Skip to main content
Top
Published in:
Cover of the book

2018 | OriginalPaper | Chapter

Gas Hydrate-Based CO2 Separation Process: Quantitative Assessment of the Effectiveness of Various Chemical Additives Involved in the Process

Authors : Hossein Dashti, Xia Lou

Published in: Energy Technology 2018

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Gas hydrates technology has been considered as an alternative method for carbon dioxide (CO2) separation. A wide range of studies have been reported in the past decade on the improvement of the separation efficiency by using chemical additives. While most of these studies have shown improved kinetics, thermodynamics and/or separation efficiency at the laboratory scale, there has been no quantitative analysis of the energy consumption for viable industrial applications. Comparison of the effectiveness of the chemical additives from separate studies or groups also is impossible. The present work is focused on the modelling of the hydrate-based CO2 separation process and provides a quantitative approach that is new in its analysis of the effectiveness of chemical additives in relation to the energy required and the kinetic parameters involved in the process.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Spencer DF (1999) Integration of an advanced CO2 separation process with methods for disposing of CO2 in oceans and terrestrial deep aquifers. In: Eliasson B, Riemer P, Wokaun A (eds) Greenhouse gas control technologies. Elsevier p. 89–94 Spencer DF (1999) Integration of an advanced CO2 separation process with methods for disposing of CO2 in oceans and terrestrial deep aquifers. In: Eliasson B, Riemer P, Wokaun A (eds) Greenhouse gas control technologies. Elsevier p. 89–94
2.
go back to reference Tam S et al (2001) A high pressure carbon dioxide separation process for IGCC plants. Paper presented at First National Conference on Carbon Sequestration, Washington DC, USA, 14–17 May 2001 Tam S et al (2001) A high pressure carbon dioxide separation process for IGCC plants. Paper presented at First National Conference on Carbon Sequestration, Washington DC, USA, 14–17 May 2001
3.
go back to reference Ho MT, Allinson GW, Wiley DE (2008) Reducing the cost of CO2 capture from flue gases using pressure swing adsorption. Ind Eng Chem Res 47:4883–4890CrossRef Ho MT, Allinson GW, Wiley DE (2008) Reducing the cost of CO2 capture from flue gases using pressure swing adsorption. Ind Eng Chem Res 47:4883–4890CrossRef
4.
go back to reference Sloan ED, Koh CA (2008) Clathraye hydrates of natural gases. Taylor & Francis, New York Sloan ED, Koh CA (2008) Clathraye hydrates of natural gases. Taylor & Francis, New York
5.
go back to reference Herslund PJ, Daraboina N, Thomsen K, Abildskov J, Solms NV (2014) Measuring and modelling of the combined thermodynamic promoting effect of tetrahydrofuran and cyclopentane on carbon dioxide hydrates. Fluid Phase Equilib 381:20–27CrossRef Herslund PJ, Daraboina N, Thomsen K, Abildskov J, Solms NV (2014) Measuring and modelling of the combined thermodynamic promoting effect of tetrahydrofuran and cyclopentane on carbon dioxide hydrates. Fluid Phase Equilib 381:20–27CrossRef
6.
go back to reference Babu P, Linga P, Kumar R, Englezos P (2015) A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture. Energy 85:261–279CrossRef Babu P, Linga P, Kumar R, Englezos P (2015) A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture. Energy 85:261–279CrossRef
7.
go back to reference Dashti H, Yew LZ, Lou X (2015) Recent advances in gas hydrate-based CO2 capture. J Nat Gas Sci Eng 23:195–207CrossRef Dashti H, Yew LZ, Lou X (2015) Recent advances in gas hydrate-based CO2 capture. J Nat Gas Sci Eng 23:195–207CrossRef
8.
go back to reference Xu CG, Li XS (2014) Research progress of hydrate-based CO2 separation and capture from gas mixtures. RSC Adv 4:18301–18316CrossRef Xu CG, Li XS (2014) Research progress of hydrate-based CO2 separation and capture from gas mixtures. RSC Adv 4:18301–18316CrossRef
9.
go back to reference Herslund PJ, Thomsen K, Abildskov J, Solms NV (2013) Application of the cubic-plus-association (CPA) equation of state to model the fluid phase behaviour of binary mixtures of water and tetrahydrofuran. Fluid Phase Equilib 356:209–222CrossRef Herslund PJ, Thomsen K, Abildskov J, Solms NV (2013) Application of the cubic-plus-association (CPA) equation of state to model the fluid phase behaviour of binary mixtures of water and tetrahydrofuran. Fluid Phase Equilib 356:209–222CrossRef
10.
