Skip to main content
Top
Published in: Machine Vision and Applications 5/2016

01-07-2016 | Special Issue Paper

Generation and application of hyperspectral 3D plant models: methods and challenges

Authors: Jan Behmann, Anne-Katrin Mahlein, Stefan Paulus, Jan Dupuis, Heiner Kuhlmann, Erich-Christian Oerke, Lutz Plümer

Published in: Machine Vision and Applications | Issue 5/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hyperspectral imaging sensors have been introduced for measuring the health status of plants. Recently, they also have been used for close-range sensing of plant canopies with a highly complex architecture. However, the complex geometry of plants and their interaction with the illumination setting severely affect the spectral information obtained. Furthermore, the spatial component of analysis results gain in importance as higher plants are represented by multiple plant organs as leaves, stems and seed pods. The combination of hyperspectral images and 3D point clouds is a promising approach to face these problems. We present the generation and application of hyperspectral 3D plant models as a new, interesting application field for computer vision with a variety of challenging tasks. We sum up a geometric calibration method for hyperspectral pushbroom cameras using a reference object for the combination of spectral and spatial information. Furthermore, we show exemplarily new calibration and analysis methods enabled by the hyperspectral 3D models in an experiment with sugar beet plants. An improved normalization, a comparison of image and 3D analysis and the density estimation of infected surface points underline some of the new capabilities gained using this new data type. Based on such hyperspectral 3D models the effects of plant geometry and sensor configuration can be quantified and modeled. In future, reflectance models can be used to remove or weaken the geometry-related effects in hyperspectral images and, therefore, have the potential to improve automated plant phenotyping significantly.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bannehr, L., Luhmann, T., Piechel, J., Roelfs, T., Schmidt, A.: Extracting roof parameters and heat bridges over the city of Oldenburg from hyperspectral, thermal, and airborne laser scanning data. ISPRS Int Arch Photogramm Remote Sens Spat Inf Sci 3819, 17–22 (2011) Bannehr, L., Luhmann, T., Piechel, J., Roelfs, T., Schmidt, A.: Extracting roof parameters and heat bridges over the city of Oldenburg from hyperspectral, thermal, and airborne laser scanning data. ISPRS Int Arch Photogramm Remote Sens Spat Inf Sci 3819, 17–22 (2011)
2.
go back to reference Bareth, G., Aasen, H., Bendig, J., Gnyp, M.L., Bolten, A., Jung, A., Michels, R., Soukkamäki, J.: Low-weight and UAV-based hyperspectral full-frame cameras for monitoring crops: spectral comparison with portable spectroradiometer measurements. Photogrammetrie-Fernerkundung-Geoinformation 2015(1), 69–79 (2015) Bareth, G., Aasen, H., Bendig, J., Gnyp, M.L., Bolten, A., Jung, A., Michels, R., Soukkamäki, J.: Low-weight and UAV-based hyperspectral full-frame cameras for monitoring crops: spectral comparison with portable spectroradiometer measurements. Photogrammetrie-Fernerkundung-Geoinformation 2015(1), 69–79 (2015)
3.
go back to reference Behmann, J., Mahlein, A.K., Paulus, S., Kuhlmann, H., Oerke, E.C., Plümer, L.: Generation and application of hyperspectral 3d plant models. In: Computer Vision-ECCV 2014 Workshops, pp. 117–130. Springer, Berlin (2014) Behmann, J., Mahlein, A.K., Paulus, S., Kuhlmann, H., Oerke, E.C., Plümer, L.: Generation and application of hyperspectral 3d plant models. In: Computer Vision-ECCV 2014 Workshops, pp. 117–130. Springer, Berlin (2014)
4.
