Skip to main content
Top
Published in:
Cover of the book

2013 | OriginalPaper | Chapter

1. General Introduction

Authors : Yongkang Zhang, Jinzhong Lu, Kaiyu Luo

Published in: Laser Shock Processing of FCC Metals

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter presents the laser shock processing (LSP) process, recent development of LSP on alloys and metallic materials, typical applications of LSP and the scope of this book.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Askar, C. A., & Moroz, E. M. (1963). Pressure on evaporation of matter in a radiation beam. Journal of Experimental and Theoretical Physics Letters, 16, 1638–1644. Askar, C. A., & Moroz, E. M. (1963). Pressure on evaporation of matter in a radiation beam. Journal of Experimental and Theoretical Physics Letters, 16, 1638–1644.
2.
go back to reference White, R. M. (1963). Elastic wave generation by electron bombardment or electromagnetic wave absorption. Journal of Applied Physics, 34, 2123–2124.CrossRef White, R. M. (1963). Elastic wave generation by electron bombardment or electromagnetic wave absorption. Journal of Applied Physics, 34, 2123–2124.CrossRef
3.
go back to reference Anderholm, N. C. (1970). Laser-generated stress wave. Applied Physics Letters, 16(3), 113–115.CrossRef Anderholm, N. C. (1970). Laser-generated stress wave. Applied Physics Letters, 16(3), 113–115.CrossRef
4.
go back to reference Clauer, A.H., Holbrook, J.H., Fairand, B.P. (1981). Effects of laser induced shock waves on metals. In: M.A. Meyers, L.E. Murr (Ed.), shock waves and high-strain-rate phenomena in metals (pp. 675–703). New York: Plenum Publishing Corporation. Clauer, A.H., Holbrook, J.H., Fairand, B.P. (1981). Effects of laser induced shock waves on metals. In: M.A. Meyers, L.E. Murr (Ed.), shock waves and high-strain-rate phenomena in metals (pp. 675–703). New York: Plenum Publishing Corporation.
5.
go back to reference Banas, G., Elsayed-ali, H. E., Lawrence, F. V., & Rigsbee, J. M. (1990). Laser shock induced mechanical and microstructural modification of welded maraging steel. Applied Physics, 67, 2380–2384.CrossRef Banas, G., Elsayed-ali, H. E., Lawrence, F. V., & Rigsbee, J. M. (1990). Laser shock induced mechanical and microstructural modification of welded maraging steel. Applied Physics, 67, 2380–2384.CrossRef
6.
go back to reference Banas, G., Lawrence, F. V., Rigsbee, J. M., & Elsayed-ali, H. E. (1990). Laser shock hardening of welded maraging steel. Surface Engineering, 67, 280–290. Banas, G., Lawrence, F. V., Rigsbee, J. M., & Elsayed-ali, H. E. (1990). Laser shock hardening of welded maraging steel. Surface Engineering, 67, 280–290.
7.
go back to reference Cottet, F., Marty, L., Hallouin, M., & Romain, J. P. (1988). Two-dimensional study of shock breakout at the rear face of laser-irradiated metallic targets. Journal of Applied Physics, 64(9), 4473–4476.CrossRef Cottet, F., Marty, L., Hallouin, M., & Romain, J. P. (1988). Two-dimensional study of shock breakout at the rear face of laser-irradiated metallic targets. Journal of Applied Physics, 64(9), 4473–4476.CrossRef
8.
go back to reference Fabbro, R., Fournier, J., Ballard, P., Devaux, D., & Virmont, J. (1990). Physical study of laser-produced plasma in confined geometry. Journal of Applied Physics, 68(2), 775–784.CrossRef Fabbro, R., Fournier, J., Ballard, P., Devaux, D., & Virmont, J. (1990). Physical study of laser-produced plasma in confined geometry. Journal of Applied Physics, 68(2), 775–784.CrossRef
9.
