Skip to main content
Top

2024 | OriginalPaper | Chapter

11. Gaseous Flow Focusing II

Author : José María Montanero

Published in: Tip Streaming of Simple and Complex Fluids

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Serial femtosecond crystallography (SFX) is the most remarkable application of gaseous flow focusing. In this application, the gaseous stream driving the jet is normally discharged into a vacuum chamber, which makes the gas current reach the sound velocity in the nozzle orifice. We devote the first part of this chapter to analyzing this transonic version of flow focusing.
Gaseous flow focusing can be employed to produce fibers and films when the liquid phase is a viscoelastic fluid. The second part of this chapter describes these interesting applications of flow focusing.
The large strain rates produced in the tip of the tapering meniscus of flow focusing can trigger the coil-stretch transition of the polymers dissolved in the liquid, which leads to the building of large axial viscoelastic stresses. This can fundamentally change the behavior of weakly viscoelastic flow focusing, increasing the stability of both the tapering meniscus and the emitted jet. This chapter closes by analyzing this novel and interesting phenomenon. Attention is paid to this viscoelastic transition and the superstability of the jets emitted when that transition occurs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chapman HN et al (2011) Femtosecond X-ray protein nanocrystallography. Nature 470:73–79CrossRef Chapman HN et al (2011) Femtosecond X-ray protein nanocrystallography. Nature 470:73–79CrossRef
2.
go back to reference Gañán-Calvo AM (2019) Scaling laws of an exploding liquid column under an intense ultrashort X-ray pulse. Phys Rev Lett 123(064):501 Gañán-Calvo AM (2019) Scaling laws of an exploding liquid column under an intense ultrashort X-ray pulse. Phys Rev Lett 123(064):501
3.
go back to reference Stan CA et al (2016) Liquid explosions induced by X-ray laser pulses. Nat Phys 12:966–971CrossRef Stan CA et al (2016) Liquid explosions induced by X-ray laser pulses. Nat Phys 12:966–971CrossRef
4.
go back to reference Wiedorn MO et al (2018) Megahertz serial crystallography. Nat Commun 9:4025CrossRef Wiedorn MO et al (2018) Megahertz serial crystallography. Nat Commun 9:4025CrossRef
5.
go back to reference Gañán-Calvo AM (1998) Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams. Phys Rev Lett 80:285–288CrossRef Gañán-Calvo AM (1998) Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams. Phys Rev Lett 80:285–288CrossRef
6.
go back to reference DePonte DP, Weierstall U, Schmidt K, Warner J, Starodub D, Spence JCH, Doak RB (2008) Gas dynamic virtual nozzle for generation of microscopic droplet streams. J Phys D Appl Phys 41(195):505 DePonte DP, Weierstall U, Schmidt K, Warner J, Starodub D, Spence JCH, Doak RB (2008) Gas dynamic virtual nozzle for generation of microscopic droplet streams. J Phys D Appl Phys 41(195):505
7.
go back to reference Gañán-Calvo AM, DePonte DP, Herrada MA, Spence JCH, Weierstall U, Doak RB (2010) Liquid capillary micro/nanojets in free-jet expansion. Small 6:822–824CrossRef Gañán-Calvo AM, DePonte DP, Herrada MA, Spence JCH, Weierstall U, Doak RB (2010) Liquid capillary micro/nanojets in free-jet expansion. Small 6:822–824CrossRef
8.
go back to reference Beyerlein KR, Adriano L, Heymann M, Kirian R, Knoska J, Wilde F, Chapman HN, Bajt S (2015) Ceramic micro-injection molded nozzles for serial femtosecond crystallography sample delivery. Rev Sci Instrum 86(125):104 Beyerlein KR, Adriano L, Heymann M, Kirian R, Knoska J, Wilde F, Chapman HN, Bajt S (2015) Ceramic micro-injection molded nozzles for serial femtosecond crystallography sample delivery. Rev Sci Instrum 86(125):104
9.
