 bioglass. Oper Dent Mater 30:314–320
go back to reference Tulyaganova DU, Reddy AA, Siegelc R, Ionescud E, Riedeld R, Ferreira JMF (2015) Synthesis and in vitro bioactivity assessment of injectable bioglass_organic pastes for bone tissue repair. Ceram Int 41:9373–9382 Tulyaganova DU, Reddy AA, Siegelc R, Ionescud E, Riedeld R, Ferreira JMF (2015) Synthesis and in vitro bioactivity assessment of injectable bioglass_organic pastes for bone tissue repair. Ceram Int 41:9373–9382
go back to reference Renghini C, Giuliani A, Mazzoni S, Brun F, Larsson E, Baino F et al (2013) Microstructural characterization and in vitro bioactivity of porous glass ceramic scaffolds for bone regeneration by synchrotron radiation X-ray microtomography. J Eur Ceram Soc 33:1553–1565 Renghini C, Giuliani A, Mazzoni S, Brun F, Larsson E, Baino F et al (2013) Microstructural characterization and in vitro bioactivity of porous glass ceramic scaffolds for bone regeneration by synchrotron radiation X-ray microtomography. J Eur Ceram Soc 33:1553–1565
go back to reference Rahaman MN et al (2014) Mater Sci Eng C 41:224–231 Rahaman MN et al (2014) Mater Sci Eng C 41:224–231
go back to reference Larrañaga A, Diamanti E, Rubio E, Palomares T, Alonso-Varona A, Aldazabal P, Martin FJ, Sarasua JR (2014) A study of themechanical properties and cytocompatibility of lactide and caprolactone based scaffolds filled with inorganic bioactive particles. Mater Sci Eng C 42:451–460 Larrañaga A, Diamanti E, Rubio E, Palomares T, Alonso-Varona A, Aldazabal P, Martin FJ, Sarasua JR (2014) A study of themechanical properties and cytocompatibility of lactide and caprolactone based scaffolds filled with inorganic bioactive particles. Mater Sci Eng C 42:451–460
go back to reference Gentile P, Bellucci D, Sola A, Matt C, Cannillo V, Ciardelli G (2015) Composite scaffolds for controlled drug release: role of the polyurethane nanoparticles on the physical properties andcell behavior. J Mech Behav Biomater 44:53–60 Gentile P, Bellucci D, Sola A, Matt C, Cannillo V, Ciardelli G (2015) Composite scaffolds for controlled drug release: role of the polyurethane nanoparticles on the physical properties andcell behavior. J Mech Behav Biomater 44:53–60
go back to reference Chan BP, Leong KW (2008) Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 17(4):467–479 Chan BP, Leong KW (2008) Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 17(4):467–479
go back to reference Bellucci D, Cannillo V, Sola A (2011a) Calcium and potassium addition to facilitate the sintering of bioactive glasses. Mater Lett 65:1825–1827 Bellucci D, Cannillo V, Sola A (2011a) Calcium and potassium addition to facilitate the sintering of bioactive glasses. Mater Lett 65:1825–1827
go back to reference Bellucci D, Sola A, Cannillo V, (2012b) Low temperature sintering of innovative bioactive glasses. J Am Ceram Soc 95:1313–1319 Bellucci D, Sola A, Cannillo V, (2012b) Low temperature sintering of innovative bioactive glasses. J Am Ceram Soc 95:1313–1319
go back to reference Bellucci D, Sola A, Cannillo V (2013a) Bioactive glass-based composites for the production of dense sintered bodies and porous scaffolds. Mater Sci Eng C Mater Biol Appl 33:2138–2151 Bellucci D, Sola A, Cannillo V (2013a) Bioactive glass-based composites for the production of dense sintered bodies and porous scaffolds. Mater Sci Eng C Mater Biol Appl 33:2138–2151
go back to reference Idowu B, Cama G, Deb S, DiSilvio L (2014) In vitro osteoinductive potential of porous monetite for bone tissue engineering. J Tissue Eng 5:1–14 (2041731414536572) Idowu B, Cama G, Deb S, DiSilvio L (2014) In vitro osteoinductive potential of porous monetite for bone tissue engineering. J Tissue Eng 5:1–14 (2041731414536572)
go back to reference Blaker J, Maquet V, Jérome R, Boccaccini AR, Nazhat SN (2005) Mechanical properties of highly porous PDLLA/bioglass composite foams as scaffolds for bone tissue engineering. Acta Biomater 1:643–652 Blaker J, Maquet V, Jérome R, Boccaccini AR, Nazhat SN (2005) Mechanical properties of highly porous PDLLA/bioglass composite foams as scaffolds for bone tissue engineering. Acta Biomater 1:643–652
go back to reference Soundrapandiana C, Mahatob A, Kundu B, Datta S, Sac B, Basu D (2014) Development and effect of different bioactive silicate glass scaffolds: invitro evaluation for use as a bone drug delivery system. J Mech Behav Biomater 40:1–1 2 Soundrapandiana C, Mahatob A, Kundu B, Datta S, Sac B, Basu D (2014) Development and effect of different bioactive silicate glass scaffolds: invitro evaluation for use as a bone drug delivery system. J Mech Behav Biomater 40:1–1 2
go back to reference Rosenqvist K, Airaksinen S, Vehkamäki M, Juppo AM (2014) Evaluating optimal combination of clodronate and bioactive glass for dental application. Int J Pharm 468:112–120 Rosenqvist K, Airaksinen S, Vehkamäki M, Juppo AM (2014) Evaluating optimal combination of clodronate and bioactive glass for dental application. Int J Pharm 468:112–120
go back to reference Bakry AS, Takahashi H, Otsuki M, Sadr A, Yamashita K, Tagami J (2011) CO2 laser improves 45S5 bioglass interaction withdentin. J Dent Res 90(2):246–250 Bakry AS, Takahashi H, Otsuki M, Sadr A, Yamashita K, Tagami J (2011) CO2 laser improves 45S5 bioglass interaction withdentin. J Dent Res 90(2):246–250
go back to reference Baino F, Brovarone CV (2014) Bioceramics in ophthalmology. Acta Biomater 10:3372–3397 Baino F, Brovarone CV (2014) Bioceramics in ophthalmology. Acta Biomater 10:3372–3397
go back to reference Kinnunen I, Aitasalo K, Pollonen M, Varpula M (2000) Reconstruction of orbital fractures using bioactive glass. J Craniomaxollofac Surg 28:229–234 Kinnunen I, Aitasalo K, Pollonen M, Varpula M (2000) Reconstruction of orbital fractures using bioactive glass. J Craniomaxollofac Surg 28:229–234
go back to reference Peltola M, Kinnunen I, Aitasalo K (2008) Reconstruction of orbital wall defects with bioactive glass plates. J Oral Maxillofac Surg 66:639–646 Peltola M, Kinnunen I, Aitasalo K (2008) Reconstruction of orbital wall defects with bioactive glass plates. J Oral Maxillofac Surg 66:639–646
go back to reference Chirila TV (2001) An overview of the development of artificial corneas with porous skirts and the use of PHEMA for such an application. Biomaterials 22:3311–3317 Chirila TV (2001) An overview of the development of artificial corneas with porous skirts and the use of PHEMA for such an application. Biomaterials 22:3311–3317
go back to reference Linnola RJ, Happonen RP, Andersson OH, Vedel EA, Yli-Urpo U, Krause U et al (1996) Titanium and bioactive glass-ceramic coated titanium as materials for keratoprosthesis. Exp Eye Res 63:471–478 Linnola RJ, Happonen RP, Andersson OH, Vedel EA, Yli-Urpo U, Krause U et al (1996) Titanium and bioactive glass-ceramic coated titanium as materials for keratoprosthesis. Exp Eye Res 63:471–478