go back to reference Devaux, D., Fabbro, R., Tollier, L., & Bartnicki, E. (1993). Generation of shock waves by laser-induced plasma in confined geometry. Journal of Applied Physics, 74(4), 2268–2273.CrossRef Devaux, D., Fabbro, R., Tollier, L., & Bartnicki, E. (1993). Generation of shock waves by laser-induced plasma in confined geometry. Journal of Applied Physics, 74(4), 2268–2273.CrossRef
10.
go back to reference Berthe, L., Fabbro, R., Peyre, P., Tollier, L., & Bartnicki, E. (1997). Shock waves from a water-confined laser-generated plasma. Journal of Applied Physics, 82(6), 2826–2832.CrossRef Berthe, L., Fabbro, R., Peyre, P., Tollier, L., & Bartnicki, E. (1997). Shock waves from a water-confined laser-generated plasma. Journal of Applied Physics, 82(6), 2826–2832.CrossRef
11.
go back to reference Tollier, L., Fabbro, R., & Bartnicki, E. (1998). Study of the laser-driven spallation process by the velocity interferometer system for any reflector interferometry technique. I. Laser-shock characterization. Journal of Applied Physics, 83(3), 1224–1230.CrossRef Tollier, L., Fabbro, R., & Bartnicki, E. (1998). Study of the laser-driven spallation process by the velocity interferometer system for any reflector interferometry technique. I. Laser-shock characterization. Journal of Applied Physics, 83(3), 1224–1230.CrossRef
12.
go back to reference Tollier, L., & Fabbro, R. (1998). Study of the laser-driven spallation process by the VISAR interferometry technique II: experiment and simulation of the spallation process. Journal of Applied Physics, 83(3), 1231–1237.CrossRef Tollier, L., & Fabbro, R. (1998). Study of the laser-driven spallation process by the VISAR interferometry technique II: experiment and simulation of the spallation process. Journal of Applied Physics, 83(3), 1231–1237.CrossRef
13.
go back to reference Peyre, P., Berthe, L., Scherpereel, X., Fabbro, R., & Bartnicki, E. (1998). Experimental study of laser-driven shock waves in stainless steels. Journal of Applied Physics, 84(11), 5985–5992.CrossRef Peyre, P., Berthe, L., Scherpereel, X., Fabbro, R., & Bartnicki, E. (1998). Experimental study of laser-driven shock waves in stainless steels. Journal of Applied Physics, 84(11), 5985–5992.CrossRef
14.
go back to reference Berthe, L., Fabbro, R., Peyre, P., & Bartnicki, E. (1999). Wavelength dependent of laser shock-wave generation in the water-confinement regime. Journal of Applied Physics, 85(11), 7552–7555.CrossRef Berthe, L., Fabbro, R., Peyre, P., & Bartnicki, E. (1999). Wavelength dependent of laser shock-wave generation in the water-confinement regime. Journal of Applied Physics, 85(11), 7552–7555.CrossRef
15.
go back to reference Zhang, H., & Yu, C. Y. (1998). Laser shock processing of 2024–T62 aluminum alloy. Materials Science and Engineering A, 257, 322–327.CrossRef Zhang, H., & Yu, C. Y. (1998). Laser shock processing of 2024–T62 aluminum alloy. Materials Science and Engineering A, 257, 322–327.CrossRef
16.
go back to reference Zhang, Y. K., Zhang, S. Y., Zhang, X. R., Cai, L., Yang, J. C., & Ren, N. F. (1997). Investigation of the surface qualities of laser shock-processed zones and the effect on fatigue life of aluminum alloy. Surface & Coatings Technology, 92(1–2), 104–109. Zhang, Y. K., Zhang, S. Y., Zhang, X. R., Cai, L., Yang, J. C., & Ren, N. F. (1997). Investigation of the surface qualities of laser shock-processed zones and the effect on fatigue life of aluminum alloy. Surface & Coatings Technology, 92(1–2), 104–109.