go back to reference Piotter V, Klein A, Plewa K, Beyerlein KR, Chapman HN, Bajt S (2018) Development of a ceramic injection molding process for liquid jet nozzles to be applied for X-ray free-electron lasers. Microsyst Technol 24:1247–1252CrossRef Piotter V, Klein A, Plewa K, Beyerlein KR, Chapman HN, Bajt S (2018) Development of a ceramic injection molding process for liquid jet nozzles to be applied for X-ray free-electron lasers. Microsyst Technol 24:1247–1252CrossRef
10.
go back to reference Nazari R, Zaare S, Alvarez RC, Karpos K, Engelman T, Madsen C, Nelson G, Spence JCH, Weierstall U, Adrian RJ, Kirian RA (2020) 3D printing of gas-dynamic virtual nozzles and optical characterization of high-speed microjets. Opt Express 28:21,749–21,765 Nazari R, Zaare S, Alvarez RC, Karpos K, Engelman T, Madsen C, Nelson G, Spence JCH, Weierstall U, Adrian RJ, Kirian RA (2020) 3D printing of gas-dynamic virtual nozzles and optical characterization of high-speed microjets. Opt Express 28:21,749–21,765
11.
go back to reference Acero AJ, Rebollo-Muñoz N, Montanero JM, Gañán-Calvo AM, Vega EJ (2013) A new flow focusing technique to produce very thin jets. J Micromech Microeng 23(065):009 Acero AJ, Rebollo-Muñoz N, Montanero JM, Gañán-Calvo AM, Vega EJ (2013) A new flow focusing technique to produce very thin jets. J Micromech Microeng 23(065):009
12.
go back to reference Rubio M, Rubio A, Cabezas MG, Herrada MA, Gañán-Calvo AM, Montanero JM (2021) Transonic flow focusing: stability analysis and jet diameter. Int J Multiphase Flow 142(103):720MathSciNet Rubio M, Rubio A, Cabezas MG, Herrada MA, Gañán-Calvo AM, Montanero JM (2021) Transonic flow focusing: stability analysis and jet diameter. Int J Multiphase Flow 142(103):720MathSciNet
13.
go back to reference Shapiro AH (1953) Compressible fluid flow. Wiley, New York Shapiro AH (1953) Compressible fluid flow. Wiley, New York
14.
go back to reference Flynn GP, Hanks RV, Lemaire NA, Ross J (1963) Viscosity of nitrogen, helium, neon, and argon from \(-78.5^{\circ }\) to \(100^{\circ }\)C below 200 atmospheres. J Chem Phys 38:154–162 Flynn GP, Hanks RV, Lemaire NA, Ross J (1963) Viscosity of nitrogen, helium, neon, and argon from \(-78.5^{\circ }\) to \(100^{\circ }\)C below 200 atmospheres. J Chem Phys 38:154–162
15.
go back to reference Zahoor R, Bajt S, Sarler B (2018) Influence of gas dynamic virtual nozzle geometry on micro-jet characteristics. Int J Multiphase Flow 104:152–165MathSciNetCrossRef Zahoor R, Bajt S, Sarler B (2018) Influence of gas dynamic virtual nozzle geometry on micro-jet characteristics. Int J Multiphase Flow 104:152–165MathSciNetCrossRef
16.
go back to reference Zahoor R, Belsak G, Bajt S, Sarler B (2018) Simulation of liquid micro-jet in free expanding high-speed co-flowing gas streams. Microfluidics and Nanofluidics 22:87CrossRef Zahoor R, Belsak G, Bajt S, Sarler B (2018) Simulation of liquid micro-jet in free expanding high-speed co-flowing gas streams. Microfluidics and Nanofluidics 22:87CrossRef
17.
go back to reference Hirt CW, Nichols BD (1981) Volume of Fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225CrossRef Hirt CW, Nichols BD (1981) Volume of Fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225CrossRef
18.