go back to reference Behmann, J., Mahlein, A.K., Paulus, S., Kuhlmann, H., Oerke, E.C., Plümer, L.: Calibration of hyperspectral close-range pushbroom cameras for plant phenotyping. ISPRS J Photogramm Remote Sens 106, 172–182 (2015)CrossRef Behmann, J., Mahlein, A.K., Paulus, S., Kuhlmann, H., Oerke, E.C., Plümer, L.: Calibration of hyperspectral close-range pushbroom cameras for plant phenotyping. ISPRS J Photogramm Remote Sens 106, 172–182 (2015)CrossRef
5.
go back to reference Behmann, J., Steinrücken, J., Plümer, L.: Detection of early plant stress responses in hyperspectral images. ISPRS J Photogramm Remote Sens 93, 98–111 (2014)CrossRef Behmann, J., Steinrücken, J., Plümer, L.: Detection of early plant stress responses in hyperspectral images. ISPRS J Photogramm Remote Sens 93, 98–111 (2014)CrossRef
6.
go back to reference Bellasio, C., Olejníčková, J., Tesa, R., Sebela, D., Nedbal, L.: Computer reconstruction of plant growth and chlorophyll fluorescence emission in three spatial dimensions. Sensors 12(1), 1052–71 (2012)CrossRef Bellasio, C., Olejníčková, J., Tesa, R., Sebela, D., Nedbal, L.: Computer reconstruction of plant growth and chlorophyll fluorescence emission in three spatial dimensions. Sensors 12(1), 1052–71 (2012)CrossRef
7.
go back to reference Bergsträsser, S., Fanourakis, D., Schmittgen, S., Cendrero-Mateo, M.P., Jansen, M., Scharr, H., Rascher, U.: HyperART: non-invasive quantification of leaf traits using hyperspectral absorption–reflectance–transmittance imaging. Plant Methods 11, 1 (2015)CrossRef Bergsträsser, S., Fanourakis, D., Schmittgen, S., Cendrero-Mateo, M.P., Jansen, M., Scharr, H., Rascher, U.: HyperART: non-invasive quantification of leaf traits using hyperspectral absorption–reflectance–transmittance imaging. Plant Methods 11, 1 (2015)CrossRef
8.
go back to reference Biskup, B., Scharr, H., Schurr, U., Rascher, U.: A stereo imaging system for measuring structural parameters of plant canopies. Plant Cell Environ. 30(10), 1299–1308 (2007)CrossRef Biskup, B., Scharr, H., Schurr, U., Rascher, U.: A stereo imaging system for measuring structural parameters of plant canopies. Plant Cell Environ. 30(10), 1299–1308 (2007)CrossRef
9.
go back to reference Bousquet, L., Lachérade, S., Jacquemoud, S., Moya, I.: Leaf BRDF measurements and model for specular and diffuse components differentiation. Remote Sens. Environ. 98(2–3), 201–211 (2005)CrossRef Bousquet, L., Lachérade, S., Jacquemoud, S., Moya, I.: Leaf BRDF measurements and model for specular and diffuse components differentiation. Remote Sens. Environ. 98(2–3), 201–211 (2005)CrossRef
10.
go back to reference Burkart, A., Aasen, H., Alonso, L., Menz, G., Bareth, G., Rascher, U.: Angular dependency of hyperspectral measurements over wheat characterized by a novel UAV based goniometer. Remote Sens. 7(1), 725–746 (2015)CrossRef Burkart, A., Aasen, H., Alonso, L., Menz, G., Bareth, G., Rascher, U.: Angular dependency of hyperspectral measurements over wheat characterized by a novel UAV based goniometer. Remote Sens. 7(1), 725–746 (2015)CrossRef
11.
go back to reference Comar, A., Baret, F., Viénot, F., Yan, L., de Solan, B.: Wheat leaf bidirectional reflectance measurements: description and quantification of the volume, specular and hot-spot scattering features. Remote Sens. Environ. 121, 26–35 (2012)CrossRef Comar, A., Baret, F., Viénot, F., Yan, L., de Solan, B.: Wheat leaf bidirectional reflectance measurements: description and quantification of the volume, specular and hot-spot scattering features. Remote Sens. Environ. 121, 26–35 (2012)CrossRef
12.
