Skip to main content
Top
Published in: Journal of Materials Science 6/2014

01-03-2014

Generalized additivity rule and isokinetics in diffusion-controlled growth

Authors: S. J. Song, F. Liu, Y. H. Jiang

Published in: Journal of Materials Science | Issue 6/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Validity of traditional additivity rule in diffusion-controlled growth is discussed. This process has a memory of thermal history due to temperature-dependent interface concentrations. When the thermodynamics is involved, the application of additivity rule should be carefully considered. By introducing a thermal history-related function, generalized isokinetic hypothesis and additivity rule involving the thermal history-dependent instantaneous reaction rate are proposed. According to the exact solutions of diffusion-controlled growth, the generalized additivity rule is analyzed, discussed, and applied well.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Christian JW (2002) The theory of transformations in metals and alloys. Pergamon press, Oxford Christian JW (2002) The theory of transformations in metals and alloys. Pergamon press, Oxford
2.
go back to reference Cahn JW (1956) Transformation kinetics during continuous cooling. Acta Metall 4:572–575CrossRef Cahn JW (1956) Transformation kinetics during continuous cooling. Acta Metall 4:572–575CrossRef
3.
go back to reference Umemoto M, Horiuchi K, Tamura I (1983) Pearlite transformation during continuous cooling and its relation to isothermal transformation. Trans ISIJ 23:690–695CrossRef Umemoto M, Horiuchi K, Tamura I (1983) Pearlite transformation during continuous cooling and its relation to isothermal transformation. Trans ISIJ 23:690–695CrossRef
4.
go back to reference Leblond JB, Devaux J (1984) A new kinetic model for anisothermal metallurgical transformations in steels including effect of austenite grain size. Acta Metall 32:137–146CrossRef Leblond JB, Devaux J (1984) A new kinetic model for anisothermal metallurgical transformations in steels including effect of austenite grain size. Acta Metall 32:137–146CrossRef
5.
go back to reference Kamat RG, Hawbolt EB, Brown LC, Brimacombe JK (1992) The principle of additivity and the proeutectoid ferrite transformation. Metall Trans A 23A:2469–2480CrossRef Kamat RG, Hawbolt EB, Brown LC, Brimacombe JK (1992) The principle of additivity and the proeutectoid ferrite transformation. Metall Trans A 23A:2469–2480CrossRef
6.
go back to reference Lusk M, Jou HJ (1997) On the rule of additivity in phase transformation kinetics. Metall Mater Trans A 28:287–291CrossRef Lusk M, Jou HJ (1997) On the rule of additivity in phase transformation kinetics. Metall Mater Trans A 28:287–291CrossRef
7.
go back to reference Zhu YT, Lowe TC, Asaro RJ (1997) Assessment of the theoretical basis of the rule of additivity for the nucleation incubation time during continuous cooling. J Appl Phys 82:1129–1137CrossRef Zhu YT, Lowe TC, Asaro RJ (1997) Assessment of the theoretical basis of the rule of additivity for the nucleation incubation time during continuous cooling. J Appl Phys 82:1129–1137CrossRef
8.
go back to reference Zhu YT, Lowe TC (2000) Application of, and precautions for the use of, the rule of additivity in phase transformation. Metall Mater Trans B 31B:675–682CrossRef Zhu YT, Lowe TC (2000) Application of, and precautions for the use of, the rule of additivity in phase transformation. Metall Mater Trans B 31B:675–682CrossRef
9.
go back to reference Todinov MT (1998) Alternative approach to the problem of additivity. Metall Mater Trans B 29B:269–273CrossRef Todinov MT (1998) Alternative approach to the problem of additivity. Metall Mater Trans B 29B:269–273CrossRef
10.
go back to reference Réti T, Felde I (1999) A non-linear extension of the additivity rule. Comput Mater Sci 15:466–482CrossRef Réti T, Felde I (1999) A non-linear extension of the additivity rule. Comput Mater Sci 15:466–482CrossRef
11.
go back to reference Kempen ATW, Sommer F, Mittemeijer EJ (2002) Determination and interpretation of isothermal and non-isothermal transformation kinetics; the effective activation energies in terms of nucleation and growth. J Mater Sci 37:1321–1332. doi:10.1023/A:1014556109351 CrossRef Kempen ATW, Sommer F, Mittemeijer EJ (2002) Determination and interpretation of isothermal and non-isothermal transformation kinetics; the effective activation energies in terms of nucleation and growth. J Mater Sci 37:1321–1332. doi:10.​1023/​A:​1014556109351 CrossRef
12.
go back to reference Chen J, Tang S, Liu Z, Wang G, Zhou Y (2012) Strain-induced precipitation kinetics of Nb(C, N) and precipitates evolution in austenite of Nb-Ti micro-alloyed steels. J Mater Sci 47:4640–4648. doi:10.1007/s10853-012-6330-5 CrossRef Chen J, Tang S, Liu Z, Wang G, Zhou Y (2012) Strain-induced precipitation kinetics of Nb(C, N) and precipitates evolution in austenite of Nb-Ti micro-alloyed steels. J Mater Sci 47:4640–4648. doi:10.​1007/​s10853-012-6330-5 CrossRef
13.