go back to reference Vega EJ, Montanero JM, Herrada MA, Gañán-Calvo AM (2010) Global and local instability of flow focusing: the influence of the geometry. Phys Fluids 22(064):105 Vega EJ, Montanero JM, Herrada MA, Gañán-Calvo AM (2010) Global and local instability of flow focusing: the influence of the geometry. Phys Fluids 22(064):105
19.
go back to reference Sarler B, Zahoor R, Bajt S (2021) Alternative geometric arrangements of the nozzle outlet orifice for liquid micro-jet focusing in gas dynamic virtual nozzles. Materials 14:1572CrossRef Sarler B, Zahoor R, Bajt S (2021) Alternative geometric arrangements of the nozzle outlet orifice for liquid micro-jet focusing in gas dynamic virtual nozzles. Materials 14:1572CrossRef
20.
go back to reference Zahoor R, Bajt S, Sarler B (2018) Numerical investigation on influence of focusing gas type on liquid micro-jet characteristics. Int J Hydromechatronics 1:222–237CrossRef Zahoor R, Bajt S, Sarler B (2018) Numerical investigation on influence of focusing gas type on liquid micro-jet characteristics. Int J Hydromechatronics 1:222–237CrossRef
21.
go back to reference Zahoor R, Regvar R, Bajt S, Sarler B (2020) Simulation of liquid micro-jet in free expanding high-speed co-flowing gas streams. Microfluid Nanofluid 20:71–83 Zahoor R, Regvar R, Bajt S, Sarler B (2020) Simulation of liquid micro-jet in free expanding high-speed co-flowing gas streams. Microfluid Nanofluid 20:71–83
22.
go back to reference McKinley GH, Tripathi A (2000) How to extract the Newtonian viscosity from capillary breakup measurements in a filament rheometer. J Rheol 44:653–670CrossRef McKinley GH, Tripathi A (2000) How to extract the Newtonian viscosity from capillary breakup measurements in a filament rheometer. J Rheol 44:653–670CrossRef
23.
go back to reference Anna SL, McKinley GH (2001) Elasto-capillary thinning and breakup of model elastic liquids. J Rheol 45:115–138CrossRef Anna SL, McKinley GH (2001) Elasto-capillary thinning and breakup of model elastic liquids. J Rheol 45:115–138CrossRef
24.
go back to reference Ponce-Torres A, Montanero JM, Vega EJ, Gañán-Calvo AM (2016) The production of viscoelastic capillary jets with gaseous flow focusing. J Non-Newtonian Fluid Mech 229:8–15MathSciNetCrossRef Ponce-Torres A, Montanero JM, Vega EJ, Gañán-Calvo AM (2016) The production of viscoelastic capillary jets with gaseous flow focusing. J Non-Newtonian Fluid Mech 229:8–15MathSciNetCrossRef
25.
go back to reference Ponce-Torres A, Vega EJ, Castrejón-Pita AA, Montanero JM (2017) Smooth printing of viscoelastic microfilms with a flow focusing ejector. J Non-Newtonian Fluid Mech 249:1–7MathSciNetCrossRef Ponce-Torres A, Vega EJ, Castrejón-Pita AA, Montanero JM (2017) Smooth printing of viscoelastic microfilms with a flow focusing ejector. J Non-Newtonian Fluid Mech 249:1–7MathSciNetCrossRef
26.
go back to reference Ponce-Torres A, Ortega E, Rubio M, Rubio A, Vega EJ, Montanero JM (2019) Gaseous flow focusing for spinning micro and nanofibers. Polymer 178(121):623 Ponce-Torres A, Ortega E, Rubio M, Rubio A, Vega EJ, Montanero JM (2019) Gaseous flow focusing for spinning micro and nanofibers. Polymer 178(121):623
27.