go back to reference Dana, K.J., Van Ginneken, B., Nayar, S.K., Koenderink, J.J.: Reflectance and texture of real-world surfaces. ACM Trans. Graph. (TOG) 18(1), 1–34 (1999)CrossRef Dana, K.J., Van Ginneken, B., Nayar, S.K., Koenderink, J.J.: Reflectance and texture of real-world surfaces. ACM Trans. Graph. (TOG) 18(1), 1–34 (1999)CrossRef
13.
go back to reference Dupuis, J., Kuhlmann, H.: High-precision surface inspection: uncertainty evaluation within an accuracy range of 15\(\mu \)m with triangulation-based laser line scanners. J. Appl. Geod. 8(2), 109–118 (2014) Dupuis, J., Kuhlmann, H.: High-precision surface inspection: uncertainty evaluation within an accuracy range of 15\(\mu \)m with triangulation-based laser line scanners. J. Appl. Geod. 8(2), 109–118 (2014)
14.
go back to reference Fiorani, F., Rascher, U., Jahnke, S., Schurr, U.: Imaging plants dynamics in heterogenic environments. Curr. Opin. Biotechnol. 23, 227–235 (2012)CrossRef Fiorani, F., Rascher, U., Jahnke, S., Schurr, U.: Imaging plants dynamics in heterogenic environments. Curr. Opin. Biotechnol. 23, 227–235 (2012)CrossRef
15.
go back to reference Grahn, H., Geladi, P.: Techniques and Applications of Hyperspectral Image Analysis. Wiley, New York (2007) Grahn, H., Geladi, P.: Techniques and Applications of Hyperspectral Image Analysis. Wiley, New York (2007)
16.
go back to reference Gupta, R., Hartley, R.I.: Linear pushbroom cameras. IEEE Trans. Pattern Anal. Mach. Intell. 19(9), 963–975 (1997)CrossRef Gupta, R., Hartley, R.I.: Linear pushbroom cameras. IEEE Trans. Pattern Anal. Mach. Intell. 19(9), 963–975 (1997)CrossRef
17.
go back to reference Haralick, B.M., Lee, C.N., Ottenberg, K., Nölle, M.: Review and analysis of solutions of the three point perspective pose estimation problem. Int. J. Comput. Vis. 13(3), 331–356 (1994)CrossRef Haralick, B.M., Lee, C.N., Ottenberg, K., Nölle, M.: Review and analysis of solutions of the three point perspective pose estimation problem. Int. J. Comput. Vis. 13(3), 331–356 (1994)CrossRef
18.
go back to reference Hosoi, F., Nakabayashi, K., Omasa, K.: 3-D modeling of tomato canopies using a high-resolution portable scanning lidar for extracting structural information. Sensors 11(2), 2166–2174 (2011)CrossRef Hosoi, F., Nakabayashi, K., Omasa, K.: 3-D modeling of tomato canopies using a high-resolution portable scanning lidar for extracting structural information. Sensors 11(2), 2166–2174 (2011)CrossRef
19.
go back to reference Jacquemoud, S., Verhoef, W., Baret, F., Bacour, C., Zarco-Tejada, P.J., Asner, G.P., François, C., Ustin, S.L.: PROSPECT+SAIL models: a review of use for vegetation characterization. Remote Sens. Environ. 113(Supplement 1), S56–S66 (2009)CrossRef Jacquemoud, S., Verhoef, W., Baret, F., Bacour, C., Zarco-Tejada, P.J., Asner, G.P., François, C., Ustin, S.L.: PROSPECT+SAIL models: a review of use for vegetation characterization. Remote Sens. Environ. 113(Supplement 1), S56–S66 (2009)CrossRef
20.
go back to reference Kim, Y., Glenn, D.M., Park, J., Ngugi, H.K., Lehman, B.L.: Hyperspectral image analysis for water stress detection of apple trees. Comput. Electron. Agric. 77(2), 155–160 (2011)CrossRef Kim, Y., Glenn, D.M., Park, J., Ngugi, H.K., Lehman, B.L.: Hyperspectral image analysis for water stress detection of apple trees. Comput. Electron. Agric. 77(2), 155–160 (2011)CrossRef
21.