go back to reference Tulyaganov DU, Agathopoulos S, Valerio P, Balamurugan A, Saranti A, Karakassides MA, Ferreira JM (2011) Synthesis, bioactivity and preliminary biocompatibility studies of glasses in the system CaO–MgO–SiO2–Na2O–P2O5–CaF2. J Mater Sci Mater Med 22:217–227 Tulyaganov DU, Agathopoulos S, Valerio P, Balamurugan A, Saranti A, Karakassides MA, Ferreira JM (2011) Synthesis, bioactivity and preliminary biocompatibility studies of glasses in the system CaO–MgO–SiO2–Na2O–P2O5–CaF2. J Mater Sci Mater Med 22:217–227
go back to reference Tulyaganov DU, Makhkamov ME, Urazbaev A, Goel A, Ferreira JMF (2013) Synthesis, processing and characterization of a bioactive glass composition for bone regeneration. Ceram Int 39:2519–2526 Tulyaganov DU, Makhkamov ME, Urazbaev A, Goel A, Ferreira JMF (2013) Synthesis, processing and characterization of a bioactive glass composition for bone regeneration. Ceram Int 39:2519–2526
go back to reference Arcos D, Regí MV (2010) Sol–gel silica-based biomaterials and bone tissue regeneration. Acta Biomater 6:2874–2888 Arcos D, Regí MV (2010) Sol–gel silica-based biomaterials and bone tissue regeneration. Acta Biomater 6:2874–2888
go back to reference Bellantone M, Coleman NJ, Hench LL (2000) Bacteriostatic action of a novel four component bioactive glass. J Biomed Mater Res 51:484–490 Bellantone M, Coleman NJ, Hench LL (2000) Bacteriostatic action of a novel four component bioactive glass. J Biomed Mater Res 51:484–490
go back to reference Rezwan K, Chen QZ, Blaker J, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431 Rezwan K, Chen QZ, Blaker J, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431
go back to reference Fu Q, Saiz E, Rahaman MN, Tomsia AP (2011) Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater Sci Eng C 31:1245–1256 Fu Q, Saiz E, Rahaman MN, Tomsia AP (2011) Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater Sci Eng C 31:1245–1256
go back to reference Blaker J, Maquet V, Jérome R, Boccaccini AR, Nazhat SN (2005) Mechanical properties of highly porous PDLLA/bioglass composite foams as scaffolds for bone tissue engineering. Acta Biomater 1:643–652 Blaker J, Maquet V, Jérome R, Boccaccini AR, Nazhat SN (2005) Mechanical properties of highly porous PDLLA/bioglass composite foams as scaffolds for bone tissue engineering. Acta Biomater 1:643–652
go back to reference Thomson RC, Yaszemski MJ, Power JM, Mikos AG (1998) Hydroxyapatite fiber reinforced poly(α-hydroxy ester) foams for bone regeneration. Biomaterials 19:1935–1943 Thomson RC, Yaszemski MJ, Power JM, Mikos AG (1998) Hydroxyapatite fiber reinforced poly(α-hydroxy ester) foams for bone regeneration. Biomaterials 19:1935–1943
go back to reference Roether JA, Boccaccini AR, Hench LL, Maquet V, Gautier S, Jérome R (2002) Development and in vitro characterization of novel bioresorbable and bioactive composite materials based on polylactide foams and bioglassfor tissue engineering applications. Biomaterials 23:3871–3878 Roether JA, Boccaccini AR, Hench LL, Maquet V, Gautier S, Jérome R (2002) Development and in vitro characterization of novel bioresorbable and bioactive composite materials based on polylactide foams and bioglassfor tissue engineering applications. Biomaterials 23:3871–3878
go back to reference Maquet V, Boccaccini AR, Pravata L, Notingher I, Jérome R (2004) Porous poly (α-hydroxyacid)/bioglass composite scaffolds for bone tissue engineering I: preparation and in vitro characterization. Biomaterials 25:4185–4194 Maquet V, Boccaccini AR, Pravata L, Notingher I, Jérome R (2004) Porous poly (α-hydroxyacid)/bioglass composite scaffolds for bone tissue engineering I: preparation and in vitro characterization. Biomaterials 25:4185–4194
go back to reference Chen JP, Chang YS (2011) Preparation and characterization of composite nanofibers of polycaprolactone and nanohydroxyapatite for osteogenic differentiationof mesenchymal stem cells. Colloids Surf B: Biointerfaces 86:169–175 Chen JP, Chang YS (2011) Preparation and characterization of composite nanofibers of polycaprolactone and nanohydroxyapatite for osteogenic differentiationof mesenchymal stem cells. Colloids Surf B: Biointerfaces 86:169–175
go back to reference Kim SS, Park MS, Jeon O, Choi CY, Kim BS (2006) Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials 27:1399–1409 Kim SS, Park MS, Jeon O, Choi CY, Kim BS (2006) Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials 27:1399–1409
go back to reference Kim HW, Lee HH, Chun GS (2008) Bioactivity and osteoblast responses of novel biomedical nanocomposites of bioactive glass nanofiber filled poly(lactic acid) J Biomed Mater Res Part A 85:651–663 Kim HW, Lee HH, Chun GS (2008) Bioactivity and osteoblast responses of novel biomedical nanocomposites of bioactive glass nanofiber filled poly(lactic acid) J Biomed Mater Res Part A 85:651–663
go back to reference Gerhardt LC, Boccaccini AR (2010) Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials 3:3867–3910 Gerhardt LC, Boccaccini AR (2010) Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials 3:3867–3910
go back to reference Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP (2011) Bioactive glass in tissue engineering. Acta Biomater 7:2355–2373 Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP (2011) Bioactive glass in tissue engineering. Acta Biomater 7:2355–2373
go back to reference Lee J, Guarino V, Gloria A, Ambrosio L, Tae G, Kim et al YH (2010) Regeneration of Achilles’ tendon: the role of dynamic stimulation for enhanced cell proliferation and mechanical properties. J Biomater Sci 21:1173–1190 Lee J, Guarino V, Gloria A, Ambrosio L, Tae G, Kim et al YH (2010) Regeneration of Achilles’ tendon: the role of dynamic stimulation for enhanced cell proliferation and mechanical properties. J Biomater Sci 21:1173–1190
go back to reference Jeong SI, Kim SH, Kim YH, Jung Y, Kwon JH, Kim et al BS (2004) Manufacture of elastic biodegradable PLCL scaffolds for mechano-active vascular tissue engineering. J Biomater Sci Polym Ed 15:645–660 Jeong SI, Kim SH, Kim YH, Jung Y, Kwon JH, Kim et al BS (2004) Manufacture of elastic biodegradable PLCL scaffolds for mechano-active vascular tissue engineering. J Biomater Sci Polym Ed 15:645–660
go back to reference Calori GM, Mazza E, Colombo M, Ripamonti C (2011) The use of bone-graft substitutes in large bone defects: any specific needs? Injury—Int J Care Inj 42:56–63 Calori GM, Mazza E, Colombo M, Ripamonti C (2011) The use of bone-graft substitutes in large bone defects: any specific needs? Injury—Int J Care Inj 42:56–63