go back to reference Lin Y, Yao Y, Yang X, Wei N, Li X, Gong P, Li R, Wu D (2007) Preparation of poly(ether sulfone) nanofibers by gas-jet/electrospinning. J Appl Polym Sci 107:909–917CrossRef Lin Y, Yao Y, Yang X, Wei N, Li X, Gong P, Li R, Wu D (2007) Preparation of poly(ether sulfone) nanofibers by gas-jet/electrospinning. J Appl Polym Sci 107:909–917CrossRef
28.
go back to reference Wang B, Yao Y, Peng J, Lin Y, Liu W, Luo Y, Xiang R, Li R, Wu D (2009) Preparation of poly(ester imide) ultrafine fibers by gas-jet/electrospinning. J Appl Polym Sci 114:883–891CrossRef Wang B, Yao Y, Peng J, Lin Y, Liu W, Luo Y, Xiang R, Li R, Wu D (2009) Preparation of poly(ester imide) ultrafine fibers by gas-jet/electrospinning. J Appl Polym Sci 114:883–891CrossRef
29.
go back to reference Zhmayev E, Cho D, Joo YL (2010) Nanofibers from gas-assisted polymer melt electrospinning. Polymer 51:4140–4144CrossRef Zhmayev E, Cho D, Joo YL (2010) Nanofibers from gas-assisted polymer melt electrospinning. Polymer 51:4140–4144CrossRef
30.
go back to reference Oliveira JE, Moraes EA, Costa RGF, Afonso AS, Mattoso LHC, Orts WJ, Medeiros ES (2011) Nano and submicrometric fibers of poly(d, l-lactide) obtained by solution blow spinning: process and solution variables. J Appl Polym Sci 122:3396–3405CrossRef Oliveira JE, Moraes EA, Costa RGF, Afonso AS, Mattoso LHC, Orts WJ, Medeiros ES (2011) Nano and submicrometric fibers of poly(d, l-lactide) obtained by solution blow spinning: process and solution variables. J Appl Polym Sci 122:3396–3405CrossRef
31.
go back to reference Benavides RE, Jana SC, Reneker DH (2012) Nanofibers from scalable gas jet process. ACS Macro Lett 1:1032–1036CrossRef Benavides RE, Jana SC, Reneker DH (2012) Nanofibers from scalable gas jet process. ACS Macro Lett 1:1032–1036CrossRef
32.
go back to reference Hofmann E, Krüger K, Haynl C, Scheibel T, Trebbin M, Förster S (2018) Microfluidic nozzle device for ultrafine fiber solution blow spinning with precise diameter control. Lab Chip 18:2225–2234CrossRef Hofmann E, Krüger K, Haynl C, Scheibel T, Trebbin M, Förster S (2018) Microfluidic nozzle device for ultrafine fiber solution blow spinning with precise diameter control. Lab Chip 18:2225–2234CrossRef
33.
go back to reference Cena CR, Silva MJ, Malmonge LF, Malmonge JA (2018) Poly(vinyl pyrrolidone) sub-microfibers produced by solution blow spinning. J Polym Res 25:238CrossRef Cena CR, Silva MJ, Malmonge LF, Malmonge JA (2018) Poly(vinyl pyrrolidone) sub-microfibers produced by solution blow spinning. J Polym Res 25:238CrossRef
34.
go back to reference de Lima GG, Lyons S, Devine DM, Nugent MJD (2018) Hydrogels. Gels horizons: from science to smart materials. Springer, Singapore, pp 219–258 (chap Electrospinning of Hydrogels for Biomedical Applications) de Lima GG, Lyons S, Devine DM, Nugent MJD (2018) Hydrogels. Gels horizons: from science to smart materials. Springer, Singapore, pp 219–258 (chap Electrospinning of Hydrogels for Biomedical Applications)
35.
