Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2015

Open Access 01-12-2015 | Research

Generalized fractional integral operators and the multivariable H-function

Authors: Praveen Agarwal, Sergei V Rogosin, Erkinjon T Karimov, Mehar Chand

Published in: Journal of Inequalities and Applications | Issue 1/2015

Activate our intelligent search to find suitable subject content or patents.

search-config
download
DOWNLOAD
print
PRINT
insite
SEARCH
loading …

Abstract

The main object of the present paper is to establish new fractional integral formulas (of Marichev-Saigo-Maeda type) involving the products of the multivariable H-functions and the first class of multivariable polynomials due to Srivastava and Garg. All the results derived here are of general character and can yield a number of (new and known) results in the theory of fractional calculus.
Notes

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors have participated in the obtained results. The collaboration of each one cannot be separated in different parts of the paper. All of them have made substantial contributions to the theoretical results. All authors have been involved in drafting the manuscript and revising it critically for important intellectual content. All authors read and approved the final manuscript.

1 Introduction

Nowadays, fractional calculus is used as a mathematical tool for modeling the processes in engineering, mathematical economics, physics, chemistry, biology and other branches of science (see [112]). Motivated by the above mentioned works, here we aim to establish two new fractional integral formulas (of Marichev-Saigo-Maeda type) involving the product of multivariable H-functions and the first class of multivariable polynomials \(S^{m_{1},\ldots,m_{s}}_{n} (x_{1},\ldots,x_{s})\). The so-called Marichev-Saigo-Maeda generalized fractional operators were introduced nearly 40 years ago by Marichev [13] and studied in some recent papers, including the papers by Saigo and Maeda [14] and by Saxena and Saigo [15]. Due to the usefulness and the importance of the Marichev-Saigo-Maeda fractional integral operators, many authors have presented a number of interesting integral formulas involving special functions by using the Marichev-Saigo-Maeda fractional integral operator (see [13, 1620]). By virtue of the unified nature of Marichev-Saigo-Maeda fractional integral operators, a large number of new and known results involving Saigo, Riemann-Liouville and Erdélyi-Kober fractional integral operators follow as special cases of our main formulas.
Our main results consist in application of the Marichev-Saigo-Maeda generalized fractional operators:
$$\begin{aligned}& \bigl(\mathrm{I}_{0,x}^{\alpha,\alpha',\beta,\beta',\eta }f \bigr) (x) \\& \quad =\frac{x^{-\alpha}}{\Gamma(\eta)}\int_{0}^{x}(x-t)^{\eta-1}t^{-\alpha'}F_{3} \biggl(\alpha,\alpha',\beta,\beta';\eta;1- \frac{t}{x},1-\frac{x}{t} \biggr) f(t)\, dt\quad (\operatorname{Re} \eta>0 ) \end{aligned}$$
(1.1)
and
$$\begin{aligned}& \bigl(\mathrm{I}_{x,\infty}^{\alpha,\alpha',\beta,\beta',\eta }f \bigr) (x) \\& \quad =\frac{x^{-\alpha'}}{\Gamma(\eta)}\int_{x}^{\infty}(t-x)^{\eta -1}t^{-\alpha}F_{3} \biggl(\alpha,\alpha',\beta,\beta';\eta;1- \frac{x}{t},1-\frac{t}{x} \biggr) f(t)\, dt \quad (\operatorname{Re} \eta>0 ), \end{aligned}$$
(1.2)
to the multivariable H-functions (see, e.g., [21, 22]) and the first class of multivariable polynomials \(S^{m_{1},\ldots,m_{s}}_{n} (x_{1},\ldots,x_{s})\) given by (1.15).
A variant of such operators (integral transforms) was introduced by Marichev [13] as Mellin type convolution operators with a special function \(F_{3}(\cdot)\) in the kernel. These operators were rediscovered and studied by Saigo in [23] as a generalization of the so-called Saigo fractional integral operators, see [24]. The properties of these operators were studied by Saigo and Maeda [14]. In particular, relations of the operators with the Mellin transforms, hypergeometric operators (or Saigo fractional integral operators), their decompositions and acting properties in the McBride spaces \(F_{p;\mu}\) (see [25]) were found.
In (1.1), (1.2) the symbol \(F_{3}(\cdot)\) denotes the so-called 3rd Appell function (known also as Horn function) (see [26], p.413):
$$ F_{3}\bigl(\alpha,\alpha^{\prime}; \beta, \beta^{\prime}; \eta; x; y\bigr) = \sum_{m,n=0}^{\infty} \frac{(\alpha)_{m} (\alpha^{\prime})_{n} (\beta)_{m} (\beta^{\prime})_{n}}{(\eta )_{m+n} m! n!} x^{m} y^{n} \quad \bigl(\max \bigl\{ \vert x\vert , |y|\bigr\} < 1\bigr). $$
(1.3)
The properties of this function are discussed in [26], pp.412-415. In particular, its relation to the Gauss hypergeometric function is presented:
$$F_{3}(\alpha,\eta- \alpha; \beta, \eta- \beta; \eta; x; y) = {}_{2} F_{1}(\alpha, \beta; \eta; x + y - xy). $$
It is known that the 3rd Appell function cannot be expressed as a product of two \({}_{2} F_{1}\) functions and satisfy pairs of linear partial differential equations of the second order.
Operators (1.1), (1.2) can be reduced to the fractional integral operators introduced by Saigo [27] due to the following relations:
$$ \mathrm{I}_{0,x}^{\alpha,0,\beta,\beta',\gamma} f (x )= \mathrm{I}_{0,x}^{\gamma,\alpha-\gamma,-\beta} f (x )\quad (\gamma\in\mathbb{C} ) $$
(1.4)
and
$$ \mathrm{I}_{x,\infty}^{\alpha, 0,\beta, \beta',\gamma} f (x )= \mathrm{I}_{x,\infty}^{\gamma,\alpha-\gamma,-\beta} f (x )\quad (\gamma\in\mathbb{C} ). $$
(1.5)
The multivariable H-function, introduced by Srivastava and Panda in a series of research papers (see [28], p.271, Eq. (4.1), [22], p.130, Eq. (1.3) and [29, 30]), can be defined and represented in the following manner (see, e.g., [31], p.251, Eq. (C.1)):1
$$\begin{aligned} H[x_{1},\ldots,x_{r}] =&H^{0,n:\{m_{r},n_{r}\}}_{p,q:\{ p_{r},q_{r}\}} \left [ \textstyle\begin{array}{@{}c@{}} x_{1} \\ \vdots \\ x_{r} \end{array}\displaystyle \Biggm| \textstyle\begin{array}{@{}c@{}} (a_{j};\alpha^{(1)}_{j},\ldots,\alpha^{(r)}_{j} )_{1,p}: \{ (c^{(r)}_{j},\gamma^{(r)}_{j} )_{1,p_{r}} \} \\ (b_{j};\beta^{(1)}_{j},\ldots,\beta^{(r)}_{j} )_{1,q}: \{ (d^{(r)}_{j},\delta^{(r)}_{j} )_{1,q_{r}} \} \end{array}\displaystyle \right ] \\ =&\frac{1}{(2\pi\omega)^{r}}\int_{L_{1}}\cdots\int _{L_{r}}\phi (\xi_{1},\ldots,\xi_{r}) \prod^{r}_{i=1} \bigl(\theta_{i}( \xi_{i})x^{\xi_{i}}_{i}\, d\xi_{i} \bigr), \end{aligned}$$
(1.6)
where
$$\begin{aligned}& \phi(\xi_{1},\ldots,\xi_{r})=\frac{ \prod^{n}_{j=1} \Gamma (1-a_{j}+\sum^{r}_{i=1}\alpha^{(i)}_{j}\xi_{i} )}{ \prod^{p}_{j=n+1} \Gamma (a_{j}-\sum^{r}_{i=1}\alpha^{(i)}_{j}\xi_{i} )\prod^{q}_{j=1}\Gamma (1-b_{j}+ \sum^{r}_{i=1}\beta^{(i)}_{j}\xi_{i} )}, \end{aligned}$$
(1.7)
$$\begin{aligned}& \theta_{i}(\xi_{i})=\frac{ \prod^{n_{i}}_{j=1} \Gamma (1-c^{(i)}_{j}+\gamma^{(i)}_{j}\xi_{i} )\prod^{m_{i}}_{j=1} \Gamma (d^{(i)}_{j}-\delta^{(i)}_{j}\xi_{i} )}{ \prod^{p_{i}}_{j=n_{i}+1} \Gamma (c^{(i)}_{j}-\gamma^{(i)}_{j}\xi_{i} )\prod^{q_{i}}_{j=m_{i}+1} \Gamma (1-d^{(i)}_{j}+\delta^{(i)}_{j}\xi_{i} )}, \quad \forall i\in \{1,2,\ldots,r\}. \end{aligned}$$
(1.8)
In these formulas, for any \(i=1,\ldots,r\), \(L_{i}\) represents the contours which start at the point \(\tau_{i}-\omega\infty\) and go \(\tau_{i}+\omega\infty\) with \(\tau_{i}\in\mathbb{R}=(-\infty,\infty)\) such that all the poles of \(\Gamma (d_{j}^{(i)}-\delta_{j}^{(i)}\xi_{i} )\), \(j=1,\ldots,m_{i}\); \(i=1,\ldots,r\), are separated from those of \(\Gamma (1-c^{(i)}_{j}+\gamma^{(i)}_{j}\xi_{i} )\), \(j=1,\ldots,n_{i}\); \(i=1,\ldots,r\), and \(\Gamma (1-a_{j}+\sum^{r}_{i=1}\alpha^{(i)}_{j}\xi_{i} )\), \(j=1,\ldots,n\). Here, the integers n, p, q, \(m_{i}\), \(n_{i}\), \(p_{i}\), \(q_{i}\) satisfy the inequalities \(0\leq n\leq p\); \(q\geq0\), \(1\leq m_{i} \leq q_{i}\) and \(1\leq n_{i}\leq p_{i}\), \(i=1,\ldots,r\).
Further, suppose that the parameters \(a_{j}\), \(j=1,\ldots,p\); \(c_{j}^{(i)}\), \(j=1,\ldots,p_{i}\); \(i=1,\ldots,r\), \(b_{j}\), \(j=1,\ldots,q\); \(d_{j}^{(i)}\), \(j=1,\ldots,q_{i}\); \(i=1,\ldots,r\), are complex numbers, while the associated coefficients \(\alpha_{j}^{(i)}\), \(j=1,\ldots,p\); \(i=1,\ldots,r\); \(\gamma_{j}^{(i)}\), \(j=1,\ldots,p_{i}\); \(i=1,\ldots,r\), \(\beta_{j}^{(i)}\), \(j=1,\ldots,q\); \(i=1,\ldots,r\); \(\delta_{j}^{(i)}\), \(j=1,\ldots,q_{i}\); \(i=1,\ldots,r\), are positive real numbers such that
$$\begin{aligned}& \Lambda_{i}=\sum_{j=1}^{p} \alpha _{j}^{(i)}+\sum_{j=1}^{p_{i}} \gamma_{j}^{(i)}-\sum_{j=1}^{q} \beta_{j}^{(i)}-\sum_{j=1}^{q_{i}} \delta_{j}^{(i)}\leq0, \end{aligned}$$
(1.9)
$$\begin{aligned}& \Omega_{i}=\sum_{j=1}^{n} \alpha_{j}^{(i)}-\sum_{j=n+1}^{p} \alpha_{j}^{(i)}+ \sum_{j=1}^{q} \beta_{j}^{(i)}+\sum_{j=1}^{n_{i}} \gamma_{j}^{(i)} -\sum_{j=n_{i}+1}^{p_{i}} \gamma_{j}^{(i)}+\sum_{j=1}^{m_{i}} \delta_{j}^{(i)}-\sum_{j=m_{i}+1}^{q_{i}} \delta_{j}^{(i)}>0. \end{aligned}$$
(1.10)
It is assumed that the poles of integrand of (1.6) are simple. Under the conditions (1.10) the integrals in (1.6) converge absolutely (see [31], p.251) in the domain
$$ \bigl\vert \arg(z_{i})\bigr\vert < \frac{\pi}{2} \Omega_{i}, \quad i=1,\ldots,r, $$
(1.11)
and points \(z_{i}=0\), \(i=1,\ldots,r\), and various exceptional parameter values being tacitly excluded.
From Srivastava and Panda [32], we have
$$ H[z_{1},\ldots,z_{r}]=o\bigl(|z_{1}|^{e_{1}}, \ldots,|z_{r}|^{e_{r}}\bigr),\qquad \max_{1\leq j\leq r} \bigl[\vert z_{j}\vert \bigr]\rightarrow0, $$
(1.12)
where \(e_{i}=\min_{1\leq j\leq m_{i}} [\frac{\Re (d_{j}^{(i)} )}{\delta_{j}^{(i)}} ]\), \(i=1,\ldots,r\).
If \(n=0\) in (1.6), then the following asymptotic expansion (Srivastava and Panda [32]) holds:
$$ H[z_{1},\ldots,z_{r}]=o\bigl(|z_{1}|^{g_{1}}, \ldots,|z_{r}|^{g_{r}}\bigr),\qquad \min_{1\leq j\leq r} \bigl[\vert z_{j}\vert \bigr]\rightarrow\infty, $$
(1.13)
where \(g_{i}=\max_{1\leq j\leq m_{i}} [\frac{\Re (c_{j}^{(i)} )}{\gamma_{j}^{(i)}} ]\), \(i=1,\ldots,r\), provided that (1.9), (1.10) and (1.11) hold true.
Remark 1
When \(n=2\), the multivariable H-function defined by (1.6) reduces to the H-function of two variables studied by Mittal and Gupta [33]. The H-function of two variables is also defined and studied by Munot and Kalla [34], Verma [35] and Hai and Yakubovich [36].
Remark 2
It is interesting to observe that for \(n = p = q = 0\), the multivariable H-function breaks up into the product of r, H-functions; and consequently, there holds the following result (Saxena [21]):
$$ H^{0,0:\{m_{r},n_{r}\}}_{0,0:\{p_{r},q_{r}\}}\left [ \textstyle\begin{array}{@{}c@{}} x_{1} \\ \vdots \\ x_{r} \end{array}\displaystyle \Biggm| \textstyle\begin{array}{@{}c@{}} -: \{ (c^{(r)}_{j},\gamma^{(r)}_{j} )_{1,p_{r}} \} \\ -: \{ (d^{(r)}_{j},\delta^{(r)}_{j} )_{1,q_{r}} \} \end{array}\displaystyle \right ] =\prod_{i=1}^{r}H^{m_{i},n_{i}}_{p_{i},q_{i}} \left [ z_{i}\Bigm| \textstyle\begin{array}{@{}c@{}} \{ (c^{(i)}_{j},\gamma^{(i)}_{j} )_{1,p_{i}} \} \\ \{ (d^{(i)}_{j},\delta^{(i)}_{j} )_{1,q_{i}} \} \end{array}\displaystyle \right ]. $$
(1.14)
Remark 3
The function defined by (1.6) was introduced and studied by Srivastava and Panda [37]. When \(\alpha_{j}^{(1)}=\cdots=\alpha_{j}^{(r)}\), \(j=1,\ldots,p\); \(\beta _{j}^{(1)}=\cdots=\beta_{j}^{(r)}\), \(j=1,\ldots,q\), in (1.6) the multivariable H-function defined and studied by Saxena [21, 38] is obtained. In case all the Greek letters are assumed to be unity, the H-function of several complex variables (1.6) reduces to the G-function of several complex variables studied by Khadia and Goyal [39, 40].
Remark 4
Fractional integrals involving multivariable H-functions are given in a series of papers by Saigo and Saxena [4143], Srivastava and Hussain [44], Saigo et al. [45] and others.
In the sequel, Srivastava and Garg [46], p.686, Eq. (1.4), introduced the multivariable analogue of the polynomials \(S^{m}_{n} (x)\). This first class of multivariable polynomials \(S^{m_{1},\ldots,m_{s}}_{n} (x_{1},\ldots,x_{s})\) is defined by
$$ S^{m_{1},\ldots,m_{s}}_{n} (x_{1}, \ldots,x_{s})= \sum^{m_{1}k_{1}+\cdots+m_{s}k_{s}\leq n}_{k_{1},\ldots,k_{s}=0} (-n )_{m_{1}k_{1}+\cdots+m_{s}k_{s}} \Lambda (n;k_{1},\ldots,k_{s} ) \frac{x^{k_{1}}_{1}\cdots x^{k_{s}}_{s}}{k_{1}!\cdots k_{s}!}, $$
(1.15)
where \(m_{1},\ldots,m_{s}\) are arbitrary positive integers and the coefficients \(\Lambda (n;k_{1},\ldots,k_{s} )\) (\(n,k_{i}\geq 0\), \(i=1,\ldots,s\)) are arbitrary constants, real or complex.