go back to reference Albrektsson T, Johansson C. Osteoinduction (2001) Osteoconduction and osseointegration. Eur Spine J 10:96–101 Albrektsson T, Johansson C. Osteoinduction (2001) Osteoconduction and osseointegration. Eur Spine J 10:96–101
go back to reference Minardi S, Corradetti B, Taraballi F et al (2015) Evaluation of the osteoinductive potential of a bio-inspired scaffold mimicking the osteogenic niche for bone augmentation. Biomaterials 62:128–137 Minardi S, Corradetti B, Taraballi F et al (2015) Evaluation of the osteoinductive potential of a bio-inspired scaffold mimicking the osteogenic niche for bone augmentation. Biomaterials 62:128–137
go back to reference Wang L, Zhang B, Bao C et al (2014) Ectopic osteoid and bone formation by three calcium-phosphate ceramics in rats, rabbits and dogs. PLoS One 9(9):e107044 Wang L, Zhang B, Bao C et al (2014) Ectopic osteoid and bone formation by three calcium-phosphate ceramics in rats, rabbits and dogs. PLoS One 9(9):e107044
go back to reference Daculsi G, Fellah BH, Miramond T (2014) The essential role of calcium phosphate bioceramics in bone regeneration. In: BenNissan B (ed), Advances in calcium phosphate biomaterials, Springer-Verlag, Berlin, pp 71–96 Daculsi G, Fellah BH, Miramond T (2014) The essential role of calcium phosphate bioceramics in bone regeneration. In: BenNissan B (ed), Advances in calcium phosphate biomaterials, Springer-Verlag, Berlin, pp 71–96
go back to reference Landi E, Logroscino G, Proietti L et al (2008) Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behaviour. J Mater Sci Mater Med 19(1):239–247 Landi E, Logroscino G, Proietti L et al (2008) Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behaviour. J Mater Sci Mater Med 19(1):239–247
go back to reference Maier JAM, Bernardini D, Rayssiguier Y, Mazur A (2004) High concentrations of magnesium modulate vascular endothelial cell behaviour in vitro. Biochim Biophys Acta—Mol Basis Dis 1689(1):6–12 Maier JAM, Bernardini D, Rayssiguier Y, Mazur A (2004) High concentrations of magnesium modulate vascular endothelial cell behaviour in vitro. Biochim Biophys Acta—Mol Basis Dis 1689(1):6–12
go back to reference Marie PJ, Ammann P, Boivin G, Rey C (2001) Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int 69(3):121–129 Marie PJ, Ammann P, Boivin G, Rey C (2001) Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int 69(3):121–129
go back to reference Marquis P, Roux C, Diaz-Curiel M et al (2007) Long-term beneficial effects of strontium ranelate on the quality of life in patients with vertebral osteoporosis (Soti study). Calcif Tissue Int 80:137–138 Marquis P, Roux C, Diaz-Curiel M et al (2007) Long-term beneficial effects of strontium ranelate on the quality of life in patients with vertebral osteoporosis (Soti study). Calcif Tissue Int 80:137–138
go back to reference Ortolani S, Vai S (2006) Strontium ranelate: an increased bone quality leading to vertebral antifracture efficacy at all stages. Bone 38(2):19–22 Ortolani S, Vai S (2006) Strontium ranelate: an increased bone quality leading to vertebral antifracture efficacy at all stages. Bone 38(2):19–22
go back to reference Pors Nielsen S (2004) The biological role of strontium. Bone 35(3):583–588 Pors Nielsen S (2004) The biological role of strontium. Bone 35(3):583–588
go back to reference Li H, Chang J (2013) Bioactive silicate materials stimulate angiogenesis in fibroblast and endothelial cell co-culture system through paracrine effect. Acta Biomater 9(6):6981–6991 Li H, Chang J (2013) Bioactive silicate materials stimulate angiogenesis in fibroblast and endothelial cell co-culture system through paracrine effect. Acta Biomater 9(6):6981–6991
go back to reference Pietak AM, Reid JW, Stott MJ, Sayer M (2007) Silicon substitution in the calcium phosphate bioceramics. Biomaterials 28(28):4023–4032 Pietak AM, Reid JW, Stott MJ, Sayer M (2007) Silicon substitution in the calcium phosphate bioceramics. Biomaterials 28(28):4023–4032
go back to reference Schwartzwalder K, Somers AV (1963) Inventors. General motors corporation, assignee. Method of making porous ceramic articles. US patent 3,090,094 Schwartzwalder K, Somers AV (1963) Inventors. General motors corporation, assignee. Method of making porous ceramic articles. US patent 3,090,094
go back to reference Chang BS, Lee CK, Hong KS et al (2000) Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials 21(12):1291–1298 Chang BS, Lee CK, Hong KS et al (2000) Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials 21(12):1291–1298
go back to reference Saiz E, Gremillard L, Menendez G et al (2007) Preparation of porous hydroxyapatite scaffolds. Mater Sci Eng C-Biomim Supramol Syst 27(3):546–550 Saiz E, Gremillard L, Menendez G et al (2007) Preparation of porous hydroxyapatite scaffolds. Mater Sci Eng C-Biomim Supramol Syst 27(3):546–550
go back to reference Tian JT, Tian JM (2001) Preparation of porous hydroxyapatite. J Mater Sci 36(12):3061–3066 Tian JT, Tian JM (2001) Preparation of porous hydroxyapatite. J Mater Sci 36(12):3061–3066
go back to reference Padilla S, Sanchez-Salcedo S, Vallet-Regi M (2007) Bioactive glass as precursor of designed-architecture scaffolds for tissue engineering. J Biomed Mater Res Part A 81(1):224–232 Padilla S, Sanchez-Salcedo S, Vallet-Regi M (2007) Bioactive glass as precursor of designed-architecture scaffolds for tissue engineering. J Biomed Mater Res Part A 81(1):224–232
go back to reference Santos JD, Knowles JC, Reis RL, Monteiro FJ, Hastings GW (1994) Microstructural characterization of glass-reinforced hydroxyapatite composites. Biomaterials 15(1):5–10 Santos JD, Knowles JC, Reis RL, Monteiro FJ, Hastings GW (1994) Microstructural characterization of glass-reinforced hydroxyapatite composites. Biomaterials 15(1):5–10
go back to reference Colombo P, Hellmann JR (2002) Ceramic foams from preceramic polymers. Mater Res Innov 6(5–6):260–272 Colombo P, Hellmann JR (2002) Ceramic foams from preceramic polymers. Mater Res Innov 6(5–6):260–272
go back to reference Shepherd JH, Best SM (2011) Calcium phosphate scaffolds for bone repair. JOM 63(4):83–92 Shepherd JH, Best SM (2011) Calcium phosphate scaffolds for bone repair. JOM 63(4):83–92
go back to reference Lewis JA, Smay JE (2005) Three-dimensional periodic structures. Cell Ceram Struct Manuf Properties Appl pp 87–100 Lewis JA, Smay JE (2005) Three-dimensional periodic structures. Cell Ceram Struct Manuf Properties Appl pp 87–100
go back to reference Lewis JA, Smay JE, Stuecker J, Cesarano III J (2006) Direct ink writing of three-dimensional ceramic structures. J Am Ceram Soc 89(12):3599–3609 Lewis JA, Smay JE, Stuecker J, Cesarano III J (2006) Direct ink writing of three-dimensional ceramic structures. J Am Ceram Soc 89(12):3599–3609