go back to reference Mikheev AY, Kanev IL, Morozova TY, Morozov VN (2013) Water-soluble filters from ultra-thin polyvinylpirrolidone nanofibers. J Membr Sci 448:151–159CrossRef Mikheev AY, Kanev IL, Morozova TY, Morozov VN (2013) Water-soluble filters from ultra-thin polyvinylpirrolidone nanofibers. J Membr Sci 448:151–159CrossRef
36.
go back to reference Chuangchote S, Sagawa T, Yoshikawa S (2009) Electrospinning of poly(vinyl pyrrolidone): effects of solvents on electrospinnability for the fabrication of poly(p-phenylene vinylene) and tio2 nanofibers. J Appl Polym Sci 114:2777–2791CrossRef Chuangchote S, Sagawa T, Yoshikawa S (2009) Electrospinning of poly(vinyl pyrrolidone): effects of solvents on electrospinnability for the fabrication of poly(p-phenylene vinylene) and tio2 nanofibers. J Appl Polym Sci 114:2777–2791CrossRef
37.
go back to reference Sarkar I, Behera DK, Jha JM, Pal SK, Chakraborty S (2016) Effect of polymer additive on the cooling rate of a hot steel plate by using water jet. Exp Therm Fluid Sci 70:105–114CrossRef Sarkar I, Behera DK, Jha JM, Pal SK, Chakraborty S (2016) Effect of polymer additive on the cooling rate of a hot steel plate by using water jet. Exp Therm Fluid Sci 70:105–114CrossRef
38.
go back to reference Keshavarz B, Green SI, Eadie DT (2012) Elastic liquid jet impaction on a high-speed moving surface. AIChE J 58:3568–3577CrossRef Keshavarz B, Green SI, Eadie DT (2012) Elastic liquid jet impaction on a high-speed moving surface. AIChE J 58:3568–3577CrossRef
39.
go back to reference Vasireddi R, Kruse J, Vakili M, Kulkarni S, Keller TF, Monteiro DCF, Trebbi M (2019) Solution blow spinning of polymer/nanocomposite micro-/nanofibers with tunable diameters and morphologies using a gas dynamic virtual nozzle. Sci Rep 9(14):297 Vasireddi R, Kruse J, Vakili M, Kulkarni S, Keller TF, Monteiro DCF, Trebbi M (2019) Solution blow spinning of polymer/nanocomposite micro-/nanofibers with tunable diameters and morphologies using a gas dynamic virtual nozzle. Sci Rep 9(14):297
40.
go back to reference Huerre P, Monkewitz PA (1990) Local and global instabilites in spatially developing flows. Annu Rev Fluid Mech 22:473–537CrossRef Huerre P, Monkewitz PA (1990) Local and global instabilites in spatially developing flows. Annu Rev Fluid Mech 22:473–537CrossRef
41.
go back to reference Acero AJ, Ferrera C, Montanero JM, Gañán-Calvo AM (2012) Focusing liquid microjets with nozzles. J Micromech Microeng 22(065):011 Acero AJ, Ferrera C, Montanero JM, Gañán-Calvo AM (2012) Focusing liquid microjets with nozzles. J Micromech Microeng 22(065):011
42.
go back to reference Peterlin A (1966) Hydrodynamics of linear macromolecules. Pure Appl Chem 12:563–586CrossRef Peterlin A (1966) Hydrodynamics of linear macromolecules. Pure Appl Chem 12:563–586CrossRef
43.
go back to reference Sousa PC, Vega EJ, Sousa RG, Montanero JM, Alves MA (2017) Measurement of relaxation times in extensional flow of weakly viscoelastic polymer solutions. Rheol Acta 56:11–20CrossRef Sousa PC, Vega EJ, Sousa RG, Montanero JM, Alves MA (2017) Measurement of relaxation times in extensional flow of weakly viscoelastic polymer solutions. Rheol Acta 56:11–20CrossRef
44.