2 Main results

In this section, we prove two theorems on composition of the Marichev-Saigo-Maeda operators with the product of a multivariable H-function and the first class of multivariable polynomials. We start with presenting image formulas involving Marichev-Saigo-Maeda fractional integral operators.
Lemma 1
(see [14])
Let \(\alpha,\alpha',\beta,\beta',\gamma \in\mathbb{C}\).
If \(\Re (\gamma )>0\), \(\Re (p )> \max[0, \Re (\alpha+\alpha'+\beta-\gamma ),\Re (\alpha'-\beta' )]\), then
$$ \mathrm{I}_{0,x}^{\alpha,\alpha',\beta ,\beta',\gamma} x^{\rho-1} =x^{\rho-\alpha-\alpha'+\gamma-1}\frac {\Gamma (\rho )\Gamma (\rho+\gamma-\alpha-\alpha '-\beta )\Gamma (\rho+\beta'-\alpha' )}{\Gamma (\rho+\gamma-\alpha-\alpha' )\Gamma (\rho+\gamma-\alpha'-\beta )\Gamma (\rho+\beta' )}. $$
(2.1)
If \(\Re (\gamma )>0\), \(\Re (p )<1+\min[\Re (-\beta ),\Re (\alpha+\alpha'-\gamma ),\Re (\alpha+\beta '-\gamma )]\), then
$$\begin{aligned} \begin{aligned}[b] \mathrm{I}_{x,\infty}^{\alpha,\alpha',\beta,\beta',\gamma} x^{\rho -1} ={}&x^{\rho-\alpha-\alpha' +\gamma-1} \\ &{}\times\frac {\Gamma (1+\alpha+\alpha'-\gamma-\rho )\Gamma (1+\alpha+\beta'-\gamma-\rho )\Gamma (1-\beta-\rho )}{\Gamma (1-\rho )\Gamma (1+\alpha+\alpha'+\beta '-\gamma-\rho )\Gamma (1+\alpha-\beta-\rho )}. \end{aligned} \end{aligned}$$
(2.2)
Theorem 1
Let \(\Re (\gamma )>0\) and \(\alpha,\alpha ',\beta,\beta',\gamma,\mu,\eta,\delta_{j},v_{i},z_{i}, a,b,c_{j}\in\mathbb{C}\), \(\lambda_{j} ,\sigma_{i} >0\) (\(i\in\{ 1,\ldots,r\}\); \(j\in\{1,\ldots,s\}\)). Let the following conditions be satisfied, too:
(i)
\(|\arg z_{i}|<\frac{\pi}{2} \Omega_{i} \), \(\Omega_{i} >0\) (\(i = 1,\ldots,r\)), where
$$\begin{aligned} \Omega_{i} =&\sum_{j=1}^{n} \alpha_{j}^{ (i )}-\sum_{j=n+1}^{p} \alpha_{j}^{ (i )}-\sum_{j=1}^{q} \beta_{j}^{ (i )} +\sum_{j=1}^{n_{i} } \gamma_{j}^{ (i )} \\ &{} -\sum_{j=n_{i} +1}^{p_{i} } \gamma_{j}^{ (i )} +\sum_{j=1}^{m_{i} } \delta_{j}^{ (i )}-\sum_{j=m_{i}+1}^{q_{i} } \delta_{j}^{ (i )} >0 . \end{aligned}$$
(2.3)
 
(ii)
\(\min_{1\le j\le m_{i} ,1\le i\le r} [-\frac{\sigma _{i} \Re (d_{j}^{ (i )} )}{\delta_{j}^{ (i )} } ]<\Re (\mu )+\min[\Re (\alpha' ),\Re (\beta' ),\Re (\gamma-\alpha-\beta )]\).
 
(iii)
\(|\frac{a}{b}x|<1\), also we have
$$ \begin{aligned} &\Re (\mu )+\sum_{i=1}^{r} \sigma_{i} \min_{1\le j\le m_{i} } \biggl[\frac{\Re (d_{j}^{ (i )} )}{\delta _{j}^{ (i )} } \biggr] \\ &\quad >\max \bigl[0,\Re \bigl(\alpha+\alpha'+\beta -\gamma \bigr), \Re \bigl(\alpha'-\beta' \bigr)\bigr]\quad (i=1, \ldots,r ), \\ &\Re (\eta )+\sum_{i=1}^{r}v_{i} \min_{1\le j\le m_{i} } \biggl[\frac{\Re (d_{j}^{ (i )} )}{\delta _{j}^{ (i )} } \biggr] \\ &\quad > \max\bigl[0,\Re \bigl(\alpha+\alpha'+\beta -\gamma \bigr), \Re \bigl( \alpha'-\beta' \bigr)\bigr]\quad (i=1,\ldots,r ). \end{aligned} $$
(2.4)
 