go back to reference Simon JL, Michna S, Lewis JA et al (2007) In vivo bone response to 3D periodic hydroxyapatite scaffolds assembled by direct ink writing. J Biomed Mater Res Part A 83(3):747–758 Simon JL, Michna S, Lewis JA et al (2007) In vivo bone response to 3D periodic hydroxyapatite scaffolds assembled by direct ink writing. J Biomed Mater Res Part A 83(3):747–758
go back to reference Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543 Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543
go back to reference Descamps M, Duhoo T, Monchau F et al (2008) Manufacture of macroporous beta-tricalcium phosphate bioceramics. J Eur Ceram Soc 28(1):149–157 Descamps M, Duhoo T, Monchau F et al (2008) Manufacture of macroporous beta-tricalcium phosphate bioceramics. J Eur Ceram Soc 28(1):149–157
go back to reference Descamps M, Richart O, Hardouin P, Hornez JC, Leriche A (2008) Synthesis of macroporous beta-tricalcium phosphate with controlled porous architectural. Ceram Int 34(5):1131–1137 Descamps M, Richart O, Hardouin P, Hornez JC, Leriche A (2008) Synthesis of macroporous beta-tricalcium phosphate with controlled porous architectural. Ceram Int 34(5):1131–1137
go back to reference Michna S, Wu W, Lewis JA (2005) Concentrated hydroxyapatite inks for direct-write assembly of 3-D periodic scaffolds. Biomaterials 26(28):5632–5639 Michna S, Wu W, Lewis JA (2005) Concentrated hydroxyapatite inks for direct-write assembly of 3-D periodic scaffolds. Biomaterials 26(28):5632–5639
go back to reference Denry I, Holloway JA (2014) Low temperature sintering of fluorapatite glass-ceramics. Dental Mater 30(2):112–121 Denry I, Holloway JA (2014) Low temperature sintering of fluorapatite glass-ceramics. Dental Mater 30(2):112–121
go back to reference Fu Q, Saiz E, Rahaman MN, Tomsia AP (2011) Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater Sci Eng C—Mater Biol Appl 31(7):1245–1256 Fu Q, Saiz E, Rahaman MN, Tomsia AP (2011) Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater Sci Eng C—Mater Biol Appl 31(7):1245–1256
go back to reference Barrere F, Mahmood TA, de Groot K, van Blitterswijk CA (2008) Advanced biomaterials for skeletal tissue regeneration: Instructive and smart functions. Mater Sci Eng R Rep 59(1–6):38–71 Barrere F, Mahmood TA, de Groot K, van Blitterswijk CA (2008) Advanced biomaterials for skeletal tissue regeneration: Instructive and smart functions. Mater Sci Eng R Rep 59(1–6):38–71
go back to reference Barrere F, van Blitterswijk CA, de Groot K (2006) Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int J Nanomed 1(3):317–332 Barrere F, van Blitterswijk CA, de Groot K (2006) Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int J Nanomed 1(3):317–332
go back to reference Davies JE (2007) Bone bonding at natural and biomaterial surfaces. Biomaterials 28(34):5058–5067 Davies JE (2007) Bone bonding at natural and biomaterial surfaces. Biomaterials 28(34):5058–5067
go back to reference Woodard JR, Hilldore AJ, Lan SK et al (2007) The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials 28(1):45–54 Woodard JR, Hilldore AJ, Lan SK et al (2007) The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials 28(1):45–54
go back to reference Diaz-Rodriguez P, Gonzalez P, Serra J, Landin M (2014) Key parameters in blood-surface interactions of 3D bioinspired ceramic materials. Mater Sci Eng C-Mater Biol Appl 41:232–239 Diaz-Rodriguez P, Gonzalez P, Serra J, Landin M (2014) Key parameters in blood-surface interactions of 3D bioinspired ceramic materials. Mater Sci Eng C-Mater Biol Appl 41:232–239
go back to reference Seyfert UT, Biehl V, Schenk J (2002) In vitro hemocompatibility testing of biomaterials according to the ISO 10993–4. Biomol Eng 19(2–6):91–96 Seyfert UT, Biehl V, Schenk J (2002) In vitro hemocompatibility testing of biomaterials according to the ISO 10993–4. Biomol Eng 19(2–6):91–96
go back to reference ISO (2002) Standard 10993-4 Biological evaluation of medical devices—part 4: selection of tests for interactions with blood ISO (2002) Standard 10993-4 Biological evaluation of medical devices—part 4: selection of tests for interactions with blood
go back to reference LeGeros RZ (2002) Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res 395:81–98 LeGeros RZ (2002) Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res 395:81–98
go back to reference Autefage H, Briand-Mesange F, Cazalbou S et al (2009) Adsorption and release of BMP-2 on nanocrystalline apatite-coated and uncoated hydroxyapatite/beta-tricalcium phosphate porous ceramics. J Biomed Mater Res B Appl Biomater 91(2):706–715 Autefage H, Briand-Mesange F, Cazalbou S et al (2009) Adsorption and release of BMP-2 on nanocrystalline apatite-coated and uncoated hydroxyapatite/beta-tricalcium phosphate porous ceramics. J Biomed Mater Res B Appl Biomater 91(2):706–715
go back to reference Liu Y, de Groot K, Hunziker EB (2005) BMP-2 liberated from biomimetic implant coatings induces and sustains direct ossification in an ectopic rat model. Bone 36(5):745–757 Liu Y, de Groot K, Hunziker EB (2005) BMP-2 liberated from biomimetic implant coatings induces and sustains direct ossification in an ectopic rat model. Bone 36(5):745–757
go back to reference Roldan JC, Detsch R, Schaefer S et al (2010) Bone formation and degradation of a highly porous biphasic calcium phosphate ceramic in presence of BMP-7, VEGF and mesenchymal stem cells in an ectopic mouse model. J Craniomaxillofac Surg 38(6):423–430 Roldan JC, Detsch R, Schaefer S et al (2010) Bone formation and degradation of a highly porous biphasic calcium phosphate ceramic in presence of BMP-7, VEGF and mesenchymal stem cells in an ectopic mouse model. J Craniomaxillofac Surg 38(6):423–430
go back to reference Guicheux J, Gauthier O, Aguado E et al (1998) Human growth hormone locally released in bone sites by calcium-phosphate biomaterial stimulates ceramic bone substitution without systemic effects: a rabbit study. J Bone Miner Res 13(4):739–748 Guicheux J, Gauthier O, Aguado E et al (1998) Human growth hormone locally released in bone sites by calcium-phosphate biomaterial stimulates ceramic bone substitution without systemic effects: a rabbit study. J Bone Miner Res 13(4):739–748
go back to reference Thomson RC, Yaszemski MJ, Power JM, Mikos AG (1998) Hydroxyapatite fiber reinforced poly(α-hydroxy ester) foams for bone regeneration. Biomaterials 19:1935–1943. Thomson RC, Yaszemski MJ, Power JM, Mikos AG (1998) Hydroxyapatite fiber reinforced poly(α-hydroxy ester) foams for bone regeneration. Biomaterials 19:1935–1943.