go back to reference Herslund PJ, Thomsen K, Abildskov J, Solms NV (2014) Modelling of cyclopentane promoted gas hydrate systems for carbon dioxide capture processes. Fluid Phase Equilib 375:89–103CrossRef Herslund PJ, Thomsen K, Abildskov J, Solms NV (2014) Modelling of cyclopentane promoted gas hydrate systems for carbon dioxide capture processes. Fluid Phase Equilib 375:89–103CrossRef
11.
go back to reference Verrett J, Renault-Crispo JS, Servio P (2015) Phase equilibria, solubility and modeling study of CO2/CH4 + tetra-n-butylammonium bromide aqueous semi-clathrate systems. Fluid Phase Equilib 388:160–168CrossRef Verrett J, Renault-Crispo JS, Servio P (2015) Phase equilibria, solubility and modeling study of CO2/CH4 + tetra-n-butylammonium bromide aqueous semi-clathrate systems. Fluid Phase Equilib 388:160–168CrossRef
12.
go back to reference Shi LL, Liang DQ (2015) Thermodynamic model of phase equilibria of tetrabutyl ammonium halide (fluoride, chloride, or bromide) plus methane or carbon dioxide semiclathrate hydrates. Fluid Phase Equilib 386:149–154CrossRef Shi LL, Liang DQ (2015) Thermodynamic model of phase equilibria of tetrabutyl ammonium halide (fluoride, chloride, or bromide) plus methane or carbon dioxide semiclathrate hydrates. Fluid Phase Equilib 386:149–154CrossRef
13.
go back to reference Englezos P, Kalogerakis N, Dholabhai PD, Bishnoi PR (1987) Kinetics of formation of methane and ethane gas hydrates. Chem Eng Sci 42:2647–2658CrossRef Englezos P, Kalogerakis N, Dholabhai PD, Bishnoi PR (1987) Kinetics of formation of methane and ethane gas hydrates. Chem Eng Sci 42:2647–2658CrossRef
14.
go back to reference ZareNezhad B, Mottahedin M, Varaminian F (2015) A new approach for determination of single component gas hydrate formation kinetics in the absence or presence of kinetic promoters. Chem Eng Sci 137:447–457CrossRef ZareNezhad B, Mottahedin M, Varaminian F (2015) A new approach for determination of single component gas hydrate formation kinetics in the absence or presence of kinetic promoters. Chem Eng Sci 137:447–457CrossRef
15.
go back to reference Sun Q, Kang YT (2015) Experimental correlation for the formation rate of CO2 hydrate with THF (tetrahydrofuran) for cooling application. Energy 91:712–719CrossRef Sun Q, Kang YT (2015) Experimental correlation for the formation rate of CO2 hydrate with THF (tetrahydrofuran) for cooling application. Energy 91:712–719CrossRef
16.
go back to reference Tajima H, Yamasaki A, Kiyono F (2004) Energy consumption estimation for greenhouse gas separation processes by clathrate hydrate formation. Energy 29:1713–1729CrossRef Tajima H, Yamasaki A, Kiyono F (2004) Energy consumption estimation for greenhouse gas separation processes by clathrate hydrate formation. Energy 29:1713–1729CrossRef
17.
go back to reference Duc NH, Chauvy F, Herri JM (2007) CO2 capture by hydrate crystallization —A potential solution for gas emission of steelmaking industry. Energy Convers Manag 48:1313–1322CrossRef Duc NH, Chauvy F, Herri JM (2007) CO2 capture by hydrate crystallization —A potential solution for gas emission of steelmaking industry. Energy Convers Manag 48:1313–1322CrossRef
18.
go back to reference Kang SP, Lee H (2000) Recovery of CO2 from flue gas using gas hydrate: thermodynamic verification through phase equilibrium measurements. Environ Sci Technol 34:4397–4400CrossRef Kang SP, Lee H (2000) Recovery of CO2 from flue gas using gas hydrate: thermodynamic verification through phase equilibrium measurements. Environ Sci Technol 34:4397–4400CrossRef
19.
go back to reference Linga P, Adeyemo A, Englezos P (2008) Medium-pressure clathrate hydrate/membrane hybrid process for postcombustion capture of carbon dioxide. Environ Sci Technol 42:315–320CrossRef Linga P, Adeyemo A, Englezos P (2008) Medium-pressure clathrate hydrate/membrane hybrid process for postcombustion capture of carbon dioxide. Environ Sci Technol 42:315–320CrossRef
20.
