Skip to main content
Top
Published in: Natural Computing 3/2016

01-09-2016

Gene expression and protein–protein interaction data for identification of colon cancer related genes using f-information measures

Authors: Sushmita Paul, Pradipta Maji

Published in: Natural Computing | Issue 3/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

One of the most important and challenging problems in functional genomics is how to select the disease genes. In this regard, the paper presents a new computational method to identify disease genes. It judiciously integrates the information of gene expression profiles and shortest path analysis of protein–protein interaction networks. While the \(f\)-information based maximum relevance-maximum significance framework is used to select differentially expressed genes as disease genes using gene expression profiles, the functional protein association network is used to study the mechanism of diseases. An important finding is that some \(f\)-information measures are shown to be effective for selecting relevant and significant genes from microarray data. Extensive experimental study on colorectal cancer establishes the fact that the genes identified by the integrated method have more colorectal cancer genes than the genes identified from the gene expression profiles alone, irrespective of any gene selection algorithm. Also, these genes have greater functional similarity with the reported colorectal cancer genes than the genes identified from the gene expression profiles alone. The enrichment analysis of the obtained genes reveals to be associated with some of the important KEGG pathways. All these results indicate that the integrated method is quite promising and may become a useful tool for identifying disease genes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Althaus IW, Gonzales AJ, Chou JJ, Romero DL, Deibel MR, Chou KC, Kezdy FJ, Resnick L, Busso ME, So AG (1993) The quinoline U-78036 is a potent inhibitor of HIV-1 reverse transcriptase. J Biol Chem 268(20):14,875–14,880 Althaus IW, Gonzales AJ, Chou JJ, Romero DL, Deibel MR, Chou KC, Kezdy FJ, Resnick L, Busso ME, So AG (1993) The quinoline U-78036 is a potent inhibitor of HIV-1 reverse transcriptase. J Biol Chem 268(20):14,875–14,880
go back to reference Altshuler D, Daly MJ, Lander ES (2008) Genetic mapping in human disease. Science 322(5903):881–888CrossRef Altshuler D, Daly MJ, Lander ES (2008) Genetic mapping in human disease. Science 322(5903):881–888CrossRef
go back to reference Andraos J (2008) Kinetic plasticity and the determination of product ratios for kinetic schemes leading to multiple products without rate laws—new methods based on directed graphs. Can J Chem 86(4):342–357CrossRef Andraos J (2008) Kinetic plasticity and the determination of product ratios for kinetic schemes leading to multiple products without rate laws—new methods based on directed graphs. Can J Chem 86(4):342–357CrossRef
go back to reference Barrenas F, Chavali S, Holme P, Mobini R, Benson M (2009) Network properties of complex human disease genes Identified through genome-wide association studies. PLoS ONE 4(11):e8090CrossRef Barrenas F, Chavali S, Holme P, Mobini R, Benson M (2009) Network properties of complex human disease genes Identified through genome-wide association studies. PLoS ONE 4(11):e8090CrossRef
go back to reference Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29(4):1165–1188MathSciNetCrossRefMATH Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29(4):1165–1188MathSciNetCrossRefMATH
go back to reference Bogdanov P, Singh A (2010) Molecular function prediction using neighborhood features. IEEE/ACM Trans Comput Biol Bioinf 7(2):208–217CrossRef Bogdanov P, Singh A (2010) Molecular function prediction using neighborhood features. IEEE/ACM Trans Comput Biol Bioinf 7(2):208–217CrossRef