go back to reference Lee J, Guarino V, Gloria A, Ambrosio L, Tae G, Kim YH (2010) Regeneration of Achilles’ tendon: the role of dynamic stimulation for enhanced cell proliferation and mechanical properties. J Biomater Sci 21:1173–1190 Lee J, Guarino V, Gloria A, Ambrosio L, Tae G, Kim YH (2010) Regeneration of Achilles’ tendon: the role of dynamic stimulation for enhanced cell proliferation and mechanical properties. J Biomater Sci 21:1173–1190
go back to reference Jeong SI, Kim SH, Kim YH, Jung Y, Kwon JH, Kim BS et al (2004) Manufacture of elastic biodegradable PLCL scaffolds for mechano-active vascular tissue engineering. J Biomater Sci Polym Ed 15:645–660 Jeong SI, Kim SH, Kim YH, Jung Y, Kwon JH, Kim BS et al (2004) Manufacture of elastic biodegradable PLCL scaffolds for mechano-active vascular tissue engineering. J Biomater Sci Polym Ed 15:645–660
go back to reference Yunos DM, Bretcanu O, Boccaccini A (2008) Polymer–bioceramic composites for tissue engineering scaffolds. J Mater Sci Mater Med 43:4433–4442 Yunos DM, Bretcanu O, Boccaccini A (2008) Polymer–bioceramic composites for tissue engineering scaffolds. J Mater Sci Mater Med 43:4433–4442
go back to reference Yagmurlu MF, Korkusuz F, Guersel I, Korkusuz P, Ors U, Hasirci V (1999) Sulbactam-cefoperazone polyhydroxybutyrate-co-hydroxyvalerate (PHBV) local antibiotic delivery system: in vivo effectiveness and biocompatibility in the treatment of implant-related experimental osteomyelitis. J Biomed Mater Res 46:494–503 Yagmurlu MF, Korkusuz F, Guersel I, Korkusuz P, Ors U, Hasirci V (1999) Sulbactam-cefoperazone polyhydroxybutyrate-co-hydroxyvalerate (PHBV) local antibiotic delivery system: in vivo effectiveness and biocompatibility in the treatment of implant-related experimental osteomyelitis. J Biomed Mater Res 46:494–503
go back to reference Zhang X, Wyss UP, Pichora D, GoosenMF (1994a) Biodegradable controlled antibiotic release devices for osteomyelitis: optimization of release properties.J Pharm Pharmacol 46:718–724 Zhang X, Wyss UP, Pichora D, GoosenMF (1994a) Biodegradable controlled antibiotic release devices for osteomyelitis: optimization of release properties.J Pharm Pharmacol 46:718–724
go back to reference Zhang X, Wyss UP, Pichora D, Goosen MFA (1994b) Amechanistic study of antibiotic release from biodegradable poly (d, 1-lactide)cylinders. J Control Release 31:129–144 Zhang X, Wyss UP, Pichora D, Goosen MFA (1994b) Amechanistic study of antibiotic release from biodegradable poly (d, 1-lactide)cylinders. J Control Release 31:129–144
go back to reference Domingues ZR, Cortés, ME, Gomes TA, Diniz HF, Freitas CS, Gomes JB, Faria AMC, Sinisterra RD (2004) Bioactive glass as a drug delivery system of tetracycline and tetracycline associated with β-cyclodextrin. Biomaterials 25:327–333 Domingues ZR, Cortés, ME, Gomes TA, Diniz HF, Freitas CS, Gomes JB, Faria AMC, Sinisterra RD (2004) Bioactive glass as a drug delivery system of tetracycline and tetracycline associated with β-cyclodextrin. Biomaterials 25:327–333
go back to reference Czarnobaj K (2008) Preparation and characterization of silica xerogels as carriers for drugs. Drug Deliv 15:485–492 Czarnobaj K (2008) Preparation and characterization of silica xerogels as carriers for drugs. Drug Deliv 15:485–492
go back to reference Merchant HA, Shoaib HM, Tazeen J, Yousuf RI (2006) Once- daily tablet formulation and in vitro release evaluation of cefpodoxime using hydroxypropyl methylcellulose: a technical note. AAPS PharmSciTech 7:78 Merchant HA, Shoaib HM, Tazeen J, Yousuf RI (2006) Once- daily tablet formulation and in vitro release evaluation of cefpodoxime using hydroxypropyl methylcellulose: a technical note. AAPS PharmSciTech 7:78
go back to reference Bang H-G, Kim S-J, Park S-Y (2008) Biocompatibilityandthe physicalpropertiesofbio-glassceramicsinthe Na2O–CaO–SiO2–P2O5 system withCaF2 and MgF2 additives. J Ceram Proc Res 9:588–590 Bang H-G, Kim S-J, Park S-Y (2008) Biocompatibilityandthe physicalpropertiesofbio-glassceramicsinthe Na2O–CaO–SiO2–P2O5 system withCaF2 and MgF2 additives. J Ceram Proc Res 9:588–590
go back to reference Aina V, Malavasi G, Fiorio Pla A, Munaron L, Morterra C (2009) Zinc-containing bioactive glasses: surface reactivity and behaviour towards endothelial cells. Acta Biomater 5:1211–1222 Aina V, Malavasi G, Fiorio Pla A, Munaron L, Morterra C (2009) Zinc-containing bioactive glasses: surface reactivity and behaviour towards endothelial cells. Acta Biomater 5:1211–1222
go back to reference Ma ZJ, Yamaguchi M (2001) Role of endogenous zinc in the enhancement of bone protein synthesis associated with bone growth of newborn rats. J Bone Miner Metab 19:38–44 Ma ZJ, Yamaguchi M (2001) Role of endogenous zinc in the enhancement of bone protein synthesis associated with bone growth of newborn rats. J Bone Miner Metab 19:38–44
go back to reference Xia W, Chang J (2006) Well-ordered mesoporous bioactive glasses (MBG): a promising bioactive drug delivery system. J Control Release 110:522–530 Xia W, Chang J (2006) Well-ordered mesoporous bioactive glasses (MBG): a promising bioactive drug delivery system. J Control Release 110:522–530
go back to reference Kundu B, Soundrapandian C, Nandi SK, Mukherjee P, Dandapat N, Roy S, Datta BK, Mandal TK, Basu D, Bhattacharya RN (2010b) Development of new localized drug delivery system based on ceftriaxone-sulbactam composite drug impregnated porous hydroxyapatite: a systematic approach for in vitro and in vivo animal trial. Pharm Res 27:1659–1676. Kundu B, Soundrapandian C, Nandi SK, Mukherjee P, Dandapat N, Roy S, Datta BK, Mandal TK, Basu D, Bhattacharya RN (2010b) Development of new localized drug delivery system based on ceftriaxone-sulbactam composite drug impregnated porous hydroxyapatite: a systematic approach for in vitro and in vivo animal trial. Pharm Res 27:1659–1676.
go back to reference Noble L, Gray AI, Sadiq L, Uchegbu IF (1999) A non-covalently cross-linked chitosan based hydrogel. Int J Pharm 192:173–182 Noble L, Gray AI, Sadiq L, Uchegbu IF (1999) A non-covalently cross-linked chitosan based hydrogel. Int J Pharm 192:173–182
go back to reference Rossi S, Marciello M, Sandri G, Bonferoni MC, Ferrari F, Caramella C (2008) Chitosan ascorbate: a chitosan salt with improved penetration enhancement properties. Pharm Dev Technol 13:513–521 Rossi S, Marciello M, Sandri G, Bonferoni MC, Ferrari F, Caramella C (2008) Chitosan ascorbate: a chitosan salt with improved penetration enhancement properties. Pharm Dev Technol 13:513–521