Then the following result holds:
$$\begin{aligned}& \bigl\{ \mathrm{I}_{0+}^{\alpha,\alpha',\beta ,\beta',\gamma} \bigl(t^{\mu-1} (b-at )^{-\eta} S^{m_{1},\ldots,m_{s}}_{n} \bigl[c_{1} t^{\lambda_{1}} (b-at )^{-\delta _{1} }, \ldots,c_{s} t^{\lambda_{s}} (b-at )^{-\delta_{s} } \bigr] \\& \qquad {}\times H\bigl[z_{1} t^{\sigma_{1} } (b-at )^{-v_{1} } ,\ldots,z_{r} t^{\sigma_{r} } (b-at )^{-v_{r}} \bigr]\bigr) \bigr\} (x ) \\& \quad =b^{-\eta} x^{\mu-\alpha-\alpha'+\gamma-1} \sum^{m_{1}k_{1}+\cdots+m_{s}k_{s}\leq n}_{k_{1},\ldots,k_{s}=0} \frac{ (-n )_{m_{1}k_{1}+\cdots+m_{s}k_{s}}}{k_{1}!\cdots k_{s}!}\Lambda (n;k_{1},\ldots,k_{s} ) c_{1}^{k_{1} } \cdots c_{s}^{k_{s} } \\& \qquad {}\times b^{- \sum_{j=1}^{s}\delta_{j} k_{j}} x^{\sum_{j=1}^{s}\lambda _{j} k_{j}}H^{0,n+4:\{m_{r},n_{r}\};1,0}_{p+4,q+4:\{p_{r},q_{r}\};0,1} \\& \qquad \left [ \textstyle\begin{array}{@{}c@{}} z_{1}\frac{x^{\sigma_{1}}}{b^{v_{1}}} \\ \vdots \\ z_{r}\frac {x^{\sigma_{r}}}{b^{v_{r}}} \\ -\frac{a}{b}x \end{array}\displaystyle \left. \,\right|\, \textstyle\begin{array}{@{}c@{}} (a_{j};\alpha^{(1)}_{j},\ldots,\alpha^{(r)}_{j} )_{1,p},A: \{ (c^{(r)}_{j},\gamma^{(r)}_{j} )_{1,p_{r}} \} ;- \\ (b_{j};\beta^{(1)}_{j},\ldots,\beta^{(r)}_{j} )_{1,q},B: \{ (d^{(r)}_{j},\delta^{(r)}_{j} )_{1,q_{r}} \};(0,1) \end{array}\displaystyle \right ], \end{aligned}$$
(2.5)
where
$$\begin{aligned} A =& \Biggl(1-\eta-\sum_{j=1}^{s} \delta_{j} k_{j}; v_{1} ,\ldots,v_{r}, 1 \Biggr), \Biggl(1-\mu-\sum_{j=1}^{s} \lambda_{j} k_{j} ;\sigma _{1},\ldots, \sigma_{r},1 \Biggr) , \\ & \Biggl(1-\mu-\gamma+\alpha+\alpha'+\beta-\sum _{j=1}^{s}\lambda_{j} k_{j} ;\sigma_{1} ,\ldots,\sigma_{r}, 1 \Biggr) , \\ & \Biggl(1-\mu+\alpha'-\beta'-\sum _{j=1}^{s}\lambda_{j} k_{j} ;\sigma_{1} ,\ldots,\sigma_{r}, 1 \Biggr) \end{aligned}$$
and
$$\begin{aligned} B =& \Biggl(1-\eta-\sum_{j=1}^{s} \delta_{j} k_{j} ;v_{1},\ldots,v_{r} ,0 \Biggr), \Biggl(1-\mu-\gamma+\alpha+\alpha'-\sum _{j=1}^{s}\lambda_{j} k_{j} ;\sigma_{1} ,\ldots,\sigma_{r}, 1 \Biggr) \\ & \Biggl(1-\mu-\gamma+\alpha'+\beta-\sum _{j=1}^{s}\lambda_{j} k_{j}; \sigma_{1},\ldots,\sigma_{r}, 1 \Biggr), \\ &\Biggl(1-\mu- \beta'-\sum_{j=1}^{s} \lambda_{j} k_{j} ;\sigma_{1},\ldots, \sigma_{r},1 \Biggr) . \end{aligned}$$
Theorem 2
Let \(\alpha,\alpha',\beta,\beta',\gamma,\mu,\eta,\delta _{j},v_{i},z_{i}, a,b,c_{j}\in\mathbb{C}\), \(\lambda_{j} ,\sigma_{i} >0\) (\(i\in\{ 1,\ldots,r\}\); \(j\in\{1,\ldots,s\}\)) and \(\Re (\gamma )>0\). Let the following conditions be satisfied, too:
$$\begin{aligned}& \Re (\mu )-\sum_{i=1}^{r} \sigma_{i} \min_{1\le j\le m_{i} } \biggl[\frac{\Re (d_{j}^{ (i )} )}{\delta _{j}^{ (i )} } \biggr] < 1+\max\bigl[\Re(-\beta),\Re \bigl(\alpha +\alpha'-\gamma \bigr), \Re \bigl(\alpha+\beta'-\gamma \bigr)\bigr] , \\& \Re (\eta )-\sum_{i=1}^{r}v_{i} \min_{1\le j\le m_{i} } \biggl[\frac{\Re (d_{j}^{ (i )} )}{\delta _{j}^{ (i )} } \biggr] < 1+\max\bigl[ \Re(-\beta),\Re \bigl(\alpha +\alpha'-\gamma \bigr), \Re \bigl( \alpha+\beta'-\gamma \bigr)\bigr] , \end{aligned}$$
and the conditions (i)-(iii) in Theorem  1 are also satisfied.
Then the following result holds:
$$\begin{aligned}& \bigl\{ \mathrm{I}_{0-}^{\alpha,\alpha',\beta ,\beta',\gamma} \bigl(t^{\mu-1} (b-at )^{-\eta} S^{m_{1},\ldots,m_{s}}_{n} \bigl[c_{1} t^{\lambda_{1}} (b-at )^{-\delta _{1} }, \ldots,c_{s} t^{\lambda_{s}} (b-at )^{-\delta_{s} } \bigr] \\& \qquad {}\times H\bigl[z_{1} t^{\sigma_{1} } (b-at )^{-v_{1} } ,\ldots,z_{r} t^{\sigma_{r} } (b-at )^{-vr} \bigr]\bigr) \bigr\} (x ) \\& \quad =b^{-\eta} x^{\mu-\alpha-\alpha'+\gamma-1} \sum^{m_{1}k_{1}+\cdots+m_{s}k_{s}\leq n}_{k_{1},\ldots,k_{s}=0} \frac{ (-n )_{m_{1}k_{1}+\cdots+m_{s}k_{s}}}{k_{1}!\cdots k_{s}!}\Lambda (n;k_{1},\ldots,k_{s} ) c_{1}^{k_{1} } \cdots c_{s}^{k_{s} } \\& \qquad {}\times b^{- \sum_{j=1}^{s}\delta_{j} k_{j}} x^{\sum_{j=1}^{s}\lambda _{j} k_{j}}H^{0,n+4:\{m_{r},n_{r}\};1,0}_{p+4,q+4:\{p_{r},q_{r}\};0,1} \\& \qquad \left [ \textstyle\begin{array}{@{}c@{}} z_{1}\frac{x^{\sigma_{1}}}{b^{v_{1}}} \\ \vdots \\ z_{r}\frac {x^{\sigma_{r}}}{b^{v_{r}}} \\ -\frac{a}{b}x \end{array}\displaystyle \left. \,\right|\, \textstyle\begin{array}{@{}c@{}} (a_{j};\alpha^{(1)}_{j},\ldots,\alpha^{(r)}_{j} )_{1,p},C: \{ (c^{(r)}_{j},\gamma^{(r)}_{j} )_{1,p_{r}} \} ;- \\ (b_{j};\beta^{(1)}_{j},\ldots,\beta^{(r)}_{j} )_{1,q},D: \{ (d^{(r)}_{j},\delta^{(r)}_{j} )_{1,q_{r}} \};(0,1) \end{array}\displaystyle \right ], \end{aligned}$$
(2.6)
where
$$\begin{aligned} C =& \Biggl(1-\eta-\sum_{j=1}^{s} \delta_{j} k_{j}; v_{1} ,\ldots,v_{r}, 1 \Biggr), \Biggl(1-\mu-\sum_{j=1}^{s} \lambda_{j} k_{j} ;\sigma _{1},\ldots, \sigma_{r},1 \Biggr) , \\ & \Biggl(1+\alpha+\alpha'+\beta'-\mu-\gamma -\sum _{j=1}^{s}\lambda_{j} k_{j} ;\sigma_{1} ,\ldots,\sigma_{r}, 1 \Biggr) , \\ & \Biggl(1 +\alpha-\beta-\mu-\sum_{j=1}^{s} \lambda_{j} k_{j} ;\sigma _{1} ,\ldots, \sigma_{r}, 1 \Biggr) \end{aligned}$$
and
$$\begin{aligned} \begin{aligned} D ={}& \Biggl(1-\eta-\sum_{j=1}^{s} \delta_{j} k_{j} ;v_{1},\ldots,v_{r} ,0 \Biggr), \Biggl(1-\mu-\gamma+\alpha+\alpha'-\sum _{j=1}^{s}\lambda_{j} k_{j} ;\sigma_{1} ,\ldots,\sigma_{r}, 1 \Biggr) \\ & \Biggl(1-\mu-\gamma+\alpha+\beta' -\sum _{j=1}^{s}\lambda_{j} k_{j}; \sigma_{1},\ldots,\sigma_{r}, 1 \Biggr), \\ & \Biggl(1-\mu- \beta-\sum_{j=1}^{s}\lambda_{j} k_{j} ;\sigma_{1},\ldots,\sigma_{r},1 \Biggr) . \end{aligned} \end{aligned}$$
Proof
For convenience, let the left-hand side of (2.5) be denoted by \(\mathcal{I}\). Applying the Marichev-Saigo-Maeda generalized fractional operators (1.1) to the LHS of (2.5) and making use of (1.15) and (1.6), we obtain
$$\begin{aligned} \mathcal{I} =& \Biggl\{ \mathrm{I}_{0+}^{\alpha,\alpha',\beta,\beta ',\gamma} \Biggl(t^{\mu-1} (b-at )^{-\gamma} \sum^{m_{1}k_{1}+\cdots+m_{s}k_{s}\leq n}_{k_{1},\ldots,k_{s}=0} \frac{ (-n )_{m_{1}k_{1}+\cdots+m_{s}k_{s}}}{k_{1}!\cdots k_{s}!}\Lambda (n;k_{1},\ldots,k_{s} ) \\ & {}\times \bigl(c_{1}t^{\lambda _{1}}(b-at)^{\delta_{1}} \bigr)^{k_{1} } \cdots \bigl(c_{s}t^{\lambda _{s}}(b-at)^{\delta_{s}} \bigr)^{k_{s} } \times\frac{1}{ (2\pi i )^{r}} \int_{L_{1} } \cdots \int_{L_{r} } \phi (\xi_{1} ,\ldots, \xi_{r} ) \\ & {}\times \prod_{i=1}^{r} \theta_{i} (\xi_{i} ) \bigl(z_{i}t^{\sigma_{i}}(b-at)^{\nu_{i}} \bigr)^{\xi_{i}} \, d\xi_{1} \cdots \, d\xi _{r} \Biggr)\Biggr\} (x ). \end{aligned}$$
(2.7)
By changing the order of summation and integration, we have
$$\begin{aligned} \mathcal{I} =&\sum^{m_{1}k_{1}+\cdots+m_{s}k_{s}\leq n}_{k_{1},\ldots,k_{s}=0} \frac{ (-n )_{m_{1}k_{1}+\cdots+m_{s}k_{s}}}{k_{1}!\cdots k_{s}!}\Lambda (n;k_{1},\ldots,k_{s} ) c_{1}^{k_{1} } \cdots c_{s}^{k_{s} } \\ &{}\times \Biggl[\frac{1}{ (2\pi i )^{r} } \int_{L_{1} } \cdots \int _{L_{r} } \phi (\xi_{1} ,\ldots,\xi_{r} ) \prod_{i=1}^{r} \bigl\{ \theta _{i} (\xi_{i} ) z_{i} \bigr\} ^{\xi_{i} } \bigl\{ \mathrm{I}_{0+}^{\alpha,\alpha',\beta,\beta' ,\gamma} \bigl(t^{\mu+\sum_{j=1}^{s}\lambda_{j} k_{j} +\sum _{i=1}^{r}\sigma_{i} \xi_{i} -1 } \\ &{}\times(b-at)^{-\eta-\sum_{j=1}^{s}\lambda _{j} k_{j} -\sum_{i=1}^{r}\sigma_{i} \xi_{i}} \bigr) \bigr\} (x ) \, d \xi_{1} \cdots\, d\xi_{r}\Biggr]. \end{aligned}$$