go back to reference Cai YD, Huang T, Feng KY, Hu L, Xie L (2010) A unified 35-gene signature for both subtype classification and survival prediction in diffuse large B-cell lymphomas. PLoS ONE 5(9):e12,726CrossRef Cai YD, Huang T, Feng KY, Hu L, Xie L (2010) A unified 35-gene signature for both subtype classification and survival prediction in diffuse large B-cell lymphomas. PLoS ONE 5(9):e12,726CrossRef
go back to reference Chen J, Aronow B, Jegga A (2009) Disease candidate gene identification and prioritization using protein interaction networks. BMC Bioinform 10(1):73CrossRef Chen J, Aronow B, Jegga A (2009) Disease candidate gene identification and prioritization using protein interaction networks. BMC Bioinform 10(1):73CrossRef
go back to reference Chen L, Cai YD, Shi XH, Huang T (2010) Analysis of metabolic pathway using hybrid properties. PLoS ONE 5(6):e10,972CrossRef Chen L, Cai YD, Shi XH, Huang T (2010) Analysis of metabolic pathway using hybrid properties. PLoS ONE 5(6):e10,972CrossRef
go back to reference Chou KC (1990) Applications of graph theory to enzyme kinetics and protein folding kinetics: steady and non-steady-state systems. Biophys Chem 35(1):1–24CrossRef Chou KC (1990) Applications of graph theory to enzyme kinetics and protein folding kinetics: steady and non-steady-state systems. Biophys Chem 35(1):1–24CrossRef
go back to reference Chou KC (1993) Graphic rule for non-steady-state enzyme kinetics and protein folding kinetics. J Math Chem 12(1):97–108CrossRef Chou KC (1993) Graphic rule for non-steady-state enzyme kinetics and protein folding kinetics. J Math Chem 12(1):97–108CrossRef
go back to reference Chou KC (2010) Graphic rule for drug metabolism systems. Curr Drug Metab 11:369–378CrossRef Chou KC (2010) Graphic rule for drug metabolism systems. Curr Drug Metab 11:369–378CrossRef
go back to reference Chou KC, Forsen S (1980) Graphical rules for enzyme-catalysed rate laws. Biochem J 187:829–835CrossRef Chou KC, Forsen S (1980) Graphical rules for enzyme-catalysed rate laws. Biochem J 187:829–835CrossRef
go back to reference Chou KC, Kezdy FJ, Reusser F (1994) Kinetics of processive nucleic acid polymerases and nucleases. Anal Biochem 221(2):217–230CrossRef Chou KC, Kezdy FJ, Reusser F (1994) Kinetics of processive nucleic acid polymerases and nucleases. Anal Biochem 221(2):217–230CrossRef
go back to reference Dermitzakis ET (2008) From gene expression to disease risk. Nat Genet 40:492–493CrossRef Dermitzakis ET (2008) From gene expression to disease risk. Nat Genet 40:492–493CrossRef
go back to reference Ding C, Peng H (2003) Minimum redundancy feature selection from microarray gene expression data. In: Proceedings of the international conference on computational systems bioinformatics, pp 523–528 Ding C, Peng H (2003) Minimum redundancy feature selection from microarray gene expression data. In: Proceedings of the international conference on computational systems bioinformatics, pp 523–528
go back to reference Ding C, Peng H (2005) Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol 3(2):185–205MathSciNetCrossRef Ding C, Peng H (2005) Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol 3(2):185–205MathSciNetCrossRef
go back to reference Duda RO, Hart PE, Stork DG (1999) Pattern classification and scene analysis. Wiley, New York Duda RO, Hart PE, Stork DG (1999) Pattern classification and scene analysis. Wiley, New York
go back to reference Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabsi AL (2007) The human disease network. Proc Natl Acad Sci USA 104(21):8685–8690CrossRef Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabsi AL (2007) The human disease network. Proc Natl Acad Sci USA 104(21):8685–8690CrossRef
go back to reference Hinoue T, Weisenberger DJ, Lange CP, Shen H, Byun HM, Van Den Berg D, Malik S, Pan F, Noushmehr H, van Dijk CM, Tollenaar RAEM, Laird PW (2012) Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res 22(2):271–282CrossRef Hinoue T, Weisenberger DJ, Lange CP, Shen H, Byun HM, Van Den Berg D, Malik S, Pan F, Noushmehr H, van Dijk CM, Tollenaar RAEM, Laird PW (2012) Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res 22(2):271–282CrossRef