go back to reference Bird RB, C R, Armstrong, Hassager O (1987) Dynamics of polymeric liquids volume I: fluid mechanics; volume II: kinetic theory. Wiley, New York Bird RB, C R, Armstrong, Hassager O (1987) Dynamics of polymeric liquids volume I: fluid mechanics; volume II: kinetic theory. Wiley, New York
45.
go back to reference Eggers J, Villermaux E (2008) Physics of liquid jets. Rep Prog Phys 71(036):601 Eggers J, Villermaux E (2008) Physics of liquid jets. Rep Prog Phys 71(036):601
46.
go back to reference Snoeijer JH, Pandey A, Herrada MA, Eggers J (2020) The relationship between viscoelasticity and elasticity. Proc R Soc A 476(20200):419MathSciNet Snoeijer JH, Pandey A, Herrada MA, Eggers J (2020) The relationship between viscoelasticity and elasticity. Proc R Soc A 476(20200):419MathSciNet
47.
go back to reference Rubio A, Galindo F, Vega EJ, Montanero JM, Cabezas MG (2022) Viscoelastic transition in transonic flow focusing. Phys Rev Fluids 7(074):201 Rubio A, Galindo F, Vega EJ, Montanero JM, Cabezas MG (2022) Viscoelastic transition in transonic flow focusing. Phys Rev Fluids 7(074):201
48.
go back to reference Montanero JM, Rebollo-Muñoz N, Herrada MA, Gañán-Calvo AM (2011) Global stability of the focusing effect of fluid jet flows. Phys Rev E 83(036):309 Montanero JM, Rebollo-Muñoz N, Herrada MA, Gañán-Calvo AM (2011) Global stability of the focusing effect of fluid jet flows. Phys Rev E 83(036):309
49.
go back to reference Herrada MA, Gañán-Calvo AM, Ojeda-Monge A, Bluth B, Riesco-Chueca P (2008) Liquid flow focused by a gas: jetting, dripping, and recirculation. Phys Rev E 78(036):323 Herrada MA, Gañán-Calvo AM, Ojeda-Monge A, Bluth B, Riesco-Chueca P (2008) Liquid flow focused by a gas: jetting, dripping, and recirculation. Phys Rev E 78(036):323
50.
go back to reference Si T, Li F, Yin XY, Yin XZ (2009) Modes in flow focusing and instability of coaxial liquid-gas jets. J Fluid Mech 629:1–23CrossRef Si T, Li F, Yin XY, Yin XZ (2009) Modes in flow focusing and instability of coaxial liquid-gas jets. J Fluid Mech 629:1–23CrossRef
51.
go back to reference Entov VM, Hinch EJ (1997) Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid. J Non-Newtonian Fluid Mech 72:31–53CrossRef Entov VM, Hinch EJ (1997) Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid. J Non-Newtonian Fluid Mech 72:31–53CrossRef
52.
go back to reference Oldroyd JG (1950) On the formulation of rheological equations of state. Proc Roy Soc Lond 200:523–541MathSciNet Oldroyd JG (1950) On the formulation of rheological equations of state. Proc Roy Soc Lond 200:523–541MathSciNet
53.
go back to reference Goldin M, Yerushalmi J, Pfeffer R, Shinnar R (1969) Breakup of a laminar capillary jet of a viscoelastic fluid. J Fluid Mech 38:689–711CrossRef Goldin M, Yerushalmi J, Pfeffer R, Shinnar R (1969) Breakup of a laminar capillary jet of a viscoelastic fluid. J Fluid Mech 38:689–711CrossRef
54.
go back to reference Liu Z, Liu Z (2006) Linear analysis of three-dimensional instability of non-Newtonian liquid jets. J Fluid Mech 559:451–459MathSciNetCrossRef Liu Z, Liu Z (2006) Linear analysis of three-dimensional instability of non-Newtonian liquid jets. J Fluid Mech 559:451–459MathSciNetCrossRef
55.