go back to reference Belandria V, Mohammadi AH, Eslamimanesh A, Richon D, Sánchez-Mora MF, Galicia-Luna LA (2012) Phase equilibrium measurements for semi-clathrate hydrates of the (CO2 + N2 + tetra-n-butylammonium bromide) aqueous solution systems: Part 2. Fluid Phase Equilib 322–323:105–112CrossRef Belandria V, Mohammadi AH, Eslamimanesh A, Richon D, Sánchez-Mora MF, Galicia-Luna LA (2012) Phase equilibrium measurements for semi-clathrate hydrates of the (CO2 + N2 + tetra-n-butylammonium bromide) aqueous solution systems: Part 2. Fluid Phase Equilib 322–323:105–112CrossRef
21.
go back to reference Fan S, Li S, Wang J, Lang X, Wang Y (2009) Efficient Capture of CO2 from simulated flue gas by formation of TBAB or TBAF semiclathrate hydrates. Energy Fuels 23:4202–4208CrossRef Fan S, Li S, Wang J, Lang X, Wang Y (2009) Efficient Capture of CO2 from simulated flue gas by formation of TBAB or TBAF semiclathrate hydrates. Energy Fuels 23:4202–4208CrossRef
23.
go back to reference Himmelblau DM, Riggs JB (2004) Basic principles and calculations in chemical engineering. Prentice-Hall International, N.J. Himmelblau DM, Riggs JB (2004) Basic principles and calculations in chemical engineering. Prentice-Hall International, N.J.
24.
go back to reference Ratcliffe CI, Ripmeester JA (1986) Proton and carbon-13 NMR studies on carbon dioxide hydrate. J Phys Chem 90:1259–1263CrossRef Ratcliffe CI, Ripmeester JA (1986) Proton and carbon-13 NMR studies on carbon dioxide hydrate. J Phys Chem 90:1259–1263CrossRef
25.
go back to reference Kamath VA (1984) Study of heat transfer characteristics during dissociation of gas hydrates in porous media. PhD thesis, University of Pittsburgh Kamath VA (1984) Study of heat transfer characteristics during dissociation of gas hydrates in porous media. PhD thesis, University of Pittsburgh
26.
go back to reference Gupta A, Lachance J, Sloan ED, Koh CA (2008) Measurements of methane hydrate heat of dissociation using high pressure differential scanning calorimetry. Chem Eng Sci 63:5848–5853CrossRef Gupta A, Lachance J, Sloan ED, Koh CA (2008) Measurements of methane hydrate heat of dissociation using high pressure differential scanning calorimetry. Chem Eng Sci 63:5848–5853CrossRef
27.
go back to reference Handa YP (1986) Calorimetric determinations of the compositions, enthalpies of dissociation, and heat capacities in the range 85 to 270 K for clathrate hydrates of xenon and krypton. J Chem Thermodyn 18:891–902CrossRef Handa YP (1986) Calorimetric determinations of the compositions, enthalpies of dissociation, and heat capacities in the range 85 to 270 K for clathrate hydrates of xenon and krypton. J Chem Thermodyn 18:891–902CrossRef
28.
go back to reference Kang SP, Lee H, Ryu BJ (2001) Enthalpies of dissociation of clathrate hydrates of carbon dioxide, nitrogen, (carbon dioxide + nitrogen), and (carbon dioxide + nitrogen + tetrahydrofuran). J Chem Thermodyn 33:513–521CrossRef Kang SP, Lee H, Ryu BJ (2001) Enthalpies of dissociation of clathrate hydrates of carbon dioxide, nitrogen, (carbon dioxide + nitrogen), and (carbon dioxide + nitrogen + tetrahydrofuran). J Chem Thermodyn 33:513–521CrossRef
29.
go back to reference Delahaye A, Fournaison L, Marinhas S, Chatti I, Petitet JP, Dalmazzone D, Fürst W (2006) Effect of THF on equilibrium pressure and dissociation enthalpy of CO2 hydrates applied to secondary refrigeration. Ind Eng Chem Res 45:391–397CrossRef Delahaye A, Fournaison L, Marinhas S, Chatti I, Petitet JP, Dalmazzone D, Fürst W (2006) Effect of THF on equilibrium pressure and dissociation enthalpy of CO2 hydrates applied to secondary refrigeration. Ind Eng Chem Res 45:391–397CrossRef
30.