go back to reference Huang DW, Sherman BT, Lempicki RA (2009a) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57CrossRef Huang DW, Sherman BT, Lempicki RA (2009a) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57CrossRef
go back to reference Huang T, Cui W, Hu L, Feng K, Li YX, Cai YD (2009b) Prediction of pharmacological and xenobiotic responses to drugs based on time course gene expression profiles. PLoS ONE 4(12):e8126CrossRef Huang T, Cui W, Hu L, Feng K, Li YX, Cai YD (2009b) Prediction of pharmacological and xenobiotic responses to drugs based on time course gene expression profiles. PLoS ONE 4(12):e8126CrossRef
go back to reference Huang T, Cai YD, Chen L, Hu LL, Kong XY, Li YX, Chou KC (2010a) Selection of reprogramming factors of induced pluripotent stem cells based on the protein interaction network and functional profiles. PLoS ONE 5(9):e12,726CrossRef Huang T, Cai YD, Chen L, Hu LL, Kong XY, Li YX, Chou KC (2010a) Selection of reprogramming factors of induced pluripotent stem cells based on the protein interaction network and functional profiles. PLoS ONE 5(9):e12,726CrossRef
go back to reference Huang T, Shi XH, Wang P, He Z, Feng KY, Hu L, Kong X, Li YX, Cai YD, Chou KC (2010b) Analysis and prediction of the metabolic stability of proteins based on their sequential features, subcellular locations and interaction networks. PLoS ONE 5(6):e10,972CrossRef Huang T, Shi XH, Wang P, He Z, Feng KY, Hu L, Kong X, Li YX, Cai YD, Chou KC (2010b) Analysis and prediction of the metabolic stability of proteins based on their sequential features, subcellular locations and interaction networks. PLoS ONE 5(6):e10,972CrossRef
go back to reference Huang T, Chen L, Cai YD, Chou KC (2011) Classification and analysis of regulatory pathways using graph property, biochemical and physicochemical property, and functional property. PLoS ONE 6(9):e25,297CrossRef Huang T, Chen L, Cai YD, Chou KC (2011) Classification and analysis of regulatory pathways using graph property, biochemical and physicochemical property, and functional property. PLoS ONE 6(9):e25,297CrossRef
go back to reference Huret JL, Dessen P, Bernheim A (2003) Atlas of genetics and cytogenetics in oncology and haematology, year 2003. Nucl Acids Res 31(1):272–274CrossRef Huret JL, Dessen P, Bernheim A (2003) Atlas of genetics and cytogenetics in oncology and haematology, year 2003. Nucl Acids Res 31(1):272–274CrossRef
go back to reference Jia P, Zheng S, Long J, Zheng W, Zhao Z (2011) dmGWAS: dense module searching for genome-wide association studies in protein–protein interaction networks. Bioinformatics 27(1):95–102CrossRef Jia P, Zheng S, Long J, Zheng W, Zhao Z (2011) dmGWAS: dense module searching for genome-wide association studies in protein–protein interaction networks. Bioinformatics 27(1):95–102CrossRef
go back to reference Karaoz U, Murali TM, Letovsky S, Zheng Y, Ding C, Cantor CR, Kasif S (2004) Whole-genome annotation by using evidence integration in functional-linkage networks. Proc Natl Acad Sci USA 101(9):2888–2893CrossRef Karaoz U, Murali TM, Letovsky S, Zheng Y, Ding C, Cantor CR, Kasif S (2004) Whole-genome annotation by using evidence integration in functional-linkage networks. Proc Natl Acad Sci USA 101(9):2888–2893CrossRef
go back to reference Karni S, Soreq H, Sharan R (2009) A network-based method for predicting disease-causing genes. J Comput Biol 16(2):181–189CrossRef Karni S, Soreq H, Sharan R (2009) A network-based method for predicting disease-causing genes. J Comput Biol 16(2):181–189CrossRef
go back to reference Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, Balakrishnan L, Marimuthu A, Banerjee S, Somanathan DS, Sebastian A, Rani S, Ray S, Kanth S, Ahmed M, Kashyap MK, Mohmood R, Ramachandra YL, Krishna V, Rahiman BA, Mohan S, Ranganathan P, Ramabadran S, Chaerkady R, Pandey A (2009) Human protein reference database-2009 update. Nucleic Acids Res 37(suppl 1):D767–D772CrossRef Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, Balakrishnan L, Marimuthu A, Banerjee S, Somanathan DS, Sebastian A, Rani S, Ray S, Kanth S, Ahmed M, Kashyap MK, Mohmood R, Ramachandra YL, Krishna V, Rahiman BA, Mohan S, Ranganathan P, Ramabadran S, Chaerkady R, Pandey A (2009) Human protein reference database-2009 update. Nucleic Acids Res 37(suppl 1):D767–D772CrossRef