go back to reference Kuester, T., Spengler, D., Barczi, J.F., Segl, K., Hostert, P., Kaufmann, H.: Simulation of multitemporal and hyperspectral vegetation canopy bidirectional reflectance using detailed virtual 3-D canopy models. Geosci. Remote Sens. 52(4), 2096–2108 (2013)CrossRef Kuester, T., Spengler, D., Barczi, J.F., Segl, K., Hostert, P., Kaufmann, H.: Simulation of multitemporal and hyperspectral vegetation canopy bidirectional reflectance using detailed virtual 3-D canopy models. Geosci. Remote Sens. 52(4), 2096–2108 (2013)CrossRef
22.
go back to reference Liang, J., Zia, A., Zhou, J., Sirault, X.: 3D plant modelling via hyperspectral imaging. In: 2013 IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 172–177 (2013) Liang, J., Zia, A., Zhou, J., Sirault, X.: 3D plant modelling via hyperspectral imaging. In: 2013 IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 172–177 (2013)
23.
go back to reference Mahlein, A.K., Oerke, E.C., Steiner, U., Dehne, H.W.: Recent advances in sensing plant diseases for precision crop protection. Eur. J. Plant Pathol. 133(1), 197–209 (2012)CrossRef Mahlein, A.K., Oerke, E.C., Steiner, U., Dehne, H.W.: Recent advances in sensing plant diseases for precision crop protection. Eur. J. Plant Pathol. 133(1), 197–209 (2012)CrossRef
24.
go back to reference Mahlein, A.K., Steiner, U., Dehne, H.W., Oerke, E.C.: Spectral signatures of sugar beet leaves for the detection and differentiation of diseases. Precis. Agric. 11(4), 413–431 (2010)CrossRef Mahlein, A.K., Steiner, U., Dehne, H.W., Oerke, E.C.: Spectral signatures of sugar beet leaves for the detection and differentiation of diseases. Precis. Agric. 11(4), 413–431 (2010)CrossRef
25.
go back to reference Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. CRC Press, Boca Raton (2002) Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. CRC Press, Boca Raton (2002)
26.
go back to reference Omasa, K., Hosoi, F., Konishi, A.: 3D Lidar imaging for detecting and understanding plant responses and canopy structure. J. Exp. Botany 58(4), 881–898 (2007)CrossRef Omasa, K., Hosoi, F., Konishi, A.: 3D Lidar imaging for detecting and understanding plant responses and canopy structure. J. Exp. Botany 58(4), 881–898 (2007)CrossRef
28.
go back to reference Paulus, S., Behmann, J., Mahlein, A.K., Plümer, L., Kuhlmann, H.: Low-cost 3D systems—well suited tools for plant phenotyping. Sensors 14, 3001–3018 (2014)CrossRef Paulus, S., Behmann, J., Mahlein, A.K., Plümer, L., Kuhlmann, H.: Low-cost 3D systems—well suited tools for plant phenotyping. Sensors 14, 3001–3018 (2014)CrossRef
29.
go back to reference Paulus, S., Dupuis, J., Mahlein, A., Kuhlmann, H.: Surface feature based classification of plant organs from 3D laserscanned point clouds for plant phenotyping. BMC Bioinf. 14, 238–251 (2013)CrossRef Paulus, S., Dupuis, J., Mahlein, A., Kuhlmann, H.: Surface feature based classification of plant organs from 3D laserscanned point clouds for plant phenotyping. BMC Bioinf. 14, 238–251 (2013)CrossRef
30.