17.
go back to reference Sano, Y., Mukai, N., Okazaki, K., & Obata, M. (1997). Residual stress improvement in metal surface by underwater laser irradiation. Nuclear Instruments & Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 121, 432–436.CrossRef Sano, Y., Mukai, N., Okazaki, K., & Obata, M. (1997). Residual stress improvement in metal surface by underwater laser irradiation. Nuclear Instruments & Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 121, 432–436.CrossRef
18.
go back to reference Ye, C., Liao, Y. C., & Cheng, G. J. (2010). Warm laser shock peening driven nanostructures and their effects on fatigue performance in aluminum alloy 6160. Advanced Engineering Materials, 12(4), 291–297. Ye, C., Liao, Y. C., & Cheng, G. J. (2010). Warm laser shock peening driven nanostructures and their effects on fatigue performance in aluminum alloy 6160. Advanced Engineering Materials, 12(4), 291–297.
19.
go back to reference Ye, C., Suslov, S., Lin, D., & Cheng, G. J. (2012). Deformation-induced martensite and nanotwins by cryogenic laser shock peening of AISI 304 stainless steel and the effects on mechanical properties. Philosophical Magazine, 92(11), 1369–1389.CrossRef Ye, C., Suslov, S., Lin, D., & Cheng, G. J. (2012). Deformation-induced martensite and nanotwins by cryogenic laser shock peening of AISI 304 stainless steel and the effects on mechanical properties. Philosophical Magazine, 92(11), 1369–1389.CrossRef
20.
go back to reference Ye, C., & Cheng, G. J. (2010). Effects of temperature on laser shock induced plastic deformation: the case of copper. Journal of Manufacturing Science and Engineering, 132, 061009.CrossRef Ye, C., & Cheng, G. J. (2010). Effects of temperature on laser shock induced plastic deformation: the case of copper. Journal of Manufacturing Science and Engineering, 132, 061009.CrossRef
21.
go back to reference Ye, C., Suslov, S., Fei, X. L., & Cheng, G. J. (2011). Bimodal nanocrystallization of NiTi shape memory alloy by laser shock peening and post-deformation annealing. Acta Materialia, 59, 7219–7227.CrossRef Ye, C., Suslov, S., Fei, X. L., & Cheng, G. J. (2011). Bimodal nanocrystallization of NiTi shape memory alloy by laser shock peening and post-deformation annealing. Acta Materialia, 59, 7219–7227.CrossRef
22.
go back to reference Ye, C., Suslov, S., Kim, B. J., Stach, E. A., & Cheng, G. J. (2011). Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening. Acta Materialia, 59, 1014–1025.CrossRef Ye, C., Suslov, S., Kim, B. J., Stach, E. A., & Cheng, G. J. (2011). Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening. Acta Materialia, 59, 1014–1025.CrossRef
23.
go back to reference Zhang, Y. K., Zhang, X. R., Wang, X. D., Zhang, S. Y., Gao, C. Y., Zhou, J. Z., et al. (2001). Elastic properties modification in aluminum alloy induced by laser-shock processing. Materials Science and Engineering A, 297(1–2), 138–143.CrossRef Zhang, Y. K., Zhang, X. R., Wang, X. D., Zhang, S. Y., Gao, C. Y., Zhou, J. Z., et al. (2001). Elastic properties modification in aluminum alloy induced by laser-shock processing. Materials Science and Engineering A, 297(1–2), 138–143.CrossRef
24.
go back to reference Lu, J. Z., Zhang, L., Feng, A. X., Jiang, Y. F., & Cheng, G. G. (2009). Effects of laser shock processing on mechanical properties of Fe–Ni alloy. Materials and Design, 30(9), 3673–3678.CrossRef Lu, J. Z., Zhang, L., Feng, A. X., Jiang, Y. F., & Cheng, G. G. (2009). Effects of laser shock processing on mechanical properties of Fe–Ni alloy. Materials and Design, 30(9), 3673–3678.CrossRef
25.