go back to reference Kohler S, Bauer S, Horn D, Robinson PN (2008) Walking the interactome for prioritization of candidate disease genes. Am J Hum Genet 82(4):949–958CrossRef Kohler S, Bauer S, Horn D, Robinson PN (2008) Walking the interactome for prioritization of candidate disease genes. Am J Hum Genet 82(4):949–958CrossRef
go back to reference Kourmpetis YAI, van Dijk ADJ, Bink MCAM, van Ham RCHJ, ter Braak CJF (2010) Bayesian Markov random field analysis for protein function prediction based on network data. PLoS ONE 5(2):e9293CrossRef Kourmpetis YAI, van Dijk ADJ, Bink MCAM, van Ham RCHJ, ter Braak CJF (2010) Bayesian Markov random field analysis for protein function prediction based on network data. PLoS ONE 5(2):e9293CrossRef
go back to reference Letovsky S, Kasif S (2003) Predicting protein function from protein/protein interaction data: a probabilistic approach. Bioinformatics 19(suppl 1):i197–i204CrossRef Letovsky S, Kasif S (2003) Predicting protein function from protein/protein interaction data: a probabilistic approach. Bioinformatics 19(suppl 1):i197–i204CrossRef
go back to reference Li BQ, Huang T, Liu L, Cai YD, Chou KC (2012) Identification of colorectal cancer related genes with mRMR and shortest path in protein–protein interaction network. PLoS ONE 7(4):e33,393CrossRef Li BQ, Huang T, Liu L, Cai YD, Chou KC (2012) Identification of colorectal cancer related genes with mRMR and shortest path in protein–protein interaction network. PLoS ONE 7(4):e33,393CrossRef
go back to reference Li Y, Li J (2012) Disease gene identification by random walk on multigraphs merging heterogeneous genomic and phenotype data. BMC Genom 13(Suppl 7):S27CrossRef Li Y, Li J (2012) Disease gene identification by random walk on multigraphs merging heterogeneous genomic and phenotype data. BMC Genom 13(Suppl 7):S27CrossRef
go back to reference Liu X, Krishnan A, Mondry A (2005) An entropy based gene selection method for cancer classification using microarray data. BMC Bioinform 6(1):76CrossRef Liu X, Krishnan A, Mondry A (2005) An entropy based gene selection method for cancer classification using microarray data. BMC Bioinform 6(1):76CrossRef
go back to reference Maji P (2009) \(f\)-information measures for efficient selection of discriminative genes from microarray data. IEEE Trans Biomed Eng 56(4):1063–1069MathSciNetCrossRef Maji P (2009) \(f\)-information measures for efficient selection of discriminative genes from microarray data. IEEE Trans Biomed Eng 56(4):1063–1069MathSciNetCrossRef
go back to reference Maji P (2012) Mutual information based supervised attribute clustering for microarray sample classification. IEEE Trans Knowl Data Eng 24(1):127–140CrossRef Maji P (2012) Mutual information based supervised attribute clustering for microarray sample classification. IEEE Trans Knowl Data Eng 24(1):127–140CrossRef
go back to reference Maji P, Paul S (2011) Rough set based maximum relevance-maximum significance criterion and gene selection from microarray data. Int J Approx Reason 52(3):408–426CrossRef Maji P, Paul S (2011) Rough set based maximum relevance-maximum significance criterion and gene selection from microarray data. Int J Approx Reason 52(3):408–426CrossRef
go back to reference Maji P, Paul S (2014) Scalable pattern recognition algorithms: applications in computational biology and bioinformatics. Springer, LondonCrossRefMATH Maji P, Paul S (2014) Scalable pattern recognition algorithms: applications in computational biology and bioinformatics. Springer, LondonCrossRefMATH
go back to reference Meltzer PS (2001) Spotting the target: microarrays for disease gene discovery. Curr Opin Genet Dev 11(3):258–263CrossRef Meltzer PS (2001) Spotting the target: microarrays for disease gene discovery. Curr Opin Genet Dev 11(3):258–263CrossRef