go back to reference Paulus, S., Dupuis, J., Mahlein, A.K., Kuhlmann, H.: Surface feature based classification of plant organs from 3D laserscanned point clouds for plant phenotyping. BMC Bioinf. 14(1), 238–251 (2013)CrossRef Paulus, S., Dupuis, J., Mahlein, A.K., Kuhlmann, H.: Surface feature based classification of plant organs from 3D laserscanned point clouds for plant phenotyping. BMC Bioinf. 14(1), 238–251 (2013)CrossRef
31.
go back to reference Paulus, S., Eichert, T., Goldbach, H.E., Kuhlmann, H.: Limits of active laser triangulation as an instrument for high precision plant imaging. Sensors 14(2), 2489–2509 (2014)CrossRef Paulus, S., Eichert, T., Goldbach, H.E., Kuhlmann, H.: Limits of active laser triangulation as an instrument for high precision plant imaging. Sensors 14(2), 2489–2509 (2014)CrossRef
32.
go back to reference Paulus, S., Schumann, H., Leon, J., Kuhlmann, H.: A high precision laser scanning system for capturing 3D plant architecture and analysing growth of cereal plants. Biosyst. Eng. 121, 1–11 (2014)CrossRef Paulus, S., Schumann, H., Leon, J., Kuhlmann, H.: A high precision laser scanning system for capturing 3D plant architecture and analysing growth of cereal plants. Biosyst. Eng. 121, 1–11 (2014)CrossRef
33.
go back to reference Schöler, F., Steinhage, V.: Towards an automated 3D reconstruction of plant architecture. In: Proceedings of the 4th International Conference on Applications of Graph Transformations with Industrial Relevance, pp. 51–64. Springer, Berlin (2012) Schöler, F., Steinhage, V.: Towards an automated 3D reconstruction of plant architecture. In: Proceedings of the 4th International Conference on Applications of Graph Transformations with Industrial Relevance, pp. 51–64. Springer, Berlin (2012)
34.
go back to reference Tilly, N., Hoffmeister, D., Liang, H., Cao, Q., Liu, Y., Miao, Y., Bareth, G.: Evaluation of terrestrial laser scanning for rice growth monitoring. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, ISPRS Congress, Melbourne, Australia XXXIX, pp. 351–356 (2012) Tilly, N., Hoffmeister, D., Liang, H., Cao, Q., Liu, Y., Miao, Y., Bareth, G.: Evaluation of terrestrial laser scanning for rice growth monitoring. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, ISPRS Congress, Melbourne, Australia XXXIX, pp. 351–356 (2012)
35.
go back to reference Vos, J., Evers, J., Buck-Sorlin, G., Andrieu, B., Chelle, M., De Visser, P.: Functional-structural plant modelling: a new versatile tool in crop science. J. Exp. Botany 61(8), 2101–2115 (2010)CrossRef Vos, J., Evers, J., Buck-Sorlin, G., Andrieu, B., Chelle, M., De Visser, P.: Functional-structural plant modelling: a new versatile tool in crop science. J. Exp. Botany 61(8), 2101–2115 (2010)CrossRef
36.
go back to reference Wagner, B., Santini, S., Ingensand, H., Gärtner, H.: A tool to model 3D coarse-root development with annual resolution. Plant Soil 346(1–2), 79–96 (2011)CrossRef Wagner, B., Santini, S., Ingensand, H., Gärtner, H.: A tool to model 3D coarse-root development with annual resolution. Plant Soil 346(1–2), 79–96 (2011)CrossRef
Metadata
Title
Generation and application of hyperspectral 3D plant models: methods and challenges
Authors
Jan Behmann
Anne-Katrin Mahlein
Stefan Paulus
Jan Dupuis
Heiner Kuhlmann
Erich-Christian Oerke
Lutz Plümer
Publication date
01-07-2016
Publisher
Springer Berlin Heidelberg
Published in
Machine Vision and Applications / Issue 5/2016
Print ISSN: 0932-8092
Electronic ISSN: 1432-1769
DOI
https://doi.org/10.1007/s00138-015-0716-8

Other articles of this Issue 5/2016

Machine Vision and Applications 5/2016 Go to the issue

Premium Partner