go back to reference Sánchez-Santana, U., Rubio-González, C., Gomez-Rosas, G., Ocaña, J. L., Molpeceres, C., Porro, J., et al. (2006). Wear and friction of 6061–T6 aluminum alloy treated by laser shock processing. Wear, 260(7–8), 847–854.CrossRef Sánchez-Santana, U., Rubio-González, C., Gomez-Rosas, G., Ocaña, J. L., Molpeceres, C., Porro, J., et al. (2006). Wear and friction of 6061–T6 aluminum alloy treated by laser shock processing. Wear, 260(7–8), 847–854.CrossRef
26.
go back to reference Lu, J. Z., Luo, K. Y., Dai, F. Z., Zhong, J. W., Xu, L. Z., Yang, C. J., et al. (2012). Effects of multiple laser shock processing (LSP) impacts on mechanical properties and wear behaviors of AISI 8620 steel. Materials Science and Engineering A, 536, 57–63.CrossRef Lu, J. Z., Luo, K. Y., Dai, F. Z., Zhong, J. W., Xu, L. Z., Yang, C. J., et al. (2012). Effects of multiple laser shock processing (LSP) impacts on mechanical properties and wear behaviors of AISI 8620 steel. Materials Science and Engineering A, 536, 57–63.CrossRef
27.
go back to reference Lu, J. Z., Zhong, J. W., Luo, K. Y., Zhang, L., Dai, F. Z., Chen, K. M., et al. (2011). Micro-structural strengthening mechanism of multiple laser shock processing impacts on AISI 8620 steel. Materials Science and Engineering A, 528(19–20), 6128–6133.CrossRef Lu, J. Z., Zhong, J. W., Luo, K. Y., Zhang, L., Dai, F. Z., Chen, K. M., et al. (2011). Micro-structural strengthening mechanism of multiple laser shock processing impacts on AISI 8620 steel. Materials Science and Engineering A, 528(19–20), 6128–6133.CrossRef
28.
go back to reference Cellard, C., Retraint, D., François, M., Rouhaud, E., & Saunier, D. L. (2012). Laser shock peening of Ti-17 titanium alloy: Influence of process parameters. Materials Science and Engineering A, 532, 362–372.CrossRef Cellard, C., Retraint, D., François, M., Rouhaud, E., & Saunier, D. L. (2012). Laser shock peening of Ti-17 titanium alloy: Influence of process parameters. Materials Science and Engineering A, 532, 362–372.CrossRef
29.
go back to reference Rubio-González, C., Gomez-Rosas, G., Ocaña, J. L., Molpeceres, C., Banderas, A., Porro, J., et al. (2006). Effect of an absorbent overlay on the residual stress field induced by laser shock processing on aluminum samples. Applied Surface Science, 252(18), 6201–6205.CrossRef Rubio-González, C., Gomez-Rosas, G., Ocaña, J. L., Molpeceres, C., Banderas, A., Porro, J., et al. (2006). Effect of an absorbent overlay on the residual stress field induced by laser shock processing on aluminum samples. Applied Surface Science, 252(18), 6201–6205.CrossRef
30.
go back to reference Hu, Y. X., & Yao, Z. Q. (2008). Overlapping rate effect on laser shock processing of 1045 steel by small spots with Nd: YAG pulsed laser. Surface & Coatings Technology, 202(8), 1517–1525.CrossRef Hu, Y. X., & Yao, Z. Q. (2008). Overlapping rate effect on laser shock processing of 1045 steel by small spots with Nd: YAG pulsed laser. Surface & Coatings Technology, 202(8), 1517–1525.CrossRef
31.