go back to reference Ubaidulla U, Khar RK, Ahmad FJ, Tripathi P (2009) Optimization of chitosan succinate and chitosan phthalate microspheres for oral delivery of insulin using response surface methodology. Pharm Dev Technol 14:96–105 Ubaidulla U, Khar RK, Ahmad FJ, Tripathi P (2009) Optimization of chitosan succinate and chitosan phthalate microspheres for oral delivery of insulin using response surface methodology. Pharm Dev Technol 14:96–105
go back to reference Baldrick P (2010) The safety of chitosan as a pharmaceutical excipient. Regul Toxicol Pharmacol 56:290–299 Baldrick P (2010) The safety of chitosan as a pharmaceutical excipient. Regul Toxicol Pharmacol 56:290–299
go back to reference Kong M, Chen XG, Liu CS, Liu CG, Meng XH, Yu le J (2008) Antibacterial mechanism of chitosan microspheres in a solid dispersing system against E. coli. Colloids Surf 65:197–202 Kong M, Chen XG, Liu CS, Liu CG, Meng XH, Yu le J (2008) Antibacterial mechanism of chitosan microspheres in a solid dispersing system against E. coli. Colloids Surf 65:197–202
go back to reference Park Y, Kim MH, Park SC, Cheong H, Jang MK, Nah JW, Hahm KS (2008) Investigation of the anti fungal activity and mechanism of action of LMWS-chitosan. J Microbiol Biotechnol 18:1729–1734 Park Y, Kim MH, Park SC, Cheong H, Jang MK, Nah JW, Hahm KS (2008) Investigation of the anti fungal activity and mechanism of action of LMWS-chitosan. J Microbiol Biotechnol 18:1729–1734
go back to reference Rosenqvist K, Airaksinen S, Fraser SJ, Gordon KC, Juppo AM (2013) Interaction of bioactive glass with clodronate. Int J Pharm 452:102–107 Rosenqvist K, Airaksinen S, Fraser SJ, Gordon KC, Juppo AM (2013) Interaction of bioactive glass with clodronate. Int J Pharm 452:102–107
go back to reference Cross KJ, Huq NL, Stanton DP, Sum M, Reynolds EC (2004) NMR studies of a novel calcium, phosphate and fluoride delivery vehicle-alpha(S1)-casein(59-79) by stabilized amorphous calcium fluoride phosphate nanocomplexes. Biomaterials 25(20):5061–5069 Cross KJ, Huq NL, Stanton DP, Sum M, Reynolds EC (2004) NMR studies of a novel calcium, phosphate and fluoride delivery vehicle-alpha(S1)-casein(59-79) by stabilized amorphous calcium fluoride phosphate nanocomplexes. Biomaterials 25(20):5061–5069
go back to reference Borges BC, de Souza Borges J, de Araujo LS, Machado CT, DosSantos AJ, de Assuncao Pinheiro IV (2011) Update on nonsurgical, ultraconservative approaches to treat effectivelynon-cavitated caries lesions in permanent teeth. Eur J Dent 5(2):229–236 Borges BC, de Souza Borges J, de Araujo LS, Machado CT, DosSantos AJ, de Assuncao Pinheiro IV (2011) Update on nonsurgical, ultraconservative approaches to treat effectivelynon-cavitated caries lesions in permanent teeth. Eur J Dent 5(2):229–236
go back to reference Fan Y, Sun Z, Moradian-Oldak J (2009) Controlled remineralizationof enamel in the presence of amelogenin and fluoride. Biomaterials 30(4):478–483 Fan Y, Sun Z, Moradian-Oldak J (2009) Controlled remineralizationof enamel in the presence of amelogenin and fluoride. Biomaterials 30(4):478–483
go back to reference Nganga S, Zhang D, Moritz N, Vallittu PK, Hupa L (2012) Multi-layerporous fiber-reinforced composites for implants: in vitrocalcium phosphate formation in the presence of bioactiveglass. Dent Mater 28(11):1134–1145 Nganga S, Zhang D, Moritz N, Vallittu PK, Hupa L (2012) Multi-layerporous fiber-reinforced composites for implants: in vitrocalcium phosphate formation in the presence of bioactiveglass. Dent Mater 28(11):1134–1145
go back to reference Hench LL (1991) Bioceramics—from concept to clinic. J Am Ceram Soc 74(7):1487–1510 Hench LL (1991) Bioceramics—from concept to clinic. J Am Ceram Soc 74(7):1487–1510
go back to reference Bunker BC, Tallant DR, Headley TJ, Turner GL, Kirkpatrick RJ (1988) The structure of leached sodium borosilicate glass. Phys Chem Glasses 29(3):106–120 Bunker BC, Tallant DR, Headley TJ, Turner GL, Kirkpatrick RJ (1988) The structure of leached sodium borosilicate glass. Phys Chem Glasses 29(3):106–120
go back to reference Hench LL, Splinter RJ, Allen WC, Greenlee TK (1972) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 2:117–141 Hench LL, Splinter RJ, Allen WC, Greenlee TK (1972) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 2:117–141
go back to reference Aitasalo K, Kinnunen I, Palmgren J, Varpula M (2001) Repair of orbital floor fractures with bioactive glass implants. J Oral Maxillofac Surg 59:1390–1396 Aitasalo K, Kinnunen I, Palmgren J, Varpula M (2001) Repair of orbital floor fractures with bioactive glass implants. J Oral Maxillofac Surg 59:1390–1396
go back to reference Tesavibul P, Felzmann R, Gruber S, Liska R, Thompson I, Boccaccini AR et al (2012) Processing of 45S5 Bioglass—by lithography-based additive manufacturing. Mater Lett 74:81–84 Tesavibul P, Felzmann R, Gruber S, Liska R, Thompson I, Boccaccini AR et al (2012) Processing of 45S5 Bioglass—by lithography-based additive manufacturing. Mater Lett 74:81–84
go back to reference Vitale-Brovarone C, Baino F, Verné E (2009) High strength bioactive glass-ceramic scaffolds for bone regeneration. J Mater Sci Mater Med 20:643–653 Vitale-Brovarone C, Baino F, Verné E (2009) High strength bioactive glass-ceramic scaffolds for bone regeneration. J Mater Sci Mater Med 20:643–653
go back to reference Izquierdo-Barba I, Salinas AJ, Vallet-Regí M (2013) Bioactive glasses: from macro tonano. Int J Appl Glass Sci 4:149–161 Izquierdo-Barba I, Salinas AJ, Vallet-Regí M (2013) Bioactive glasses: from macro tonano. Int J Appl Glass Sci 4:149–161
go back to reference Merceron C, Vinatier C, Clouet J, Colliec-Jouault S, Weiss P, Guicheux J (2008) Adipose-derived mesenchymal stem cells and biomaterials for cartilage tissue engineering. Joint Bone Spine. Rev Rhum 75:672–674 Merceron C, Vinatier C, Clouet J, Colliec-Jouault S, Weiss P, Guicheux J (2008) Adipose-derived mesenchymal stem cells and biomaterials for cartilage tissue engineering. Joint Bone Spine. Rev Rhum 75:672–674
go back to reference Schneider OD, Weber F, Brunner TJ, Loher S, Ehrbar M, Schmidlin PR, Stark WJ (2009) Invivo and in vitro evaluation of flexible, cottonwool-like nano composites as bone substitute material for complex defects. Acta Biomater 5:1775–1784 Schneider OD, Weber F, Brunner TJ, Loher S, Ehrbar M, Schmidlin PR, Stark WJ (2009) Invivo and in vitro evaluation of flexible, cottonwool-like nano composites as bone substitute material for complex defects. Acta Biomater 5:1775–1784
go back to reference Weiss P, Layrolle P, Clergeau LP, Enckel B, Pilet P, Amouriq Y, Daculsi G, Giumelli B (2007) The safety and efficacy of an injectable bone substitute in dental sockets demonstrated in a human clinical trial. Biomaterials 28:3295–3305 Weiss P, Layrolle P, Clergeau LP, Enckel B, Pilet P, Amouriq Y, Daculsi G, Giumelli B (2007) The safety and efficacy of an injectable bone substitute in dental sockets demonstrated in a human clinical trial. Biomaterials 28:3295–3305