56.
go back to reference Oliveira MSN, McKinley GH (2005) Iterated stretching and multiple beads-on-a-string phenomena in dilute solutions of highly-extensible flexible polymers. Phys Fluids 17(071):704 Oliveira MSN, McKinley GH (2005) Iterated stretching and multiple beads-on-a-string phenomena in dilute solutions of highly-extensible flexible polymers. Phys Fluids 17(071):704
57.
go back to reference Clasen C, Eggers J, Fontelos MA, Li J, McKinley GH (2006) The beads-on-string structure of viscoelastic threads. J Fluid Mech 556:283–308CrossRef Clasen C, Eggers J, Fontelos MA, Li J, McKinley GH (2006) The beads-on-string structure of viscoelastic threads. J Fluid Mech 556:283–308CrossRef
58.
go back to reference Bazilevsky AV, Voronkov SI, Entov VM, Rozhkov AN (1981) Orientational effects in capillary breakup of jets and threads of dilute polymer solutions (English version in, vol 26). Doklady Akademii Nauk SSSR 257:336–339 Bazilevsky AV, Voronkov SI, Entov VM, Rozhkov AN (1981) Orientational effects in capillary breakup of jets and threads of dilute polymer solutions (English version in, vol 26). Doklady Akademii Nauk SSSR 257:336–339
59.
go back to reference Rubio A, Vega EJ, Gañán-Calvo AM, Montanero JM (2022) Unexpected stability of micrometer weakly viscoelastic jets. Phys Fluids 34(062):014 Rubio A, Vega EJ, Gañán-Calvo AM, Montanero JM (2022) Unexpected stability of micrometer weakly viscoelastic jets. Phys Fluids 34(062):014
60.
go back to reference Goren S, Gottlieb M (1982) Surface-tension-driven breakup of viscoelastic liquid threads. J Fluid Mech 120:245–266MathSciNetCrossRef Goren S, Gottlieb M (1982) Surface-tension-driven breakup of viscoelastic liquid threads. J Fluid Mech 120:245–266MathSciNetCrossRef
61.
go back to reference Mohamed AS, Herrada MA, Gañán-Calvo AM, Montanero JM (2015) Convective-to-absolute instability transition in a viscoelastic capillary jet subject to unrelaxed axial elastic tension. Phys Rev E 92(023):006MathSciNet Mohamed AS, Herrada MA, Gañán-Calvo AM, Montanero JM (2015) Convective-to-absolute instability transition in a viscoelastic capillary jet subject to unrelaxed axial elastic tension. Phys Rev E 92(023):006MathSciNet
62.
go back to reference Eggers J (1997) Nonlinear dynamics and breakup of free-surface flows. Rev Mod Phys 69:865–929CrossRef Eggers J (1997) Nonlinear dynamics and breakup of free-surface flows. Rev Mod Phys 69:865–929CrossRef
63.
go back to reference Yarin AL, Pourdeyhimi B, Ramakrishna S (2014) Fundamentals and applications of micro- and nanofibers. Cambridge University Press, CambridgeCrossRef Yarin AL, Pourdeyhimi B, Ramakrishna S (2014) Fundamentals and applications of micro- and nanofibers. Cambridge University Press, CambridgeCrossRef
64.
go back to reference Alty T (1933) The maximum rate of evaporation of water. Lond Edinb Dublin Philos Mag J Sci 15:82–103CrossRef Alty T (1933) The maximum rate of evaporation of water. Lond Edinb Dublin Philos Mag J Sci 15:82–103CrossRef
65.
go back to reference Persad AH, Ward CA (2016) Expressions for the evaporation and condensation coefficients in the Hertz-Knudsen relation. Chem Rev 116:7727–7767CrossRef Persad AH, Ward CA (2016) Expressions for the evaporation and condensation coefficients in the Hertz-Knudsen relation. Chem Rev 116:7727–7767CrossRef
Metadata
Title
Gaseous Flow Focusing II
Author
José María Montanero
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-52768-5_11

Premium Partners