go back to reference Zhang, L., Luo, K. Y., Lu, J. Z., Zhang, Y. K., Dai, F. Z., & Zhong, J. W. (2011). Effects of laser shock processing with different shocked paths on mechanical properties of laser welded ANSI 304 stainless steel joint. Materials Science and Engineering A, 528(13–14), 4652–4657.CrossRef Zhang, L., Luo, K. Y., Lu, J. Z., Zhang, Y. K., Dai, F. Z., & Zhong, J. W. (2011). Effects of laser shock processing with different shocked paths on mechanical properties of laser welded ANSI 304 stainless steel joint. Materials Science and Engineering A, 528(13–14), 4652–4657.CrossRef
32.
go back to reference Gomez-Rosas, G., Rubio-Gonzalez, C., Ocaña, J. L., Molpeceres, C., Porro, J. A., Chi-Moreno, W., et al. (2005). High level compressive residual stresses produced in aluminum alloys by laser shock processing. Applied Surface Science, 252(4), 883–887.CrossRef Gomez-Rosas, G., Rubio-Gonzalez, C., Ocaña, J. L., Molpeceres, C., Porro, J. A., Chi-Moreno, W., et al. (2005). High level compressive residual stresses produced in aluminum alloys by laser shock processing. Applied Surface Science, 252(4), 883–887.CrossRef
33.
go back to reference Gomez-Rosas, G., Rubio-Gonzalez, C., Ocaña, J. L., Molpeceres, C., Porro, J. A., Morales, M., et al. (2010). Laser shock processing of 6061–T6 Al alloy with 1064 nm and 532 nm wavelengths. Applied Surface Science, 256(20), 5828–5831.CrossRef Gomez-Rosas, G., Rubio-Gonzalez, C., Ocaña, J. L., Molpeceres, C., Porro, J. A., Morales, M., et al. (2010). Laser shock processing of 6061–T6 Al alloy with 1064 nm and 532 nm wavelengths. Applied Surface Science, 256(20), 5828–5831.CrossRef
34.
go back to reference Dorman, M., Toparli, M. B., Smyth, N., Cini, A., Fitzpatrick, M. E., & Irving, P. E. (2012). Effect of laser shock peening on residual stress and fatigue life of clad 2024 aluminium sheet containing scribe defects. Materials Science and Engineering A, 548, 142–151.CrossRef Dorman, M., Toparli, M. B., Smyth, N., Cini, A., Fitzpatrick, M. E., & Irving, P. E. (2012). Effect of laser shock peening on residual stress and fatigue life of clad 2024 aluminium sheet containing scribe defects. Materials Science and Engineering A, 548, 142–151.CrossRef
35.
go back to reference Gerland, M., & Hallouin, M. (1994). Effect of pressure on the microstructure of an austenitic stainless steel shock-loaded by very short laser pulses. Journal of Materials Science, 29, 345–351.CrossRef Gerland, M., & Hallouin, M. (1994). Effect of pressure on the microstructure of an austenitic stainless steel shock-loaded by very short laser pulses. Journal of Materials Science, 29, 345–351.CrossRef
36.
go back to reference Montross, C. S., Florea, V., Brandt, M., & Swain, M. V. (2000). Subsurface properties of laser peened 6061–T6 Al weldments. Surface Engineering, 16, 116–121.CrossRef Montross, C. S., Florea, V., Brandt, M., & Swain, M. V. (2000). Subsurface properties of laser peened 6061–T6 Al weldments. Surface Engineering, 16, 116–121.CrossRef
37.
go back to reference Montross, C. S., Brandt, M., & Swain, M. V. (2001). Self-limiting hardness changes in laser peened 6061–T6 aluminum. Surface Engineering, 17(6), 477–482.CrossRef Montross, C. S., Brandt, M., & Swain, M. V. (2001). Self-limiting hardness changes in laser peened 6061–T6 aluminum. Surface Engineering, 17(6), 477–482.CrossRef
38.