(2.8)
By using the binomial expansion for \((b-at)^{-\eta-\sum _{j=1}^{s}\lambda_{j} k_{j} -\sum_{i=1}^{r}\sigma_{i} \xi_{i}}\) and applying the Mellin-Barnes counter integral, we get
$$\begin{aligned} \mathcal{I} =&\sum^{m_{1}k_{1}+\cdots+m_{s}k_{s}\leq n}_{k_{1},\ldots,k_{s}=0} \frac{ (-n )_{m_{1}k_{1}+\cdots+m_{s}k_{s}}}{k_{1}!\cdots k_{s}!}\Lambda (n;k_{1},\ldots,k_{s} ) c_{1}^{k_{1} } \cdots c_{s}^{k_{s} }b^{-\sum _{j=1}^{s}\lambda_{j} k_{j}} \\ &{}\times\Biggl[\frac{1}{ (2\pi i )^{r} } \int_{L_{1} } \cdots \int _{L_{r} } \phi (\xi_{1} ,\ldots,\xi_{r} ) \times\prod_{i=1}^{r} \bigl\{ \theta_{i} (\xi_{i} ) z_{i}b^{-\sum_{i=1}^{r}\sigma_{i} \xi_{i}} \bigr\} ^{\xi_{i} } \\ &{} \times \int_{L_{r+1} }\frac{\Gamma(\eta+\sum_{j=1}^{s}\lambda_{j} k_{j}+\sum_{i=1}^{r}\sigma_{i} \xi_{i}+\xi_{r+1})}{\Gamma(\eta+\sum_{j=1}^{s}\lambda_{j} k_{j}+\sum_{i=1}^{r}\sigma_{i} \xi_{i})\Gamma (\xi_{r+1}+1)} \\ &{}\times \bigl\{ \mathrm{I}_{0+}^{\alpha,\alpha',\beta,\beta' ,\gamma} \bigl(t^{\mu+\sum_{j=1}^{s}\lambda_{j} k_{j} +\sum _{i=1}^{r}\sigma_{i} \xi_{i}+\xi_{r+1} -1 } \bigr) \bigr\} (x )\, d\xi_{1} \cdots\, d \xi_{r}\Biggr]. \end{aligned}$$
(2.9)
Applying (2.1) to (2.9) and re-interpreting the Mellin-Barnes counter integral in terms of the multivariable H-function of \(r+1\) variables, we obtain the right-hand side of (2.5) after a few simplifications.
Assertion (2.6) of Theorem 2 can be proved in a similar manner by using (2.2) of Lemma 1. So, we omit the details of the proof of Theorem 2. □
Here, we derive certain, presumably, new formulas involving Marichev-Saigo-Maeda type fractional integral operators. By setting \(n = p= q = 0\) in (2.5) and (2.6), respectively, we obtain two fractional integral formulas involving product of the r, H-functions stated in Corollaries 1 and 2 below.
Corollary 1
Let \(\alpha,\alpha',\beta,\beta',\gamma,\mu,\eta ,\delta_{j}, v_{i}, z_{i}, a, b, c_{j} \in\mathbb{C}\), \(\lambda_{j},\sigma _{i} >0\) (\(i\in\{ 1,\ldots r\}\); \(j\in\{ 1,\ldots,s\}\)) and \(\Re (\gamma )>0\). Then the following relation holds true:
$$\begin{aligned}& \Biggl\{ \mathrm{I}_{0+}^{\alpha,\alpha',\beta ,\beta',\gamma} \Biggl(t^{\mu-1} (b-at )^{-\eta} S^{m_{1},\ldots,m_{s}}_{n} \bigl[c_{1} t^{\lambda_{1}} (b-at )^{-\delta _{1} }, \ldots,c_{s} t^{\lambda_{s}} (b-at )^{-\delta_{s} } \bigr] \\& \qquad {}\times\prod^{r}_{i=1}H^{m_{i},n_{i}}_{p_{i},q_{i}} \left [z_{i} t^{\sigma_{i}} (b-at )^{-v_{i}}\Bigm| \textstyle\begin{array}{@{}c@{}} (c^{i}_{j},C^{i}_{j} )_{1,p_{i}} \\ (d^{i}_{j},D^{i}_{j} )_{1,q_{i}} \end{array}\displaystyle \right ]\Biggr)\Biggr\} (x ) \\& \quad =b^{-\eta} x^{\mu-\alpha-\alpha'+\gamma-1} \sum^{m_{1}k_{1}+\cdots+m_{s}k_{s}\leq n}_{k_{1},\ldots,k_{s}=0} \frac{ (-n )_{m_{1}k_{1}+\cdots+m_{s}k_{s}}}{k_{1}!\cdots k_{s}!}\Lambda (n;k_{1},\ldots,k_{s} ) c_{1}^{k_{1} } \cdots c_{s}^{k_{s} } \\& \qquad {}\times b^{- \sum_{j=1}^{s}\delta_{j} k_{j}} x^{\sum_{j=1}^{s}\lambda _{j} k_{j}}H^{0,4:m_{i},n_{i};1,0}_{4,4:p_{i},q_{i};0,1} \left [ \textstyle\begin{array}{@{}c@{}} z_{i}\frac{x^{\sigma_{i}}}{b^{v_{i}}} \\ \frac{-a}{b}x \end{array}\displaystyle \biggm| \textstyle\begin{array}{@{}c@{}} A: (c^{(r)}_{j},\gamma^{(r)}_{j} )_{1,p_{i}};- \\ B: (d^{(r)}_{j},\delta^{(r)}_{j} )_{1,q_{i}};(0,1) \end{array}\displaystyle \right ], \end{aligned}$$
(2.10)
where A and B are given in Theorem  1 and \(H_{p,q}^{m,n} (\cdot )\) is the familiar Fox H-function.
Corollary 2
Let \(\alpha,\alpha',\beta,\beta',\gamma,\mu,\eta ,\delta_{j}, v_{i}, z_{i}, a, b, c_{j} \in\mathbb{C}\), \(\lambda_{j},\sigma _{i} >0\) (\(i\in\{ 1,\ldots,r\}\); \(j\in\{ 1,\ldots,s\}\)) and \(\Re (\gamma )>0\). Then the following result holds true:
$$\begin{aligned}& \Biggl\{ \mathrm{I}_{0-}^{\alpha,\alpha',\beta ,\beta',\gamma} \Biggl(t^{\mu-1} (b-at )^{-\eta} S^{m_{1},\ldots,m_{s}}_{n} \bigl[c_{1} t^{\lambda_{1}} (b-at )^{-\delta _{1} }, \ldots,c_{s} t^{\lambda_{s}} (b-at )^{-\delta_{s} } \bigr] \\& \qquad {}\times\prod^{r}_{i=1}H^{m_{i},n_{i}}_{p_{i},q_{i}} \left [z_{i} t^{\sigma_{i}} (b-at )^{-v_{i}}\Bigm| \textstyle\begin{array}{@{}c@{}} (c^{i}_{j},C^{i}_{j} )_{1,p_{i}} \\ (d^{i}_{j},D^{i}_{j} )_{1,q_{i}} \end{array}\displaystyle \right ]\Biggr)\Biggr\} (x ) \\& \quad =b^{-\eta} x^{\mu-\alpha-\alpha'+\gamma-1} \sum^{m_{1}k_{1}+\cdots+m_{s}k_{s}\leq n}_{k_{1},\ldots,k_{s}=0} \frac{ (-n )_{m_{1}k_{1}+\cdots+m_{s}k_{s}}}{k_{1}!\cdots k_{s}!}\Lambda (n;k_{1},\ldots,k_{s} ) c_{1}^{k_{1} } \cdots c_{s}^{k_{s}} \\& \qquad {}\times b^{- \sum_{j=1}^{s}\delta_{j} k_{j}} x^{\sum_{j=1}^{s}\lambda _{j} k_{j}}H^{0,4:m_{i},n_{i};1,0}_{4,4:p_{i},q_{i};0,1} \left [ \textstyle\begin{array}{@{}c@{}} z_{i}\frac{x^{\sigma_{i}}}{b^{v_{i}}} \\ \frac{-a}{b}x \end{array}\displaystyle \biggm| \textstyle\begin{array}{@{}c@{}} C': (c^{(r)}_{j},\gamma^{(r)}_{j} )_{1,p_{i}};- \\ D': (d^{(r)}_{j},\delta^{(r)}_{j} )_{1,q_{i}};(0,1) \end{array}\displaystyle \right ], \end{aligned}$$
(2.11)
where
$$\begin{aligned} C' ={}& \Biggl(1-\eta-\sum_{j=1}^{s} \delta_{j} k_{j}; v_{1} ,\ldots,v_{r}, 1 \Biggr), \\ &\Biggl(1-\mu-\sum_{j=1}^{s} \lambda_{j} k_{j} ;\sigma _{1},\ldots, \sigma_{r},1 \Biggr) , \\ & \Biggl(1-\mu-\gamma+\alpha+\alpha'+\beta'-\sum _{j=1}^{s}\lambda_{j} k_{j} ;\sigma_{1} ,\ldots,\sigma_{r}, 1 \Biggr) , \\ & \Biggl(1-\mu+\alpha-\beta-\sum_{j=1}^{s} \lambda_{j} k_{j} ;\sigma _{1} ,\ldots, \sigma_{r}, 1 \Biggr) \end{aligned}$$
and
$$\begin{aligned} D' =& \Biggl(1-\eta-\sum_{j=1}^{s} \delta_{j} k_{j} ;v_{1} ,\ldots,v_{r} ,0 \Biggr), \Biggl(1-\mu-\gamma+\alpha+\alpha'-\sum _{j=1}^{s}\lambda_{j} k_{j} ;\sigma_{1} ,\ldots,\sigma_{r}, 1 \Biggr) , \\ & \Biggl(1-\mu-\gamma+\alpha+\beta' -\sum _{j=1}^{s}\lambda_{j} k_{j}; \sigma_{1},\ldots,\sigma_{r}, 1 \Biggr), \\ &\Biggl(1-\mu- \beta-\sum_{j=1}^{s}\lambda_{j} k_{j} ;\sigma_{1},\ldots,\sigma_{r},1 \Biggr) , \end{aligned}$$
where \(H_{p,q}^{m,n} (\cdot )\) is the familiar Fox H-function.
Interestingly, in view of relation (1.4), we arrive at the following corollaries concerning Saigo fractional integral operator. It is similar to the results due to Agarwal [47], p.587 and p.590, Eqs. (18) and (25).
Corollary 3
Let \(\alpha,\beta,\gamma,\mu,\eta,\delta _{j},v_{i},z_{i}, a,b,c_{j}\in\mathbb{C}\), \(\lambda_{j} ,\sigma_{i} >0\) (\(i\in\{ 1,\ldots,r\}\); \(j\in\{1,\ldots,s\}\)), and \(\Re(\alpha)>0\). Let the following conditions be satisfied, too:
(i)
\(|\arg z_{i}|<\frac{\pi}{2} \Omega_{i} \), \(\Omega_{i} >0\) (\(i = 1,\ldots,r\)), where
$$\begin{aligned} \Omega_{i} =&-\sum_{j=n+1}^{p} \alpha_{j}^{ (i )}-\sum_{j=1}^{q} \beta_{j}^{ (i )} +\sum_{j=1}^{n_{i} } \gamma _{j}^{ (i )} -\sum_{j=n_{i} +1}^{p_{i} } \gamma_{j}^{ (i )} \\ &{}+\sum_{j=1}^{m_{i} } \delta_{j}^{ (i )}-\sum_{j=m_{i}+1}^{q_{i} } \delta_{j}^{ (i )} >0 \quad \bigl(i\in\{1,\ldots,r\}\bigr). \end{aligned}$$
 