go back to reference Sabil KM, Witkamp GJ, Peters CJ (2010) Estimations of enthalpies of dissociation of simple and mixed carbon dioxide hydrates from phase equilibrium data. Fluid Phase Equilib 290:109–114CrossRef Sabil KM, Witkamp GJ, Peters CJ (2010) Estimations of enthalpies of dissociation of simple and mixed carbon dioxide hydrates from phase equilibrium data. Fluid Phase Equilib 290:109–114CrossRef
31.
go back to reference Peng DY, Robinson DB (1976) A new two-constant equation of state. Ind Eng Chem Fundam 15:59–64CrossRef Peng DY, Robinson DB (1976) A new two-constant equation of state. Ind Eng Chem Fundam 15:59–64CrossRef
32.
go back to reference Ribeiro CP, Lage PLC (2008) Modelling of hydrate formation kinetics: state-of-the-art and future directions. Chem Eng Sci 63:2007–2034CrossRef Ribeiro CP, Lage PLC (2008) Modelling of hydrate formation kinetics: state-of-the-art and future directions. Chem Eng Sci 63:2007–2034CrossRef
33.
go back to reference Shi BH, Fan SS, Lou X (2014) Application of the shrinking-core model to the kinetics of repeated formation of methane hydrates in a system of mixed dry-water and porous hydrogel particulates. Chem Eng Sci 109:315–325CrossRef Shi BH, Fan SS, Lou X (2014) Application of the shrinking-core model to the kinetics of repeated formation of methane hydrates in a system of mixed dry-water and porous hydrogel particulates. Chem Eng Sci 109:315–325CrossRef
34.
go back to reference Chen GJ, Guo TM (1996) Thermodynamic modeling of hydrate formation based on new concepts. Fluid Phase Equilib 122:43–65CrossRef Chen GJ, Guo TM (1996) Thermodynamic modeling of hydrate formation based on new concepts. Fluid Phase Equilib 122:43–65CrossRef
35.
go back to reference Kim HC, Bishnoi PR, Heidemann RA, Rizvi SSH (1987) Kinetics of methane hydrate decomposition. Chem Eng Sci 42:1645–1653CrossRef Kim HC, Bishnoi PR, Heidemann RA, Rizvi SSH (1987) Kinetics of methane hydrate decomposition. Chem Eng Sci 42:1645–1653CrossRef
36.
go back to reference Clarke MA, Bishnoi PR (2004) Determination of the intrinsic rate constant and activation energy of CO2 gas hydrate decomposition using in-situ particle size analysis. Chem Eng Sci 59:2983–2993CrossRef Clarke MA, Bishnoi PR (2004) Determination of the intrinsic rate constant and activation energy of CO2 gas hydrate decomposition using in-situ particle size analysis. Chem Eng Sci 59:2983–2993CrossRef
37.
go back to reference Udachin KA, Ratcliffe CI, Ripmeester JA (2001) Structure, composition, and thermal expansion of CO2 hydrate from single crystal X-ray diffraction measurements. J Phys Chem B 105:4200–4204CrossRef Udachin KA, Ratcliffe CI, Ripmeester JA (2001) Structure, composition, and thermal expansion of CO2 hydrate from single crystal X-ray diffraction measurements. J Phys Chem B 105:4200–4204CrossRef
38.
go back to reference Yoon JH, Yamamoto Y, Komai T, Haneda H, Kawamura T (2003) Rigorous approach to the prediction of the heat of dissociation of gas hydrates. Ind Eng Chem Res 42:1111–1114CrossRef Yoon JH, Yamamoto Y, Komai T, Haneda H, Kawamura T (2003) Rigorous approach to the prediction of the heat of dissociation of gas hydrates. Ind Eng Chem Res 42:1111–1114CrossRef
39.
go back to reference Park S, Lee S, Lee Y, Lee Y, Seo Y (2013) Hydrate-based pre-combustion capture of carbon dioxide in the presence of a thermodynamic promoter and porous silica gels. Int J Greenh Gas Control 14:193–199CrossRef Park S, Lee S, Lee Y, Lee Y, Seo Y (2013) Hydrate-based pre-combustion capture of carbon dioxide in the presence of a thermodynamic promoter and porous silica gels. Int J Greenh Gas Control 14:193–199CrossRef
Metadata
Title
Gas Hydrate-Based CO2 Separation Process: Quantitative Assessment of the Effectiveness of Various Chemical Additives Involved in the Process
Authors
Hossein Dashti
Xia Lou
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-72362-4_1