go back to reference Maawad, E., Sano, Y., Wagner, L., Brokmeier, H. G., & Genzel, C. (2012). Investigation of laser shock peening effects on residual stress state and fatigue performance of titanium alloys. Materials Science and Engineering A, 536(28), 82–91.CrossRef Maawad, E., Sano, Y., Wagner, L., Brokmeier, H. G., & Genzel, C. (2012). Investigation of laser shock peening effects on residual stress state and fatigue performance of titanium alloys. Materials Science and Engineering A, 536(28), 82–91.CrossRef
39.
go back to reference Yang, J. M., Her, Y. C., Han, N., & Clauer, A. (2001). Laser shock peening on fatigue behavior of 2024–T3 Al alloy with fastener holes and stopholes. Materials Science and Engineering A, 298(1–2), 296–299.CrossRef Yang, J. M., Her, Y. C., Han, N., & Clauer, A. (2001). Laser shock peening on fatigue behavior of 2024–T3 Al alloy with fastener holes and stopholes. Materials Science and Engineering A, 298(1–2), 296–299.CrossRef
40.
go back to reference Chahardehi, A., Brennan, F. P., & Steuwer, A. (2010). The effect of residual stresses arising from laser shock peening on fatigue crack growth. Engineering Fracture Mechanics, 77(11), 2033–2039.CrossRef Chahardehi, A., Brennan, F. P., & Steuwer, A. (2010). The effect of residual stresses arising from laser shock peening on fatigue crack growth. Engineering Fracture Mechanics, 77(11), 2033–2039.CrossRef
41.
go back to reference Rubio-González, C., Felix-Martinez, C., Gomez-Rosas, G., Ocaña, J. L., Morales, M., & Porro, J. A. (2011). Effect of laser shock processing on fatigue crack growth of duplex stainless steel. Materials Science and Engineering A, 528(3), 914–919.CrossRef Rubio-González, C., Felix-Martinez, C., Gomez-Rosas, G., Ocaña, J. L., Morales, M., & Porro, J. A. (2011). Effect of laser shock processing on fatigue crack growth of duplex stainless steel. Materials Science and Engineering A, 528(3), 914–919.CrossRef
42.
go back to reference Rubio-González, C., Ocaña, J. L., Gomez-Rosas, G., Molpeceres, C., Paredes, M., Banderas, A., et al. (2004). Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061–T6 aluminum alloy. Materials Science and Engineering A, 386(1–2), 291–295.CrossRef Rubio-González, C., Ocaña, J. L., Gomez-Rosas, G., Molpeceres, C., Paredes, M., Banderas, A., et al. (2004). Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061–T6 aluminum alloy. Materials Science and Engineering A, 386(1–2), 291–295.CrossRef
43.
go back to reference Amar, H., Vignal, V., Krawiec, H., Josse, C., Peyre, P., Silva, S. N., et al. (2011). Influence of the microstructure and laser shock processing (LSP) on the corrosion behaviour of the AA2050-T8 aluminium alloy. Corrosion Science, 53(10), 3215–3221.CrossRef Amar, H., Vignal, V., Krawiec, H., Josse, C., Peyre, P., Silva, S. N., et al. (2011). Influence of the microstructure and laser shock processing (LSP) on the corrosion behaviour of the AA2050-T8 aluminium alloy. Corrosion Science, 53(10), 3215–3221.CrossRef
44.
go back to reference Trdan, U., & Grum, J. (2012). Evaluation of corrosion resistance of AA6082-T651 aluminium alloy after laser shock peening by means of cyclic polarisation and ElS methods. Corrosion Science, 59, 324–333.CrossRef Trdan, U., & Grum, J. (2012). Evaluation of corrosion resistance of AA6082-T651 aluminium alloy after laser shock peening by means of cyclic polarisation and ElS methods. Corrosion Science, 59, 324–333.CrossRef
45.