(ii)
$$\begin{aligned}& \Re (\mu )+\sum_{i=1}^{r} \sigma_{i} \min_{1\le j\le m_{i} } \biggl[\frac{\Re (d_{j}^{ (i )} )}{\delta _{j}^{ (i )} } \biggr] >\max\bigl[0,\Re (\beta-\gamma )\bigr] , \\& \Re (\eta )+\sum_{i=1}^{r}v_{i} \min_{1\le j\le m_{i} } \biggl[\frac{\Re (d_{j}^{ (i )} )}{\delta _{j}^{ (i )} } \biggr] > \max\bigl[0,\Re (\beta-\gamma )\bigr] \quad \textit{and}\quad \biggl\vert \frac{a}{b}x \biggr\vert < 1 . \end{aligned}$$
 
Then the following result holds:
$$\begin{aligned}& \bigl\{ \mathrm{I}_{0+}^{\alpha,\beta,\gamma} \bigl(t^{\mu-1} (b-at )^{-\eta} S^{m_{1},\ldots,m_{s}}_{n} \bigl[c_{1} t^{\lambda_{1}} (b-at )^{-\delta_{1} }, \ldots,c_{s} t^{\lambda_{s}} (b-at )^{-\delta_{s} } \bigr] \\& \qquad{}\times H\bigl[z_{1} t^{\sigma_{1} } (b-at )^{-v_{1} } ,\ldots,z_{r} t^{\sigma_{r} } (b-at )^{-v_{r}} \bigr]\bigr) \bigr\} (x ) \\& \quad =b^{-\eta} x^{\mu-\beta-1} \sum^{m_{1}k_{1}+\cdots+m_{s}k_{s}\leq n}_{k_{1},\ldots,k_{s}=0} \frac{ (-n )_{m_{1}k_{1}+\cdots+m_{s}k_{s}}}{k_{1}!\cdots k_{s}!}\Lambda (n;k_{1},\ldots,k_{s} ) c_{1}^{k_{1} } \cdots c_{s}^{k_{s} } \\& \qquad {}\times b^{- \sum_{j=1}^{s}\delta_{j} k_{j}} x^{\sum_{j=1}^{s}\lambda _{j} k_{j}}H^{0,n+3:\{m_{r},n_{r}\};1,0}_{p+3,q+3:\{p_{r},q_{r}\};0,1} \\& \qquad \left [ \textstyle\begin{array}{@{}c@{}} z_{1}\frac{x^{\sigma_{1}}}{b^{v_{1}}} \\ \vdots \\ z_{r}\frac {x^{\sigma_{r}}}{b^{v_{r}}} \\ -\frac{a}{b}x \end{array}\displaystyle \left. \,\right|\, \textstyle\begin{array}{@{}c@{}} (a_{j};\alpha^{(1)}_{j},\ldots,\alpha^{(r)}_{j} )_{1,p},A': \{ (c^{(r)}_{j},\gamma^{(r)}_{j} )_{1,p_{r}} \} ;- \\ (b_{j};\beta^{(1)}_{j},\ldots,\beta^{(r)}_{j} )_{1,q},B': \{ (d^{(r)}_{j},\delta^{(r)}_{j} )_{1,q_{r}} \};(0,1) \end{array}\displaystyle \right ], \end{aligned}$$
(2.12)
where
$$\begin{aligned} A' =& \Biggl(1-\eta-\sum_{j=1}^{s} \delta_{j} k_{j}; v_{1} ,\ldots,v_{r}, 1 \Biggr), \Biggl(1-\mu-\sum_{j=1}^{s} \lambda_{j} k_{j} ;\sigma _{1},\ldots, \sigma_{r},1 \Biggr) , \\ & \Biggl(1-\mu-\gamma+\beta-\sum_{j=1}^{s} \lambda_{j} k_{j} ;\sigma _{1} ,\ldots, \sigma_{r}, 1 \Biggr) \end{aligned}$$
and
$$\begin{aligned} B' =& \Biggl(1-\eta-\sum_{j=1}^{s} \delta_{j} k_{j} ;v_{1},\ldots,v_{r} ,0 \Biggr), \Biggl(1-\mu+\beta-\sum_{j=1}^{s} \lambda_{j} k_{j} ;\sigma_{1} ,\ldots, \sigma_{r}, 1 \Biggr) \\ & \Biggl(1-\mu-\gamma-\alpha-\sum_{j=1}^{s} \lambda_{j} k_{j}; \sigma _{1},\ldots, \sigma_{r}, 1 \Biggr) , \end{aligned}$$
and the conditions of existence of the above corollary follow easily from Theorem  1.
Corollary 4
Let \(\alpha,\beta,\gamma,\mu,\eta,\delta _{j},v_{i},z_{i}, a,b,c_{j}\in\mathbb{C}\), \(\lambda_{j} ,\sigma_{i} >0\) (\(i\in\{ 1,\ldots,r\}\); \(j\in\{1,\ldots,s\}\)), and \(\Re(\alpha)>0\). Let the following conditions be satisfied, too:
(i)
\(|\arg z_{i}|<\frac{\pi}{2} \Omega_{i} \), \(\Omega_{i}>0\) (\(i = 1,\ldots,r\)), where
$$\Omega_{i} =-\sum_{j=n+1}^{p} \alpha_{j}^{ (i )}-\sum_{j=1}^{q} \beta_{j}^{ (i )} +\sum_{j=1}^{n_{i} } \gamma _{j}^{ (i )} -\sum_{j=n_{i} +1}^{p_{i} } \gamma_{j}^{ (i )} +\sum_{j=1}^{m_{i} } \delta_{j}^{ (i )}-\sum_{j=m_{i}+1}^{q_{i} } \delta_{j}^{ (i )} >0. $$
 
(ii)
$$\begin{aligned}& \Re (\mu )-\sum_{i=1}^{r} \sigma_{i} \min_{1\le j\le m_{i} } \biggl[\frac{\Re (d_{j}^{ (i )} )}{\delta _{j}^{ (i )} } \biggr] < 1+\max\bigl[\Re (\beta ),\Re (\gamma )\bigr]\quad (i=1,\ldots,r ) , \\& \Re (\eta )-\sum_{i=1}^{r}v_{i} \min_{1\le j\le m_{i} } \biggl[\frac{\Re (d_{j}^{ (i )} )}{\delta _{j}^{ (i )} } \biggr]< 1+\max\bigl[\Re ( \beta ),\Re (\gamma )\bigr]\quad (i=1,\ldots,r ) . \end{aligned}$$
 
Then the following result holds:
$$\begin{aligned}& \bigl\{ \mathrm{I}_{0-}^{\alpha,\beta,\gamma} \bigl(t^{\mu-1} (b-at )^{-\eta} S^{m_{1},\ldots,m_{s}}_{n} \bigl[c_{1} t^{\lambda_{1}} (b-at )^{-\delta_{1} }, \ldots,c_{s} t^{\lambda_{s}} (b-at )^{-\delta_{s} } \bigr] \\& \qquad {}\times H\bigl[z_{1} t^{\sigma_{1} } (b-at )^{-v_{1} } ,\ldots,z_{r} t^{\sigma_{r} } (b-at )^{-v_{r}} \bigr]\bigr) \bigr\} (x ) \\& \quad =b^{-\eta} x^{\mu-\beta-1} \sum^{m_{1}k_{1}+\cdots+m_{s}k_{s}\leq n}_{k_{1},\ldots,k_{s}=0} \frac{ (-n )_{m_{1}k_{1}+\cdots+m_{s}k_{s}}}{k_{1}!\cdots k_{s}!}\Lambda (n;k_{1},\ldots,k_{s} ) c_{1}^{k_{1} } \cdots c_{s}^{k_{s} } \\& \qquad {}\times b^{- \sum_{j=1}^{s}\delta_{j} k_{j}} x^{\sum_{j=1}^{s}\lambda _{j} k_{j}}H^{0,n+3:\{m_{r},n_{r}\};1,0}_{p+3,q+3:\{p_{r},q_{r}\};0,1} \\& \qquad \left [ \textstyle\begin{array}{@{}c@{}} z_{1}\frac{x^{\sigma_{1}}}{b^{v_{1}}} \\ \vdots \\ z_{r}\frac {x^{\sigma_{r}}}{b^{v_{r}}} \\ -\frac{a}{b}x \end{array}\displaystyle \left. \,\right|\, \textstyle\begin{array}{@{}c@{}} (a_{j};\alpha^{(1)}_{j},\ldots,\alpha^{(r)}_{j} )_{1,p},C'': \{ (c^{(r)}_{j},\gamma^{(r)}_{j} )_{1,p_{r}} \} ;- \\ (b_{j};\beta^{(1)}_{j},\ldots,\beta^{(r)}_{j} )_{1,q},D'': \{ (d^{(r)}_{j},\delta^{(r)}_{j} )_{1,q_{r}} \};(0,1) \end{array}\displaystyle \right ], \end{aligned}$$
(2.13)
where
$$\begin{aligned} C'' =& \Biggl(1-\eta-\sum _{j=1}^{s}\delta_{j} k_{j}; v_{1} ,\ldots,v_{r}, 1 \Biggr), \Biggl(1-\mu-\sum _{j=1}^{s}\lambda_{j} k_{j} ;\sigma_{1},\ldots,\sigma_{r},1 \Biggr) , \\ & \Biggl(1+\alpha+\beta-\mu-\gamma-\sum_{j=1}^{s} \lambda_{j} k_{j} ;\sigma_{1} ,\ldots, \sigma_{r}, 1 \Biggr) \end{aligned}$$
and
$$\begin{aligned} D'' =& \Biggl(1-\eta-\sum _{j=1}^{s}\delta_{j} k_{j} ;v_{1},\ldots,v_{r} ,0 \Biggr), \Biggl(1-\gamma-\mu-\sum _{j=1}^{s}\lambda_{j} k_{j} ;\sigma _{1} ,\ldots,\sigma_{r}, 1 \Biggr) \\ & \Biggl(1+\beta-\mu-\sum_{j=1}^{s} \lambda_{j} k_{j}; \sigma _{1},\ldots, \sigma_{r}, 1 \Biggr) , \end{aligned}$$
and the conditions of existence of the above corollary follow easily from Theorem  2.
Remark 5
By putting \(\beta=-\alpha\) and \(\beta=0\) in Corollaries 3 and 4, respectively, we can obtain very interesting results involving the Riemann-Liouville and Erdélyi-Kober fractional integral operators.