go back to reference Mohammadi A, Saraee M, Salehi M (2011) Identification of disease-causing genes using microarray data mining and gene ontology. BMC Med Genomics 4(1):12CrossRef Mohammadi A, Saraee M, Salehi M (2011) Identification of disease-causing genes using microarray data mining and gene ontology. BMC Med Genomics 4(1):12CrossRef
go back to reference Nagaraj S, Reverter A (2011) A Boolean-based systems biology approach to predict novel genes associated with cancer: application to colorectal cancer. BMC Syst Biol 5(1):35CrossRef Nagaraj S, Reverter A (2011) A Boolean-based systems biology approach to predict novel genes associated with cancer: application to colorectal cancer. BMC Syst Biol 5(1):35CrossRef
go back to reference Navlakha S, Kingsford C (2010) The power of protein interaction networks for associating genes with diseases. Bioinformatics 26(8):1057–1063CrossRef Navlakha S, Kingsford C (2010) The power of protein interaction networks for associating genes with diseases. Bioinformatics 26(8):1057–1063CrossRef
go back to reference Ng KL, Ciou JS, Huang CH (2010) Prediction of protein functions based on function–function correlation relations. Comput Biol Med 40(3):300–305CrossRef Ng KL, Ciou JS, Huang CH (2010) Prediction of protein functions based on function–function correlation relations. Comput Biol Med 40(3):300–305CrossRef
go back to reference Nitsch D, Tranchevent LC, Thienpont B, Thorrez L, Van Esch H, Devriendt K, Moreau Y (2009) Network analysis of differential expression for the identification of disease-causing genes. PLoS ONE 4(5):e5526CrossRef Nitsch D, Tranchevent LC, Thienpont B, Thorrez L, Van Esch H, Devriendt K, Moreau Y (2009) Network analysis of differential expression for the identification of disease-causing genes. PLoS ONE 4(5):e5526CrossRef
go back to reference Novershtern N, Itzhaki Z, Manor O, Friedman N, Kaminski N (2008) A functional and regulatory map of asthma. Am J Respir Cell Mol Biol 38(3):324–336CrossRef Novershtern N, Itzhaki Z, Manor O, Friedman N, Kaminski N (2008) A functional and regulatory map of asthma. Am J Respir Cell Mol Biol 38(3):324–336CrossRef
go back to reference Oti M, Snel B, Huynen MA, Brunner HG (2006) Predicting disease genes using protein–protein interactions. J Med Genet 43(8):691–698CrossRef Oti M, Snel B, Huynen MA, Brunner HG (2006) Predicting disease genes using protein–protein interactions. J Med Genet 43(8):691–698CrossRef
go back to reference Paul S, Maji P (2013a) \(\mu \)HEM for identification of differentially expressed miRNAs using hypercuboid equivalence partition matrix. BMC Bioinform 14(1):266MathSciNetCrossRef Paul S, Maji P (2013a) \(\mu \)HEM for identification of differentially expressed miRNAs using hypercuboid equivalence partition matrix. BMC Bioinform 14(1):266MathSciNetCrossRef
go back to reference Paul S, Maji P (2013b) Rough sets for insilico identification of differentially expressed miRNAs. Int J Nanomed 8:63–74 Paul S, Maji P (2013b) Rough sets for insilico identification of differentially expressed miRNAs. Int J Nanomed 8:63–74
go back to reference Peng H, Long F, Ding C (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238CrossRef Peng H, Long F, Ding C (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238CrossRef
go back to reference Pluim JPW, Maintz JBA, Viergever MA (2004) \(f\)-Information measures in medical image registration. IEEE Trans Med Imaging 23(12):1508–1516CrossRef Pluim JPW, Maintz JBA, Viergever MA (2004) \(f\)-Information measures in medical image registration. IEEE Trans Med Imaging 23(12):1508–1516CrossRef
go back to reference Quenouille MH (1949) Approximate tests of correlation in time-series. J R Stat Soc Ser B Methodol 11(1):68–84MathSciNetMATH Quenouille MH (1949) Approximate tests of correlation in time-series. J R Stat Soc Ser B Methodol 11(1):68–84MathSciNetMATH