go back to reference Krawiec, H., Vignal, V., Amar, H., & Peyre, P. (2011). Local electrochemical impedance spectroscopy study of the influence of ageing in air and laser shock processing on the micro-electrochemical behaviour of AA2050-T8 aluminium alloy. Electrochimica Acta, 56(26), 9581–9587.CrossRef Krawiec, H., Vignal, V., Amar, H., & Peyre, P. (2011). Local electrochemical impedance spectroscopy study of the influence of ageing in air and laser shock processing on the micro-electrochemical behaviour of AA2050-T8 aluminium alloy. Electrochimica Acta, 56(26), 9581–9587.CrossRef
46.
go back to reference Zhang, Y. K., You, J., Lu, J. Z., Cui, C. Y., Jiang, Y. F., & Ren, X. D. (2010). Effects of laser shock processing on stress corrosion cracking susceptibility of AZ31B magnesium alloy. Surface & Coatings Technology, 204(24), 3947–3953.CrossRef Zhang, Y. K., You, J., Lu, J. Z., Cui, C. Y., Jiang, Y. F., & Ren, X. D. (2010). Effects of laser shock processing on stress corrosion cracking susceptibility of AZ31B magnesium alloy. Surface & Coatings Technology, 204(24), 3947–3953.CrossRef
47.
go back to reference Wu, B. X., & Shin, Y. C. (2006). Laser pulse transmission through the water breakdown plasma in laser shock peening. Applied Physics Letters, 88, 041116.CrossRef Wu, B. X., & Shin, Y. C. (2006). Laser pulse transmission through the water breakdown plasma in laser shock peening. Applied Physics Letters, 88, 041116.CrossRef
48.
go back to reference Wu, B. X. (2008). High-intensity nanosecond-pulsed laser-induced plasma in air, water, and vacuum: a comparative study of the early-stage evolution using a physics based predictive model. Applied Physics Letters, 93, 101104.CrossRef Wu, B. X. (2008). High-intensity nanosecond-pulsed laser-induced plasma in air, water, and vacuum: a comparative study of the early-stage evolution using a physics based predictive model. Applied Physics Letters, 93, 101104.CrossRef
49.
go back to reference Wu, X. Q., Duan, Z. P., Song, H. W., Wei, Y. P., Wang, X., & Huang, C. G. (2011). Shock pressure induced by glass-confined laser shock peening: experiments, modeling and simulation. Journal of Applied Physics, 110, 053112.CrossRef Wu, X. Q., Duan, Z. P., Song, H. W., Wei, Y. P., Wang, X., & Huang, C. G. (2011). Shock pressure induced by glass-confined laser shock peening: experiments, modeling and simulation. Journal of Applied Physics, 110, 053112.CrossRef
50.
go back to reference Thord, T., Franz-Josef, K., & Aravinda, K. (2003). Temperatures, pressures and stresses during laser shock processing. Optics and Lasers in Engineering, 39(1), 51–71.CrossRef Thord, T., Franz-Josef, K., & Aravinda, K. (2003). Temperatures, pressures and stresses during laser shock processing. Optics and Lasers in Engineering, 39(1), 51–71.CrossRef
51.
go back to reference Ruschau, J. J., John, R., Thompson, S. R., & Nicholas, T. (1999). Fatigue crack nucleation and growth rate behaviour of laser shock peened titanium. International Journal of Fatigue, 21, S199–S209.CrossRef Ruschau, J. J., John, R., Thompson, S. R., & Nicholas, T. (1999). Fatigue crack nucleation and growth rate behaviour of laser shock peened titanium. International Journal of Fatigue, 21, S199–S209.CrossRef
52.
go back to reference Mannava, S., McDaniel, A. E., & Cowie, W. D. (1996). Laser shock peened rotor components for turbomachinery. US Patent 5,492,447, 20 Feb 1996, General Electric Company (Cincinnati, OH). Mannava, S., McDaniel, A. E., & Cowie, W. D. (1996). Laser shock peened rotor components for turbomachinery. US Patent 5,492,447, 20 Feb 1996, General Electric Company (Cincinnati, OH).