3 Special cases and concluding remarks

Here we consider another variation of the results derived in the preceding sections. The multivariable H-function occurring in these results can be suitably specialized to yield a wide variety of special functions (or product of such functions) of one or more variables (see [31], pp.18-19, 88-93, 253-254 and [48]). Again, by suitably specializing the coefficient of the first class of multivariable polynomials, it can be reduced to other multivariable hypergeometric polynomials and classical orthogonal polynomials of one or more variables.
(i) If we reduce the multivariable H-functions into the product of two Fox H-functions in Theorem 1 and then reduce one H-function to the exponential function by taking \(\sigma_{1} =1\), \(v_{1} \to0\), we obtain the following result after a little simplification:
$$\begin{aligned}& \Biggl\{ \mathrm{I}_{0+}^{\alpha,\alpha',\beta ,\beta',\gamma} \Biggl(t^{\mu-1} (b-at )^{-\eta} S^{m_{1},\ldots,m_{s}}_{n} \bigl[c_{1} t^{\lambda_{1}} (b-at )^{-\delta _{1} }, \ldots,c_{s} t^{\lambda_{s}} (b-at )^{-\delta_{s} } \bigr] \\& \qquad {}\times e^{-z_{1}t}H^{m_{2},n_{2}}_{p_{2},q_{2}}\left [z_{2} t^{\sigma_{2} } (b-at )^{-v_{2} }\Bigm| \textstyle\begin{array}{@{}c@{}} (c_{j},C_{j} )_{1,p_{2}} \\ (d_{j},D_{j} )_{1,q_{2}} \end{array}\displaystyle \right ]\Biggr)\Biggr\} (x ) \\& \quad =b^{-\eta} x^{\mu -\alpha-\alpha'+\gamma-1} \sum^{m_{1}k_{1}+\cdots+m_{s}k_{s}\leq n}_{k_{1},\ldots,k_{s}=0} \frac{ (-n )_{m_{1}k_{1}+\cdots+m_{s}k_{s}}}{k_{1}!\cdots k_{s}!}\Lambda (n;k_{1},\ldots,k_{s} ) c_{1}^{k_{1} } \cdots c_{s}^{k_{s} } \\& \qquad {}\times b^{- \sum_{j=1}^{s}\delta_{j} k_{j}} x^{\sum_{j=1}^{s}\lambda _{j} k_{j}}H^{0,4:1,0;m_{2},n_{2};1,0}_{4,4:0,1;p_{2},q_{2};0,1} \\& \qquad \left [ \textstyle\begin{array}{@{}c@{}} z_{1}x \\ z_{2}\frac{x^{\sigma_{2}}}{b^{v_{2}}} \\ -\frac{a}{b}x \end{array}\displaystyle \Biggm| \textstyle\begin{array}{@{}c@{}} E: (c_{j},\gamma_{j} )_{1,p_{2}};- \\ F:(0,1); \{ (d_{j},\delta_{j} )_{1,q_{2}} \};(0,1) \end{array}\displaystyle \right ], \end{aligned}$$
(3.1)
where
$$\begin{aligned}& E=\Biggl(1-\eta-\sum^{s}_{j=1} \delta_{j}k_{j};1,v_{2},1\Biggr),\Biggl(1-\mu- \sum^{s}_{j=1}\lambda_{j}k_{j};1, \sigma_{2},1\Biggr), \\& \hphantom{E={}}\Biggl(1-\mu-\gamma+\alpha+\alpha'+\beta -\sum ^{s}_{j=1}\lambda_{j}k_{j};1, \sigma_{2},1\Biggr), \\& \hphantom{E={}}\Biggl(1-\mu+\alpha'- \beta'-\sum^{s}_{j=1} \lambda_{j}k_{j};1,\sigma_{2},1\Biggr) , \\& F=\Biggl(1-\eta-\sum^{s}_{j=1} \delta_{j}k_{j};1,v_{2},0\Biggr), \Biggl(1- \mu-\gamma+\alpha+\alpha-\sum^{s}_{j=1} \lambda_{j}k_{j};1,\sigma_{2},1\Biggr), \\& \hphantom{F={}}\Biggl(1-\mu-\gamma+\alpha'+\beta-\sum ^{s}_{j=1}\lambda_{j}k_{j};1, \sigma _{2},1\Biggr),\Biggl(1-\mu-\beta'-\sum ^{s}_{j=1}\lambda_{j}k_{j};1, \sigma_{2},1\Biggr) . \end{aligned}$$
The conditions of validity of the above result easily follow from Theorem 1.
Remark 6
If we reduce the Marichev-Saigo-Maeda type fractional integral operator into the Riemann-Liouville fractional integral operator and put \(S_{n}^{m_{1},\ldots,m_{s} } =1\), \(\eta,v_{2} =0\), and make a suitable adjustment in the parameters in the above equation, then we obtain the known result by Kilbas and Saigo [49], p.52, Eq. (2.7.9); in addition, if we put \(S_{n_{j} }^{m_{j} } =1\), \(\eta ,v_{2} =0\), \(z_{2} =1/4\), \(\sigma_{2} =2\) and reduce the Fox H-function to the Bessel function of the first kind, then we obtain the known result given by Kilbas and Sebastian [50], p.873, Eqs. (25)-(29).
(ii) Next if we take \(z_{2} ,\sigma_{2} =1\) and \(v_{2} =0\) in the result (3.1) and reduce the H-function of one variable to a generalized Mittag-Leffler function [51] (see also [52]), we can easily obtain the following result after a few simplifications:
$$\begin{aligned}& \bigl\{ \mathrm{I}_{0+}^{\alpha,\alpha',\beta ,\beta',\gamma} \bigl(t^{\mu-1} (b-at )^{-\eta} S^{m_{1},\ldots,m_{s}}_{n} \bigl[c_{1} t^{\lambda_{1}} (b-at )^{-\delta _{1} }, \ldots,c_{s} t^{\lambda_{s}} (b-at )^{-\delta_{s} } \bigr] \\& \qquad {}\times e^{-z_{1}t}E^{v}_{\omega,\xi} [t ]\bigr) \bigr\} (x ) \\& \quad =\frac{b^{-\eta} x^{\mu-\alpha-\alpha'+\gamma-1}}{\Gamma(v)} \sum^{m_{1}k_{1}+\cdots+m_{s}k_{s}\leq n}_{k_{1},\ldots,k_{s}=0} \frac{ (-n )_{m_{1}k_{1}+\cdots+m_{s}k_{s}}}{k_{1}!\cdots k_{s}!}\Lambda (n;k_{1},\ldots,k_{s} ) c_{1}^{k_{1} } \cdots c_{s}^{k_{s} } \\& \qquad {}\times b^{- \sum_{j=1}^{s}\delta_{j} k_{j}} (-x)^{\sum _{j=1}^{s}\lambda_{j} k_{j}}H^{0,4:1,0;1,1;1,0}_{4,3:0,1;1,3;0,1} \\& \qquad \left [ \textstyle\begin{array}{@{}c@{}} z_{1}x \\ x \\ -\frac{a}{b}x \end{array}\displaystyle \Biggm| \textstyle\begin{array}{@{}c@{}} E:-;(1-v,1);- \\ F:(0,1);(0,1),(1-\eta;0);(1-\xi,\omega);(0,1) \end{array}\displaystyle \right ], \end{aligned}$$
(3.2)
where
$$\begin{aligned}& E=\Biggl(1-\eta-\sum^{s}_{j=1} \delta_{j}k_{j};1,0,1\Biggr),\Biggl(1-\mu-\sum ^{s}_{j=1}\lambda_{j}k_{j};1,1,1 \Biggr), \\& \hphantom{E={}}\Biggl(1-\mu-\gamma+\alpha+\alpha'+\beta-\sum ^{s}_{j=1}\lambda_{j}k_{j};1,1,1 \Biggr),\Biggl(1-\mu+\alpha'-\beta'-\sum ^{s}_{j=1}\lambda _{j}k_{j};1,1,1 \Biggr), \\& F=\Biggl(1-\eta-\sum^{s}_{j=1} \delta_{j}k_{j};1,0,0\Biggr),\Biggl(1-\mu-\gamma+\alpha+ \alpha '-\sum^{s}_{j=1} \lambda_{j}k_{j};1,1,1\Biggr), \\& \hphantom{F={}}\Biggl(1-\mu-\gamma+\alpha'+\beta-\sum ^{s}_{j=1}\lambda_{j}k_{j};1,1,1 \Biggr),\Biggl(1-\mu-\beta'-\sum^{s}_{j=1} \lambda_{j}k_{j};1,1,1\Biggr) . \end{aligned}$$
The conditions of validity of (3.2) can be easily followed directly by those given with (2.5).
Remark 7
If we reduce the Marichev-Saigo-Maeda type fractional integral operator to the Riemann-Liouville fractional integral operator and set \(S_{n}^{m_{1},\ldots,m_{s} } =1\), \(\eta,v_{2} =0\), and make a suitable adjustment in the parameters in equation (3.2), then we arrive at the known result given by Saxena et al. [53], p.168, Eq. (2.1).
(iii) Again, if we reduce the H-function of one variable to the generalized Wright hypergeometric function [31], p.19, Eq. (2.6.11), in the result (3.1), we arrive at the following new and interesting result:
$$\begin{aligned}& \Biggl\{ \mathrm{I}_{0+}^{\alpha,\alpha',\beta ,\beta',\gamma} \Biggl(t^{\mu-1} (b-at )^{-\eta} S^{m_{1},\ldots,m_{s}}_{n} \bigl[c_{1} t^{\lambda_{1}} (b-at )^{-\delta _{1} }, \ldots,c_{s} t^{\lambda_{s}} (b-at )^{-\delta_{s} } \bigr] \\& \qquad {}\times e^{-z_{1}t}{}_{p_{2}}\psi_{q_{2}}\left [-z_{2} t^{\sigma_{2} } (b-at )^{-v_{2} }\Bigm| \textstyle\begin{array}{@{}c@{}} (1-c_{j},C_{j} )_{1,p_{2}} \\ (0,1), (1-d_{j},D_{j} )_{1,q_{2}} \end{array}\displaystyle \right ]\Biggr)\Biggr\} (x ) \\& \quad =b^{-\eta} x^{\mu -\alpha-\alpha'+\gamma-1} \sum^{m_{1}k_{1}+\cdots+m_{s}k_{s}\leq n}_{k_{1},\ldots,k_{s}=0} \frac{ (-n )_{m_{1}k_{1}+\cdots+m_{s}k_{s}}}{k_{1}!\cdots k_{s}!}\Lambda (n;k_{1},\ldots,k_{s} ) c_{1}^{k_{1} } \cdots c_{s}^{k_{s} } \\& \qquad {}\times b^{- \sum_{j=1}^{s}\delta_{j} k_{j}} x^{\sum_{j=1}^{s}\lambda _{j} k_{j}}H^{0,4:1,0;1,p_{2};1,0}_{4,4:0,1;p_{2},q_{2};0,1} \\& \qquad \left [ \textstyle\begin{array}{@{}c@{}} z_{1}x \\ -z_{2}\frac{x^{\sigma_{2}}}{b^{v_{2}}} \\ -\frac{a}{b}x \end{array}\displaystyle \Biggm| \textstyle\begin{array}{@{}c@{}}E: (c_{j},C_{j} )_{1,p_{2}};- \\ F:(0,1); \{ (d_{j},D_{j} )_{1,q_{2}} \};(0,1) \end{array}\displaystyle \right ], \end{aligned}$$