go back to reference Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29:2941–2953 Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29:2941–2953
go back to reference Ducheyne P (2011) Biomaterials. In: Ducheyne P (ed), Comprehensive biomaterials, Elsevier, Oxford, pp 1–4 Ducheyne P (2011) Biomaterials. In: Ducheyne P (ed), Comprehensive biomaterials, Elsevier, Oxford, pp 1–4
go back to reference Hench LL, Day DE, Höland W, Rheinberger VM (2010) Glassand medicine. Int J Appl Glass Sci 1:104–117 Hench LL, Day DE, Höland W, Rheinberger VM (2010) Glassand medicine. Int J Appl Glass Sci 1:104–117
go back to reference Hoppe A, Guldal NS, Boccaccini AR (2011) A review of the biological response toionic dissolution products from bioactive glasses and glass–ceramics. Biomaterials 32:2757–2774 Hoppe A, Guldal NS, Boccaccini AR (2011) A review of the biological response toionic dissolution products from bioactive glasses and glass–ceramics. Biomaterials 32:2757–2774
go back to reference Xynos ID, Edgar AJ, Lee DK, Larry B, Hench L, Polak JM (2001) Gene-expression profiling of human osteoblasts following treatment with the ionic productsof Bioglass 45S5 dissolution. J Biomed Mater Res 55:151–157 Xynos ID, Edgar AJ, Lee DK, Larry B, Hench L, Polak JM (2001) Gene-expression profiling of human osteoblasts following treatment with the ionic productsof Bioglass 45S5 dissolution. J Biomed Mater Res 55:151–157
go back to reference Hench LL (1994) Bioactive ceramics: theory and clinical applications, Oxford Hench LL (1994) Bioactive ceramics: theory and clinical applications, Oxford
go back to reference Agathopoulos S, Tulyaganov DU, Valerio P, Ferreira JM (200) A new model formulation of the SiO2–Al2O3–B2O3–MgO–CaO–Na2O–F glass–ceramics. Biomaterials 26:2255–2264 Agathopoulos S, Tulyaganov DU, Valerio P, Ferreira JM (200) A new model formulation of the SiO2–Al2O3–B2O3–MgO–CaO–Na2O–F glass–ceramics. Biomaterials 26:2255–2264
go back to reference Kansal I, Tulyaganov DU, Goel A, Pascual MJ, Ferreira JMF(2010) Structural analysis and thermal behavior of diopside–fluorapatite–wollas-tonite-based glasses and glass–ceramics. Acta Biomater 6:4380–4388 Kansal I, Tulyaganov DU, Goel A, Pascual MJ, Ferreira JMF(2010) Structural analysis and thermal behavior of diopside–fluorapatite–wollas-tonite-based glasses and glass–ceramics. Acta Biomater 6:4380–4388
go back to reference Tulyaganov DU, Agathopoulos S, Ventura JM, Karakassides MA, Fabrichnaya O, Ferreira JMF (2006) Synthesis of glass–ceramics in the CaO–MgO–SiO2 system with B2O3, P2O5, Na2O and CaF2 additives. J Eur Ceram Soc 26:1463–1471 Tulyaganov DU, Agathopoulos S, Ventura JM, Karakassides MA, Fabrichnaya O, Ferreira JMF (2006) Synthesis of glass–ceramics in the CaO–MgO–SiO2 system with B2O3, P2O5, Na2O and CaF2 additives. J Eur Ceram Soc 26:1463–1471
go back to reference Agathopoulos S, Tulyaganov DU, Ventura JMG, Kannan S, Saranti A, Karakassides MA, Ferreira JMF (2006) Structural analysis and devitrification of glasses based on the CaO–MgO–SiO2 system with B2O3, Na2O, CaF2 and P2O5 additives. J Non Cryst Solids 352:322–328 Agathopoulos S, Tulyaganov DU, Ventura JMG, Kannan S, Saranti A, Karakassides MA, Ferreira JMF (2006) Structural analysis and devitrification of glasses based on the CaO–MgO–SiO2 system with B2O3, Na2O, CaF2 and P2O5 additives. J Non Cryst Solids 352:322–328
go back to reference Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431 Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431
go back to reference Saboori A, Rabiee M, Mutarzadeh F, Sheikhi M, Tahriri M, Karimi M (2009) Synthesis, characterizations and in vitro bioactivity of sol–gel-derived SiO2–CaO–P2O5–MgO bioglass. Mater Sci Eng C 29:335–340 Saboori A, Rabiee M, Mutarzadeh F, Sheikhi M, Tahriri M, Karimi M (2009) Synthesis, characterizations and in vitro bioactivity of sol–gel-derived SiO2–CaO–P2O5–MgO bioglass. Mater Sci Eng C 29:335–340
go back to reference Catauro M, Raucci MG, De Gaetano F, Marotta A (2004) Antibacterial and bioactive silver-containing Na2O–CaO–2SiO2 glass prepared by sol–gel method. J Mater Sci Mater Med 15:831–837 Catauro M, Raucci MG, De Gaetano F, Marotta A (2004) Antibacterial and bioactive silver-containing Na2O–CaO–2SiO2 glass prepared by sol–gel method. J Mater Sci Mater Med 15:831–837
go back to reference Ragel CV, Vallet-Regí M (2000) In vitro bioactivity and gentamicin release from glass–polymer-antibiotic composites. J Biomed Mater Res 51:424–429 Ragel CV, Vallet-Regí M (2000) In vitro bioactivity and gentamicin release from glass–polymer-antibiotic composites. J Biomed Mater Res 51:424–429
go back to reference Arcos D, Ragel CV, Vallet-Regi M (2001) Bioactivity in glass/PMMA composites used as drug delivery system. Biomaterials 22:701–708 Arcos D, Ragel CV, Vallet-Regi M (2001) Bioactivity in glass/PMMA composites used as drug delivery system. Biomaterials 22:701–708
go back to reference Ladrón de Guevara S, Ragel CV, Vallet-Regí M (2003) Bioactive glass–polymer materials for controlled release of ibuprofen. Biomaterials 24:4037–4043 Ladrón de Guevara S, Ragel CV, Vallet-Regí M (2003) Bioactive glass–polymer materials for controlled release of ibuprofen. Biomaterials 24:4037–4043
go back to reference Arcos D, Peña J, Vallet-Regí M (2003) Influence of a SiO2–CaO–P2O5 sol–gel on the bioactivity and controlled release of a ceramic/polymer/antibiotic mixed materials. Chem Mater 15:4132–4138 Arcos D, Peña J, Vallet-Regí M (2003) Influence of a SiO2–CaO–P2O5 sol–gel on the bioactivity and controlled release of a ceramic/polymer/antibiotic mixed materials. Chem Mater 15:4132–4138
go back to reference Arcos D, del Real RP, Vallet-Regí M (2002) A novel bioactive and magnetic biphasic material. Biomaterials 23:2151–2158 Arcos D, del Real RP, Vallet-Regí M (2002) A novel bioactive and magnetic biphasic material. Biomaterials 23:2151–2158
go back to reference Ruiz E, Serrano MC, Arcos D, Vallet-Regí M (2006) Glass–glass ceramic thermoseeds for hyperthermic treatment of bone tumours. J Biomed Mater Res 79:533–543 Ruiz E, Serrano MC, Arcos D, Vallet-Regí M (2006) Glass–glass ceramic thermoseeds for hyperthermic treatment of bone tumours. J Biomed Mater Res 79:533–543
go back to reference Serrano MC, Portoles MT, Pagani R, Sáez de Guinoa J, Ruíz-Fernández E, Arcos D et al (2008) In vitro positive biocompatibility evaluation of glass–glass ceramic thermoseeds for hyperthermic treatment of bone tumours. Tissue Eng 14:617–627 Serrano MC, Portoles MT, Pagani R, Sáez de Guinoa J, Ruíz-Fernández E, Arcos D et al (2008) In vitro positive biocompatibility evaluation of glass–glass ceramic thermoseeds for hyperthermic treatment of bone tumours. Tissue Eng 14:617–627