53.
go back to reference Mannava, S., McDaniel, A. E., Cowie, W. D., Halila, H., Rhoda, J E., & Gutknecht, J E. (1997). US Patent 5,591,009, 7 Jan 1997, General Electric Company (Cincinnati, OH). Mannava, S., McDaniel, A. E., Cowie, W. D., Halila, H., Rhoda, J E., & Gutknecht, J E. (1997). US Patent 5,591,009, 7 Jan 1997, General Electric Company (Cincinnati, OH).
54.
go back to reference Ferrigno, S. J., McAllister, K. G., & Mannava, S. (2001). US Patent 6,200,689, 13 Mar 2001, General Electric Company (Cincinnati, OH). Ferrigno, S. J., McAllister, K. G., & Mannava, S. (2001). US Patent 6,200,689, 13 Mar 2001, General Electric Company (Cincinnati, OH).
55.
go back to reference Casarcia, D. A., Cowie, W. D., & Mannava, S. (1996). US Patent 5,584,586, 17 Dec 1996, General Electric Company Cincinnati (OH). Casarcia, D. A., Cowie, W. D., & Mannava, S. (1996). US Patent 5,584,586, 17 Dec 1996, General Electric Company Cincinnati (OH).
56.
go back to reference Brown, A. S. (1998). A shocking way to strengthen metal. In: Aerospace America (p. 21–23). Brown, A. S. (1998). A shocking way to strengthen metal. In: Aerospace America (p. 21–23).
57.
go back to reference Sokol, D. W., Clauer, A. H., & Ravindranath, R. (2004). Applications of laser peening to titanium alloys. The ASME/JSME 2004 pressure vessels and piping division Conference, San Diego CA, 25–29 July 2004. Sokol, D. W., Clauer, A. H., & Ravindranath, R. (2004). Applications of laser peening to titanium alloys. The ASME/JSME 2004 pressure vessels and piping division Conference, San Diego CA, 25–29 July 2004.
59.
go back to reference Rankin, J., Hackel, L., & Harrison, J. (2010). Effect of laser peening on fatigue life in an arrestment hook shank application for naval aircraft. The 2nd international laser peening conference, San Francisco CA, 19–22 April 2010. Rankin, J., Hackel, L., & Harrison, J. (2010). Effect of laser peening on fatigue life in an arrestment hook shank application for naval aircraft. The 2nd international laser peening conference, San Francisco CA, 19–22 April 2010.
60.
go back to reference Sano, Y. J., Mukai, N., Chida, I., Uehara, T., & Yoda, M. (2010). Applications of laser peening without protective coating to enhance structural integrity of metallic components. The 2nd international laser peening conference, San Francisco CA, 19–22 April 2010. Sano, Y. J., Mukai, N., Chida, I., Uehara, T., & Yoda, M. (2010). Applications of laser peening without protective coating to enhance structural integrity of metallic components. The 2nd international laser peening conference, San Francisco CA, 19–22 April 2010.
61.
go back to reference Sano, Y. J., Obata, M., Kubo, T., Mukai, N., Yoda, M., Masaki, K., et al. (2006). Retardation of crack initiation and growth in austenitic stainless steels by laser peening without protective coating. Materials Science and Engineering A, 417(1–2), 334–340.CrossRef Sano, Y. J., Obata, M., Kubo, T., Mukai, N., Yoda, M., Masaki, K., et al. (2006). Retardation of crack initiation and growth in austenitic stainless steels by laser peening without protective coating. Materials Science and Engineering A, 417(1–2), 334–340.CrossRef
Metadata
Title
General Introduction
Authors
Yongkang Zhang
Jinzhong Lu
Kaiyu Luo
Copyright Year
2013
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-35674-2_1

Premium Partners