(3.3)
where
$$\begin{aligned}& E=\Biggl(1-\eta-\sum^{s}_{j=1} \delta_{j}k_{j};1,v_{2},1\Biggr),\Biggl(1-\mu- \sum^{s}_{j=1}\lambda_{j}k_{j};1, \sigma_{2},1\Biggr), \\& \hphantom{E={}}\Biggl(1-\mu-\gamma+\alpha+\alpha'+\beta -\sum ^{s}_{j=1}\lambda_{j}k_{j};1, \sigma_{2},1\Biggr), \Biggl(1-\mu+\alpha'- \beta'-\sum^{s}_{j=1} \lambda_{j}k_{j};1,\sigma_{2},1\Biggr), \\& F=\Biggl(1-\eta-\sum^{s}_{j=1} \delta_{j}k_{j};1,v_{2},0\Biggr),\Biggl(1-\mu- \gamma+\alpha+\alpha '-\sum^{s}_{j=1} \lambda_{j}k_{j};1,\sigma_{2},1\Biggr), \\& \hphantom{F={}}\Biggl(1-\mu-\gamma+\alpha'+\beta -\sum ^{s}_{j=1}\lambda_{j}k_{j};1, \sigma_{2},1\Biggr),\Biggl(1-\mu-\beta'-\sum ^{s}_{j=1}\lambda_{j}k_{j};1, \sigma_{2},1\Biggr) . \end{aligned}$$
(iv) Further Theorem 1, if we reduce the multivariable H-function to the product of r-different Whittaker functions [31], p.18, Eq. (2.6.7), and take \(v_{i} \to0\), \(\sigma_{i} =1\), then we arrive at the following result:
$$\begin{aligned}& \Biggl\{ \mathrm{I}_{0+}^{\alpha,\alpha',\beta ,\beta',\gamma} \Biggl(t^{\mu-1} (b-at )^{-\eta} S^{m_{1},\ldots,m_{s}}_{n} \bigl[c_{1} t^{\lambda_{1}} (b-at )^{-\delta _{1} }, \ldots,c_{s} t^{\lambda_{s}} (b-at )^{-\delta_{s} } \bigr] \\& \qquad {}\times\prod^{r}_{i=1}e^{\frac {-z_{i}t}{2}}W_{\lambda_{i},\mu_{i}}(z_{i}t) \Biggr)\Biggr\} (x) \\& \quad =b^{-\eta} x^{\mu-\alpha-\alpha'+\gamma-1} \sum^{m_{1}k_{1}+\cdots+m_{s}k_{s}\leq n}_{k_{1},\ldots,k_{s}=0} \frac{ (-n )_{m_{1}k_{1}+\cdots+m_{s}k_{s}}}{k_{1}!\cdots k_{s}!}\Lambda (n;k_{1},\ldots,k_{s} ) c_{1}^{k_{1} } \cdots c_{s}^{k_{s} } \\& \qquad {}\times b^{- \sum_{j=1}^{s}\delta_{j} k_{j}} x^{\sum_{j=1}^{s}\lambda _{j} k_{j}}H^{0,4:2,0;\ldots;2,0;1,0}_{4,4:1,2;\ldots;1,2;0,1} \\& \qquad \left [ \textstyle\begin{array}{@{}c@{}} z_{1}x \\ \vdots \\ z_{r}x \\ -\frac{a}{b}x \end{array}\displaystyle \left. \,\right|\, \textstyle\begin{array}{@{}c@{}} G:-;(1-\lambda_{1},1);\ldots;(1-\lambda_{r},1);- \\ H:(1/2\pm\mu_{1},1);\ldots;(1/2\pm\mu_{r},1)(0,1) \end{array}\displaystyle \right ], \end{aligned}$$
(3.4)
where
$$\begin{aligned}& G=\Biggl(1-\eta-\sum^{s}_{j=1} \delta_{j}k_{j};\underbrace{1,\ldots,1}_{r \text{ times}},1 \Biggr),\Biggl(1-\mu-\sum^{s}_{j=1} \lambda_{j}k_{j};\underbrace{1,\ldots,1}_{r \text{ times}},1 \Biggr), \\& \hphantom{G={}}\Biggl(1-\mu-\gamma+\alpha+\alpha'+\beta-\sum ^{s}_{j=1}\lambda _{j}k_{j}; \underbrace{1,\ldots,1}_{r \text{ times}},1\Biggr), \\& \hphantom{G={}}\Biggl(1-\mu+ \alpha'-\beta '-\sum^{s}_{j=1} \lambda_{j}k_{j};\underbrace{1,\ldots,1}_{r \text{ times}},1 \Biggr) , \\& H=\Biggl(1-\eta-\sum^{s}_{j=1} \delta_{j}k_{j};\underbrace{1,\ldots,1}_{r \text{ times}},0 \Biggr),\Biggl(1-\mu-\gamma+\alpha+\alpha'-\sum ^{s}_{j=1}\lambda _{j}k_{j}; \underbrace{1,\ldots,1}_{r \text{ times}},1\Biggr), \\& \hphantom{H={}}\Biggl(1-\mu-\gamma+\alpha '+\beta-\sum ^{s}_{j=1}\lambda_{j}k_{j}; \underbrace{1,\ldots,1}_{r \text{ times}},1\Biggr),\Biggl(1-\mu- \beta'-\sum^{s}_{j=1} \lambda_{j}k_{j};\underbrace {1,\ldots,1}_{r \text{ times}},1 \Biggr) . \end{aligned}$$
The conditions of validity of the above result easily follow from Theorem 1.
Remark 8
If we reduce the Marichev-Saigo-Maeda type fractional integral operator to the Riemann-Liouville fractional integral operator and set \(S_{n}^{m_{1},\ldots,m_{s} } =1\), \(\eta,v_{2} =0\), and make a suitable adjustment in the parameters in equation (3.4), we arrive at the known result given by Kilbas [54], p.117, Eq. (11).
(v) Finally, if we reduce the multivariable H-function into the product of two Fox H-functions in Theorem 1 and then reduce one H-function to the exponential function by setting \(\sigma_{1}\), \(\lambda_{j} \), \(v_{1} \), \(\delta_{j} =0\), \(c_{j}\), \(s=1\) and \(S_{n}^{m}\) to the Hermite polynomial [6, 55], and we set \(S_{n}^{2} [x]=x^{n/2}H_{n} [\frac{1}{2\sqrt{x}} ]\), in this case \(m=2\), \(A_{n,k}=(-1)^{k}\), we obtain the following interesting result:
$$\begin{aligned}& \Biggl\{ \mathrm{I}_{0+}^{\alpha,\alpha',\beta,\beta ',\gamma}\Biggl(t^{\mu-1} (b-at )^{-\eta} t^{n/2}H_{n} \biggl[\frac{1}{2\sqrt{t}} \biggr] \\& \qquad {}\times e^{-z_{1}t}H^{m_{2},n_{2}}_{p_{2},q_{2}}\left [z_{1} t^{\sigma_{1} } (b-at )^{-v_{1} }\Bigm| \textstyle\begin{array}{c} (c_{j},C_{j} )_{1,p_{2}} \\ (d_{j},D_{j} )_{1,q_{2}} \end{array}\displaystyle \right ]\Biggr)\Biggr\} (x ) \\& \quad =b^{-\eta} x^{\mu -\alpha-\alpha'+\gamma-1} \sum^{m_{1}k_{1}+\cdots+m_{s}k_{s}\leq n}_{k_{1},\ldots,k_{s}=0} \frac{ (-n )_{m_{1}k_{1}+\cdots+m_{s}k_{s}}}{k_{1}!\cdots k_{s}!}\Lambda (n;k_{1},\ldots,k_{s} ) c_{1}^{k_{1} } \cdots c_{s}^{k_{s} } \\& \qquad {}\times b^{- \sum_{j=1}^{s}\delta_{j} k_{j}} x^{\sum_{j=1}^{s}\lambda _{j} k_{j}}H^{0,4:1,0;\{m_{2},n_{2}\};1,0}_{4,4:0,1;\{p_{2},q_{2}\} ;0,1} \\& \qquad \left [ \textstyle\begin{array}{@{}c@{}} z_{1}x \\ z_{2}\frac{x^{\sigma_{2}}}{b^{v_{2}}} \\ -\frac{a}{b}x \end{array}\displaystyle \Biggm| \textstyle\begin{array}{@{}c@{}} G: (c^{(r)}_{j},\gamma^{(r)}_{j} )_{1,p_{r}};- \\ H:(0,1); \{ (d_{j},\delta_{j} )_{1,q_{2}} \};(0,1) \end{array}\displaystyle \right ], \end{aligned}$$
(3.5)
where
$$\begin{aligned}& G=\Biggl(1-\eta-\sum^{s}_{j=1} \delta_{j}k_{j};1,v_{2},1\Biggr),\Biggl(1-\mu- \sum^{s}_{j=1}\lambda_{j}k_{j};1, \sigma_{2},1\Biggr), \\& \hphantom{G={}}\Biggl(1-\mu-\gamma+\alpha+\alpha'+\beta -\sum ^{s}_{j=1}\lambda_{j}k_{j};1, \sigma_{2},1\Biggr),\Biggl(1-\mu+\alpha'- \beta'-\sum^{s}_{j=1} \lambda_{j}k_{j};1,\sigma_{2},1\Biggr), \\& H=\Biggl(1-\eta-\sum^{s}_{j=1} \delta_{j}k_{j};1,v_{2},0\Biggr),\Biggl(1-\mu- \gamma+\alpha+\alpha -\sum^{s}_{j=1} \lambda_{j}k_{j};1,\sigma_{2},1\Biggr), \\& \hphantom{H={}}\Biggl(1-\mu-\gamma+\alpha'+\beta-\sum ^{s}_{j=1}\lambda_{j}k_{j};1, \sigma_{2},1\Biggr),\Biggl(1-\mu-\beta'-\sum ^{s}_{j=1}\lambda _{j}k_{j};1, \sigma_{2},1\Biggr) . \end{aligned}$$
The conditions of validity of the above result can be easily derived from Theorem 1.
A large number of other special cases of our main result can also be obtained, but we do not mention them here on account of the lack of space.
Now, we conclude our present investigation by remarking that the fractional integration (of Marichev-Saigo-Maeda type) of the products of multivariable H-functions and the first class of multivariable polynomials established in this paper will be useful for investigators in various disciplines of applied sciences and engineering physics. We are also trying to find certain possible applications of those results presented here to some other research areas, for example, obtaining a closed form solution of a fractional generalization of a free electron equation.