go back to reference Ruan X, Wang J, Li H, Perozzi RE, Perozzi EF (2008) The use of logic relationships to model colon cancer gene expression networks with mRNA microarray data. J Biomed Inform 41(4):530–543CrossRef Ruan X, Wang J, Li H, Perozzi RE, Perozzi EF (2008) The use of logic relationships to model colon cancer gene expression networks with mRNA microarray data. J Biomed Inform 41(4):530–543CrossRef
go back to reference Sabates-Bellver J, Van der Flier LG, de Palo M, Cattaneo E, Maake C, Rehrauer H, Laczko E, Kurowski MA, Bujnicki JM, Menigatti M, Luz J, Ranalli TV, Gomes V, Pastorelli A, Faggiani R, Anti M, Jiricny J, Clevers H, Marra G (2007) Transcriptome profile of human colorectal adenomas. Mol Cancer Res 5(12):1263–1275CrossRef Sabates-Bellver J, Van der Flier LG, de Palo M, Cattaneo E, Maake C, Rehrauer H, Laczko E, Kurowski MA, Bujnicki JM, Menigatti M, Luz J, Ranalli TV, Gomes V, Pastorelli A, Faggiani R, Anti M, Jiricny J, Clevers H, Marra G (2007) Transcriptome profile of human colorectal adenomas. Mol Cancer Res 5(12):1263–1275CrossRef
go back to reference Sharan R, Ulitsky I, Shamir R (2007) Network-based prediction of protein function. Mol Syst Biol 3(88):1–13 Sharan R, Ulitsky I, Shamir R (2007) Network-based prediction of protein function. Mol Syst Biol 3(88):1–13
go back to reference Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, Jensen LJ (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucl Acids Res 39(suppl 1):D561–D568CrossRef Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, Jensen LJ (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucl Acids Res 39(suppl 1):D561–D568CrossRef
go back to reference Vajda I (1989) Theory of statistical inference and information. Kluwer, DordrechtMATH Vajda I (1989) Theory of statistical inference and information. Kluwer, DordrechtMATH
go back to reference Wu C, Zhu J, Zhang X (2012) Integrating gene expression and protein–protein interaction network to prioritize cancer-associated genes. BMC Bioinform 13(1):182MathSciNetCrossRef Wu C, Zhu J, Zhang X (2012) Integrating gene expression and protein–protein interaction network to prioritize cancer-associated genes. BMC Bioinform 13(1):182MathSciNetCrossRef
go back to reference Zhao J, Jiang P, Zhang W (2010) Molecular networks for the study of TCM pharmacology. Brief Bioinform 11(4):417–430CrossRef Zhao J, Jiang P, Zhang W (2010) Molecular networks for the study of TCM pharmacology. Brief Bioinform 11(4):417–430CrossRef
go back to reference Zhao J, Yang TH, Huang Y, Holme P (2011) Ranking candidate disease genes from gene expression and protein interaction: a Katz-centrality based approach. PLoS ONE 6(9):e24,306CrossRef Zhao J, Yang TH, Huang Y, Holme P (2011) Ranking candidate disease genes from gene expression and protein interaction: a Katz-centrality based approach. PLoS ONE 6(9):e24,306CrossRef
go back to reference Zhou GP (2011) The disposition of The LZCC protein residues in wenxiang diagram provides new insights into the protein–protein interaction mechanism. J Theor Biol 284(1):142–148CrossRef Zhou GP (2011) The disposition of The LZCC protein residues in wenxiang diagram provides new insights into the protein–protein interaction mechanism. J Theor Biol 284(1):142–148CrossRef
go back to reference Zhou GP, Deng MH (1984) An extension of Chou’s graphic rules for deriving enzyme kinetic equations to systems involving parallel reaction pathways. Biochem J 222:169–176CrossRef Zhou GP, Deng MH (1984) An extension of Chou’s graphic rules for deriving enzyme kinetic equations to systems involving parallel reaction pathways. Biochem J 222:169–176CrossRef
Metadata
Title
Gene expression and protein–protein interaction data for identification of colon cancer related genes using f-information measures
Authors
Sushmita Paul
Pradipta Maji
Publication date
01-09-2016
Publisher
Springer Netherlands
Published in
Natural Computing / Issue 3/2016
Print ISSN: 1567-7818
Electronic ISSN: 1572-9796
DOI
https://doi.org/10.1007/s11047-015-9485-6

Other articles of this Issue 3/2016

Natural Computing 3/2016 Go to the issue

Premium Partner