go back to reference Rios PR (2005) Relationship between non-isothermal transformation curves and isothermal and non-isothermal kinetics. Acta Mater 53:4893–4901CrossRef Rios PR (2005) Relationship between non-isothermal transformation curves and isothermal and non-isothermal kinetics. Acta Mater 53:4893–4901CrossRef
14.
go back to reference Liu F, Yang C, Yang G, Zhou Y (2007) Additivity rule, isothermal and non-isothermal transformations on the basis of an analytical transformation model. Acta Mater 55:5255–5267CrossRef Liu F, Yang C, Yang G, Zhou Y (2007) Additivity rule, isothermal and non-isothermal transformations on the basis of an analytical transformation model. Acta Mater 55:5255–5267CrossRef
15.
go back to reference Zener C (1949) Theory of growth of spherical precipitates from solid solution. J Appl Phys 20:950–953CrossRef Zener C (1949) Theory of growth of spherical precipitates from solid solution. J Appl Phys 20:950–953CrossRef
16.
go back to reference Crank J (1975) The mathematics of diffusion. Clarendon Press, Oxford Crank J (1975) The mathematics of diffusion. Clarendon Press, Oxford
17.
go back to reference Enomoto M, Atkinson C (1993) Diffusion-controlled growth of disordered interphase boundaries in finite matrix. Acta Metall Mater 41:3237–3244CrossRef Enomoto M, Atkinson C (1993) Diffusion-controlled growth of disordered interphase boundaries in finite matrix. Acta Metall Mater 41:3237–3244CrossRef
18.
go back to reference Aaronson HI, Enomoto M, Lee JK (2010) Mechanisms of diffusional phase transformations in metals and alloys. CRC Press, Boca RatonCrossRef Aaronson HI, Enomoto M, Lee JK (2010) Mechanisms of diffusional phase transformations in metals and alloys. CRC Press, Boca RatonCrossRef
23.
go back to reference Bjørneklett BI, Grong Ø, Myhr OR, Kluken AO (1998) Additivity and isokinetic behaviour in relation to particle dissolution. Acta Mater 46:6257–6266CrossRef Bjørneklett BI, Grong Ø, Myhr OR, Kluken AO (1998) Additivity and isokinetic behaviour in relation to particle dissolution. Acta Mater 46:6257–6266CrossRef
24.
go back to reference Grong Ø, Myhr OR (2000) Additivity and isokinetic behaviour in relation to diffusion controlled growth. Acta Mater 48:445–452CrossRef Grong Ø, Myhr OR (2000) Additivity and isokinetic behaviour in relation to diffusion controlled growth. Acta Mater 48:445–452CrossRef
25.
go back to reference Enomoto M (1994) Validity of the additivity rule in non-isothermal diffusion-controlled growth of precipitates in steel. Tetsu-to-Hagane 80:73–78 Enomoto M (1994) Validity of the additivity rule in non-isothermal diffusion-controlled growth of precipitates in steel. Tetsu-to-Hagane 80:73–78
26.
go back to reference Nordbakke MW, Ryum N, Hunderi O (2002) Non-isothermal precipitate growth and the principle of additivity. Philos Mag A 82:2695–2708CrossRef Nordbakke MW, Ryum N, Hunderi O (2002) Non-isothermal precipitate growth and the principle of additivity. Philos Mag A 82:2695–2708CrossRef
27.
go back to reference Hsu TY (2005) Additivity hypothesis and effects of stress on phase transformations in steel. Curr Opin Solid State Mater Sci 9:256–268CrossRef Hsu TY (2005) Additivity hypothesis and effects of stress on phase transformations in steel. Curr Opin Solid State Mater Sci 9:256–268CrossRef
28.
go back to reference Ye JS, Chang HB, Hsu TY (2003) On the application of the additivity rule in pearlitic transformation in low alloy steels. Metall Mater Trans A 34A:1259–1264CrossRef Ye JS, Chang HB, Hsu TY (2003) On the application of the additivity rule in pearlitic transformation in low alloy steels. Metall Mater Trans A 34A:1259–1264CrossRef
29.
go back to reference Massih AR, Jernkvist LO (2009) Transformation kinetics of alloys under non-isothermal conditions. Model Simul Mater Sci Eng 17:055002CrossRef Massih AR, Jernkvist LO (2009) Transformation kinetics of alloys under non-isothermal conditions. Model Simul Mater Sci Eng 17:055002CrossRef
31.
go back to reference Urbanovici E, Segal E (1987) Some problems concerning the mathematical theory of non-isothermal kinetics. II. primary isothermal differential kinetic equations (PIDKEs). Thermochim Acta 118:65–78CrossRef Urbanovici E, Segal E (1987) Some problems concerning the mathematical theory of non-isothermal kinetics. II. primary isothermal differential kinetic equations (PIDKEs). Thermochim Acta 118:65–78CrossRef
32.
go back to reference Réti T, Horváth L, Felde I (1997) A comparative study of methods used for the predicition of nonisothermal austenite decomposition. J Mater Eng Perform 6:433–442CrossRef Réti T, Horváth L, Felde I (1997) A comparative study of methods used for the predicition of nonisothermal austenite decomposition. J Mater Eng Perform 6:433–442CrossRef
Metadata
Title
Generalized additivity rule and isokinetics in diffusion-controlled growth
Authors
S. J. Song
F. Liu
Y. H. Jiang
Publication date
01-03-2014
Publisher
Springer US
Published in
Journal of Materials Science / Issue 6/2014
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-013-7964-7

Other articles of this Issue 6/2014

Journal of Materials Science 6/2014 Go to the issue

Premium Partners