Acknowledgements

We are grateful to Dr. S Jain for her useful suggestions during discussions and to anonymous reviewers for their valuable remarks.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors have participated in the obtained results. The collaboration of each one cannot be separated in different parts of the paper. All of them have made substantial contributions to the theoretical results. All authors have been involved in drafting the manuscript and revising it critically for important intellectual content. All authors read and approved the final manuscript.
Footnotes
1
Here and in what follows, we denote by ω an imaginary unit.
 
Literature
1.
go back to reference Baleanu, D, Diethelm, K, Scalas, E, Trujillo, JJ: Fractional Calculus: Models and Numerical Methods. World Scientific, Singapore (2012) Baleanu, D, Diethelm, K, Scalas, E, Trujillo, JJ: Fractional Calculus: Models and Numerical Methods. World Scientific, Singapore (2012)
2.
go back to reference Caponetto, R, Dongola, G, Fortuna, L, Petráš, I: Fractional Order Systems: Modeling and Control Applications. World Scientific, Singapore (2010) Caponetto, R, Dongola, G, Fortuna, L, Petráš, I: Fractional Order Systems: Modeling and Control Applications. World Scientific, Singapore (2010)
3.
go back to reference Caputo, M, Mainardi, F: Linear models of dissipation in anelastic solids. Riv. Nuovo Cimento, Ser. II 1, 161-198 (1971) CrossRef Caputo, M, Mainardi, F: Linear models of dissipation in anelastic solids. Riv. Nuovo Cimento, Ser. II 1, 161-198 (1971) CrossRef
4.
go back to reference Hilfer, R (ed.): Applications of Fractional Calculus in Physics. Word Scientific, River Edge (2000) MATH Hilfer, R (ed.): Applications of Fractional Calculus in Physics. Word Scientific, River Edge (2000) MATH
5.
go back to reference Mainardi, F: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010) MATHCrossRef Mainardi, F: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010) MATHCrossRef
6.
go back to reference Mathai, AM, Saxena, RK, Haubold, HJ: The H-Function: Theory and Applications. Springer, Dordrecht (2010) CrossRef Mathai, AM, Saxena, RK, Haubold, HJ: The H-Function: Theory and Applications. Springer, Dordrecht (2010) CrossRef
7.
go back to reference Prakasa Rao, BLS: Statistical Inference for Fractional Diffusion Processes. Wiley, Chichester (2010) MATH Prakasa Rao, BLS: Statistical Inference for Fractional Diffusion Processes. Wiley, Chichester (2010) MATH
8.
go back to reference Rabotnov, YN: Elements of Hereditary Solid Mechanics. Mir, Moscow (1980) MATH Rabotnov, YN: Elements of Hereditary Solid Mechanics. Mir, Moscow (1980) MATH
9.
go back to reference Tarasov, VE: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Berlin (2010) CrossRef Tarasov, VE: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Berlin (2010) CrossRef
10.
go back to reference Uchaikin, VV: Fractional Derivatives for Physicists and Engineers. Volume I: Background and Theory. Springer, Berlin (2013) CrossRef Uchaikin, VV: Fractional Derivatives for Physicists and Engineers. Volume I: Background and Theory. Springer, Berlin (2013) CrossRef
11.
go back to reference Uchaikin, VV: Fractional Derivatives for Physicists and Engineers. Volume II: Applications. Springer, Berlin (2013) CrossRef Uchaikin, VV: Fractional Derivatives for Physicists and Engineers. Volume II: Applications. Springer, Berlin (2013) CrossRef
12.
go back to reference Zaslavsky, GM: Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, Oxford (2005) MATH Zaslavsky, GM: Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, Oxford (2005) MATH
13.
go back to reference Marichev, OI: Volterra equation of Mellin convolution type with a Horn function in the kernel. Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk 1, 128-129 (1974) Marichev, OI: Volterra equation of Mellin convolution type with a Horn function in the kernel. Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk 1, 128-129 (1974)
14.
go back to reference Saigo, M, Maeda, N: More generalization of fractional calculus. In: Rusev, P, Dimovski, I, Kiryakova, V (eds.) Transform Methods and Special Functions, Varna, 1996 (Proc. 2nd Intern. Workshop), pp. 386-400. IMI-BAS, Sofia (1998) Saigo, M, Maeda, N: More generalization of fractional calculus. In: Rusev, P, Dimovski, I, Kiryakova, V (eds.) Transform Methods and Special Functions, Varna, 1996 (Proc. 2nd Intern. Workshop), pp. 386-400. IMI-BAS, Sofia (1998)
15.
go back to reference Saxena, RK, Saigo, M: Generalized fractional calculus of the H-function associated with the Appell function \(F_{3}\). J. Fract. Calc. 19, 89-104 (2001) MATHMathSciNet Saxena, RK, Saigo, M: Generalized fractional calculus of the H-function associated with the Appell function \(F_{3}\). J. Fract. Calc. 19, 89-104 (2001) MATHMathSciNet
16.
go back to reference Agarwal, P: Generalized fractional integration of the H̅-function. Matematiche 67(2), 107-118 (2012) MATHMathSciNet Agarwal, P: Generalized fractional integration of the -function. Matematiche 67(2), 107-118 (2012) MATHMathSciNet
17.
go back to reference Agarwal, P: Fractional integration of the product of two multivariables H-function and a general class of polynomials. In: Anastassiou, GA, Duman, O (eds.) Advances in Applied Mathematics and Approximation Theory, vol. 41, pp. 359-374. Springer, New York (2013) CrossRef Agarwal, P: Fractional integration of the product of two multivariables H-function and a general class of polynomials. In: Anastassiou, GA, Duman, O (eds.) Advances in Applied Mathematics and Approximation Theory, vol. 41, pp. 359-374. Springer, New York (2013) CrossRef
18.
go back to reference Baleanu, D, Agarwal, P: On generalized fractional integral operators and the generalized Gauss hypergeometric functions. Abstr. Appl. Anal. 2014, Article ID 630840 (2014). doi:10.1155/2014/630840 MathSciNet Baleanu, D, Agarwal, P: On generalized fractional integral operators and the generalized Gauss hypergeometric functions. Abstr. Appl. Anal. 2014, Article ID 630840 (2014). doi:10.​1155/​2014/​630840 MathSciNet
19.
go back to reference Choi, J, Agarwal, P: Certain integral transform and fractional integral formulas for the generalized Gauss hypergeometric functions. Abstr. Appl. Anal. 2014, Article ID 735946 (2014). doi:10.1155/2014/735946 MathSciNet Choi, J, Agarwal, P: Certain integral transform and fractional integral formulas for the generalized Gauss hypergeometric functions. Abstr. Appl. Anal. 2014, Article ID 735946 (2014). doi:10.​1155/​2014/​735946 MathSciNet
20.
go back to reference Srivastava, HM, Agarwal, P: Certain fractional integral operators and the generalized incomplete hypergeometric functions. Appl. Appl. Math. 8(2), 333-345 (2013) MATHMathSciNet Srivastava, HM, Agarwal, P: Certain fractional integral operators and the generalized incomplete hypergeometric functions. Appl. Appl. Math. 8(2), 333-345 (2013) MATHMathSciNet
22.
go back to reference Srivastava, HM, Panda, R: Expansion theorems for the H-function of several complex variables. J. Reine Angew. Math. 288, 129-145 (1976) MathSciNet Srivastava, HM, Panda, R: Expansion theorems for the H-function of several complex variables. J. Reine Angew. Math. 288, 129-145 (1976) MathSciNet
23.
go back to reference Saigo, M: On generalized fractional calculus operators. In: Recent Advances in Applied Mathematics (Proc. Internat. Workshop held at Kuwait Univ.), Kuwait Univ., Kuwait, pp. 441-450 (1996) Saigo, M: On generalized fractional calculus operators. In: Recent Advances in Applied Mathematics (Proc. Internat. Workshop held at Kuwait Univ.), Kuwait Univ., Kuwait, pp. 441-450 (1996)
24.
go back to reference Kiryakova, V: On two Saigo’s fractional integral operators in the class of univalent functions. Fract. Calc. Appl. Anal. 9(2), 160-176 (2006) MathSciNet Kiryakova, V: On two Saigo’s fractional integral operators in the class of univalent functions. Fract. Calc. Appl. Anal. 9(2), 160-176 (2006) MathSciNet
25.
go back to reference McBride, AC: Fractional Calculus and Integral Transforms of Generalized Functions. Research Notes in Math., vol. 31. Pitman, London (1979) MATH McBride, AC: Fractional Calculus and Integral Transforms of Generalized Functions. Research Notes in Math., vol. 31. Pitman, London (1979) MATH
26.
go back to reference Olver, FWJ, Lozier, DW, Boisvert, RF, Clark, CW (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010) MATH Olver, FWJ, Lozier, DW, Boisvert, RF, Clark, CW (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010) MATH
27.
go back to reference Saigo, M: A remark on integral operators involving the Gauss hypergeometric functions. Math. Rep. Coll. Gen. Educ. Kyushu Univ. 11, 135-143 (1978) MathSciNet Saigo, M: A remark on integral operators involving the Gauss hypergeometric functions. Math. Rep. Coll. Gen. Educ. Kyushu Univ. 11, 135-143 (1978) MathSciNet
28.
go back to reference Srivastava, HM, Panda, R: Some bilateral generating functions for a class of generalized hypergeometric polynomials. J. Reine Angew. Math. 283/284, 265-274 (1976) MathSciNet Srivastava, HM, Panda, R: Some bilateral generating functions for a class of generalized hypergeometric polynomials. J. Reine Angew. Math. 283/284, 265-274 (1976) MathSciNet
29.
go back to reference Srivastava, HM, Panda, R: Certain multidimensional integral transformations. I. Ned. Akad. Wet. Proc., Ser. A, Indag. Math. 40, 118-131 (1978) MathSciNetCrossRef Srivastava, HM, Panda, R: Certain multidimensional integral transformations. I. Ned. Akad. Wet. Proc., Ser. A, Indag. Math. 40, 118-131 (1978) MathSciNetCrossRef
30.
go back to reference Srivastava, HM, Panda, R: Certain multidimensional integral transformations. II. Ned. Akad. Wet. Proc., Ser. A, Indag. Math. 40, 132-144 (1978) MathSciNetCrossRef Srivastava, HM, Panda, R: Certain multidimensional integral transformations. II. Ned. Akad. Wet. Proc., Ser. A, Indag. Math. 40, 132-144 (1978) MathSciNetCrossRef
31.
go back to reference Srivastava, HM, Gupta, KC, Goyal, SP: The H-Functions of One and Two Variables with Applications. South Asian Publishers, New Delhi (1982) MATH Srivastava, HM, Gupta, KC, Goyal, SP: The H-Functions of One and Two Variables with Applications. South Asian Publishers, New Delhi (1982) MATH
32.
go back to reference Srivastava, HM, Panda, R: Some expansion theorems and generating relations for the H-functions of several complex variables. II. Comment. Math. Univ. St. Pauli 25, 169-197 (1976) MathSciNet Srivastava, HM, Panda, R: Some expansion theorems and generating relations for the H-functions of several complex variables. II. Comment. Math. Univ. St. Pauli 25, 169-197 (1976) MathSciNet
33.
go back to reference Mittal, PK, Gupta, KC: An integral involving generalized function of two variables. Proc. Indian Acad. Sci., Sect. A 75, 117-123 (1972) MATHMathSciNet Mittal, PK, Gupta, KC: An integral involving generalized function of two variables. Proc. Indian Acad. Sci., Sect. A 75, 117-123 (1972) MATHMathSciNet
34.
go back to reference Munot, PC, Kalla, SL: On an extension of generalized function of two variables. Rev. Univ. Nac. Tucumán Ser. A 21, 67-84 (1971) MATHMathSciNet Munot, PC, Kalla, SL: On an extension of generalized function of two variables. Rev. Univ. Nac. Tucumán Ser. A 21, 67-84 (1971) MATHMathSciNet
35.
go back to reference Verma, RU: On the H-function of two variables - II. An. Ştiinţ. Univ. ‘Al.I. Cuza’ Iaşi, Mat. 17, 103-109 (1971) Verma, RU: On the H-function of two variables - II. An. Ştiinţ. Univ. ‘Al.I. Cuza’ Iaşi, Mat. 17, 103-109 (1971)
36.
go back to reference Hai, NT, Yakubovich, SB: The Double Mellin-Barnes Type Integrals and Their Applications to Convolution Theory. World Scientific, Singapore (1992) MATHCrossRef Hai, NT, Yakubovich, SB: The Double Mellin-Barnes Type Integrals and Their Applications to Convolution Theory. World Scientific, Singapore (1992) MATHCrossRef
37.
go back to reference Srivastava, HM, Panda, R: Expansion theorems for the H-function of several complex variables. J. Reine Angew. Math. 288, 129-145 (1976) MathSciNet Srivastava, HM, Panda, R: Expansion theorems for the H-function of several complex variables. J. Reine Angew. Math. 288, 129-145 (1976) MathSciNet
38.
39.
go back to reference Khadia, SS, Goyal, AN: On the generalized function of n variables - II. Vijnana Parishad Anusandhan Patrika 18, 359-366 (1975) MathSciNet Khadia, SS, Goyal, AN: On the generalized function of n variables - II. Vijnana Parishad Anusandhan Patrika 18, 359-366 (1975) MathSciNet
40.
go back to reference Khadia, SS, Goyal, AN: On the generalized function of n-variables. Vijnana Parishad Anusandhan Patrika 13, 191-201 (1970) MATHMathSciNet Khadia, SS, Goyal, AN: On the generalized function of n-variables. Vijnana Parishad Anusandhan Patrika 13, 191-201 (1970) MATHMathSciNet
41.
go back to reference Saigo, M, Saxena, RK: Unified fractional integral formulas for the multivariable H-function. J. Fract. Calc. 15, 91-107 (1999) MATHMathSciNet Saigo, M, Saxena, RK: Unified fractional integral formulas for the multivariable H-function. J. Fract. Calc. 15, 91-107 (1999) MATHMathSciNet
42.
go back to reference Saigo, M, Saxena, RK: Unified fractional integral formulas for the multivariable H-function - II. J. Fract. Calc. 16, 99-110 (1999) MATHMathSciNet Saigo, M, Saxena, RK: Unified fractional integral formulas for the multivariable H-function - II. J. Fract. Calc. 16, 99-110 (1999) MATHMathSciNet
43.
go back to reference Saigo, M, Saxena, RK: Unified fractional integral formulas for the multivariable H-function - III. J. Fract. Calc. 20, 45-68 (2001) MATHMathSciNet Saigo, M, Saxena, RK: Unified fractional integral formulas for the multivariable H-function - III. J. Fract. Calc. 20, 45-68 (2001) MATHMathSciNet
44.
45.
go back to reference Saigo, M, Saxena, RK, Ram, J: Fractional integration of the product of Appell function \(F_{3}\) and multivariable H-function. J. Fract. Calc. 27, 31-42 (2005) MathSciNet Saigo, M, Saxena, RK, Ram, J: Fractional integration of the product of Appell function \(F_{3}\) and multivariable H-function. J. Fract. Calc. 27, 31-42 (2005) MathSciNet
46.
go back to reference Srivastava, HM, Garg, M: Some integrals involving a general class of polynomials and multivariable H-function. Rev. Roum. Phys. 32, 685-692 (1987) MATHMathSciNet Srivastava, HM, Garg, M: Some integrals involving a general class of polynomials and multivariable H-function. Rev. Roum. Phys. 32, 685-692 (1987) MATHMathSciNet
47.
go back to reference Agarwal, P: Further results on fractional calculus of Saigo operator. Appl. Appl. Math. 7(2), 585-594 (2012) MATHMathSciNet Agarwal, P: Further results on fractional calculus of Saigo operator. Appl. Appl. Math. 7(2), 585-594 (2012) MATHMathSciNet
48.
go back to reference Srivastava, HM, Singh, NP: The integration of certain product of the multivariable H-function with a general class of polynomials. Rend. Circ. Mat. Palermo 32, 157-187 (1983) MATHMathSciNetCrossRef Srivastava, HM, Singh, NP: The integration of certain product of the multivariable H-function with a general class of polynomials. Rend. Circ. Mat. Palermo 32, 157-187 (1983) MATHMathSciNetCrossRef
49.
go back to reference Kilbas, AA, Saigo, M: H-Transforms: Theory and Application. Chapman & Hall/CRC, Boca Raton (2004) CrossRef Kilbas, AA, Saigo, M: H-Transforms: Theory and Application. Chapman & Hall/CRC, Boca Raton (2004) CrossRef
50.
go back to reference Kilbas, AA, Sebastian, N: Generalized fractional integration of Bessel function of first kind. Integral Transforms Spec. Funct. 19(12), 869-883 (2008) MATHMathSciNetCrossRef Kilbas, AA, Sebastian, N: Generalized fractional integration of Bessel function of first kind. Integral Transforms Spec. Funct. 19(12), 869-883 (2008) MATHMathSciNetCrossRef
51.
go back to reference Prabhakar, TR: A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7-15 (1971) MATHMathSciNet Prabhakar, TR: A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7-15 (1971) MATHMathSciNet
52.
go back to reference Gorenflo, R, Kilbas, A, Mainardi, F, Rogosin, S: Mittag-Leffler Function, Related Topics and Applications. Springer, Berlin (2014) CrossRef Gorenflo, R, Kilbas, A, Mainardi, F, Rogosin, S: Mittag-Leffler Function, Related Topics and Applications. Springer, Berlin (2014) CrossRef
53.
go back to reference Saxena, RK, Ram, J, Suthar, DL: Fractional calculus of generalized Mittag-Leffler functions. J. Indian Acad. Math. 31(1), 165-172 (2009) MATHMathSciNet Saxena, RK, Ram, J, Suthar, DL: Fractional calculus of generalized Mittag-Leffler functions. J. Indian Acad. Math. 31(1), 165-172 (2009) MATHMathSciNet
54.
go back to reference Kilbas, AA: Fractional calculus of the generalized Wright function. Fract. Calc. Appl. Anal. 8(2), 113-126 (2005) MATHMathSciNet Kilbas, AA: Fractional calculus of the generalized Wright function. Fract. Calc. Appl. Anal. 8(2), 113-126 (2005) MATHMathSciNet
55.
go back to reference Srivastava, HM, Saxena, RK, Ram, J: Some multidimensional fractional integral operations involving a general class of polynomials. J. Math. Anal. 193, 373-389 (1995) MATHMathSciNetCrossRef Srivastava, HM, Saxena, RK, Ram, J: Some multidimensional fractional integral operations involving a general class of polynomials. J. Math. Anal. 193, 373-389 (1995) MATHMathSciNetCrossRef
Metadata
Title
Generalized fractional integral operators and the multivariable H-function
Authors
Praveen Agarwal
Sergei V Rogosin
Erkinjon T Karimov
Mehar Chand
Publication date
01-12-2015
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2015
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-015-0878-y

Other articles of this Issue 1/2015

Journal of Inequalities and Applications 1/2015 Go to the issue

Premium Partner