go back to reference Ragel CV, Vallet-Regí M, Rodríguez-Lorenzo LM (2002) Preparation and in vitro bioactivity of hydroxyapatite/solgel-glass biphasic material. Biomaterials 23:1865–1872 Ragel CV, Vallet-Regí M, Rodríguez-Lorenzo LM (2002) Preparation and in vitro bioactivity of hydroxyapatite/solgel-glass biphasic material. Biomaterials 23:1865–1872
go back to reference Vallet-Regí M, Rámila A, Padilla S, Muñoz B (2003) Bioactive glasses as accelerators of the apatites bioactivity. J Biomed Mater Res 66:580–585 Vallet-Regí M, Rámila A, Padilla S, Muñoz B (2003) Bioactive glasses as accelerators of the apatites bioactivity. J Biomed Mater Res 66:580–585
go back to reference Campostrini R, Carturam G (1996) Immobilisation of plant cells in hybrid sol–gel material. J Sol-Gel Sci Technol 7:87–97 Campostrini R, Carturam G (1996) Immobilisation of plant cells in hybrid sol–gel material. J Sol-Gel Sci Technol 7:87–97
go back to reference Pope Edgard JA (1997) Bioartificial organs I: silica gel encapsulated pancreatic islets for the treatment of diabetes mellitus. J Sol-Gel Sci Technol 8:635–639 Pope Edgard JA (1997) Bioartificial organs I: silica gel encapsulated pancreatic islets for the treatment of diabetes mellitus. J Sol-Gel Sci Technol 8:635–639
go back to reference Vallet-Regí M (2006) Revisiting ceramics for medical applications. Dalton Trans 44:5211–5220 Vallet-Regí M (2006) Revisiting ceramics for medical applications. Dalton Trans 44:5211–5220
go back to reference Vallet-Regí M, Balas F, Arcos D (2007) Mesoporous materials for drug delivery. Angew Chem Int Ed 46:7548–7558 Vallet-Regí M, Balas F, Arcos D (2007) Mesoporous materials for drug delivery. Angew Chem Int Ed 46:7548–7558
go back to reference López-Noriega A, Arcos D, Izquierdo-Barba I, Sakamoto Y, Terasaki O, Vallet- Regí M (2006) Ordered mesoporous bioactive glasses for bone tissue regeneration. Chem Mater 18:3137–3144 López-Noriega A, Arcos D, Izquierdo-Barba I, Sakamoto Y, Terasaki O, Vallet- Regí M (2006) Ordered mesoporous bioactive glasses for bone tissue regeneration. Chem Mater 18:3137–3144
go back to reference Izquierdo-Barba I, Arcos D, Sakamoto Y, Terasaki O, López-Noriega A, Vallet- Regí M (2008) High-performance mesoporous bioceramics mimicking bone mineralization. Chem Mater 20:3191–3198 Izquierdo-Barba I, Arcos D, Sakamoto Y, Terasaki O, López-Noriega A, Vallet- Regí M (2008) High-performance mesoporous bioceramics mimicking bone mineralization. Chem Mater 20:3191–3198
go back to reference Leonova E, Izquierdo-Barba I, Arcos D, López-Noriega A, Hedi N, Vallet-Regí M et al (2008) Multinuclear solid-state NMR studies of ordered mesoporous bioactive glasses. J Phys Chem C 112:5552–5562 Leonova E, Izquierdo-Barba I, Arcos D, López-Noriega A, Hedi N, Vallet-Regí M et al (2008) Multinuclear solid-state NMR studies of ordered mesoporous bioactive glasses. J Phys Chem C 112:5552–5562
go back to reference Garcia A, Cicuendez M, Izquierdo-Barba I, Arcos D, Vallet-Regí M (2009) Essential role of calcium phosphate heterogeneities in 2D-hexagonal and 3D-cubic SiO2–CaO–P2O5 mesoporous bioactive glasses. Chem Mater 21:5474–5484 Garcia A, Cicuendez M, Izquierdo-Barba I, Arcos D, Vallet-Regí M (2009) Essential role of calcium phosphate heterogeneities in 2D-hexagonal and 3D-cubic SiO2–CaO–P2O5 mesoporous bioactive glasses. Chem Mater 21:5474–5484
go back to reference Donlan RM, Costerton JW (2002) Clin Microbiol Rev 15:167 Donlan RM, Costerton JW (2002) Clin Microbiol Rev 15:167
go back to reference Hanssen AD (2005) Clin Orthop Relat Res P 437 Hanssen AD (2005) Clin Orthop Relat Res P 437
go back to reference Brown RF, Rahaman MN, Dwilewicz AB, Huang W, Day DE, Li Y, Bal BS (2009) J Biomed Mater Res A 88:392 Brown RF, Rahaman MN, Dwilewicz AB, Huang W, Day DE, Li Y, Bal BS (2009) J Biomed Mater Res A 88:392
go back to reference Zhang D, Munukka E, Hupa L, Ylänen HO, Viljanen MK, Hupa M (2007) Key Eng Mater 173:330–332 Zhang D, Munukka E, Hupa L, Ylänen HO, Viljanen MK, Hupa M (2007) Key Eng Mater 173:330–332
go back to reference Fu Q, Huang W, Jia W, Rahaman MN, Liu X, Tomsia AP (2011) Tissue Eng A 17:3077 Fu Q, Huang W, Jia W, Rahaman MN, Liu X, Tomsia AP (2011) Tissue Eng A 17:3077
go back to reference Kaur G, Pandey OP, Singh K, Homa D, Scott B, Pickrell G (2013) A review of bioactive glasses: their structure, properties, fabrication, and apatite formation. J Biomed Mater Res A 102:254–274 Kaur G, Pandey OP, Singh K, Homa D, Scott B, Pickrell G (2013) A review of bioactive glasses: their structure, properties, fabrication, and apatite formation. J Biomed Mater Res A 102:254–274
go back to reference Kaur G, Sharma P, Kumar V, Singh K (2012) Assesment of in-vitro bioactivity of SiO2-BaO-ZnO-B2O3-Al2O3 glasses: an optico-analytical approach. Mater Sci Engg C 32(7):1941–1947 Kaur G, Sharma P, Kumar V, Singh K (2012) Assesment of in-vitro bioactivity of SiO2-BaO-ZnO-B2O3-Al2O3 glasses: an optico-analytical approach. Mater Sci Engg C 32(7):1941–1947
go back to reference Kaur G, Pickrell G, Sriranganathan N, Kumar V, Homa D (2016) Review and the state of the art: Sol-gel or melt quenched bioactive glasses for tissue engineering. J Biomed Mater Res: B Appl Biomater 104(6):1248–1275. doi:10.1002/jbm.b.33443 Kaur G, Pickrell G, Sriranganathan N, Kumar V, Homa D (2016) Review and the state of the art: Sol-gel or melt quenched bioactive glasses for tissue engineering. J Biomed Mater Res: B Appl Biomater 104(6):1248–1275. doi:10.​1002/​jbm.​b.​33443
go back to reference Kaur G, Pickrell G, Pandey OP, Singh K, Chudasama BN, Kumar V (2016) Combined and individual Doxorubicin/Vancomycin drug loading, release kinetics and apatite formation for the CaO-CuO-P2O5- SiO2- B2O3 mesoporous glasses. RSC Adv 6:51046–51056 Kaur G, Pickrell G, Pandey OP, Singh K, Chudasama BN, Kumar V (2016) Combined and individual Doxorubicin/Vancomycin drug loading, release kinetics and apatite formation for the CaO-CuO-P2O5- SiO2- B2O3 mesoporous glasses. RSC Adv 6:51046–51056
go back to reference Kaur G, Pickrell G, Kimsawatde G, Allbee H, Sriranganathan N (2014) Synthesis, cytotoxicity, and hydroxypatite formation in 27-Tris-SBF for sol-gel based CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses. Sci Rep. doi:10.1038/srep04392 Kaur G, Pickrell G, Kimsawatde G, Allbee H, Sriranganathan N (2014) Synthesis, cytotoxicity, and hydroxypatite formation in 27-Tris-SBF for sol-gel based CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses. Sci Rep. doi:10.​1038/​srep04392
Metadata
Title
Future Perspectives of Bioactive Glasses for the Clinical Applications
Authors
V. Kumar
G. Pickrell
S.G. Waldrop
N. Sriranganathan
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-45716-1_11