Skip to main content
Top
Published in: Journal of Materials Science 41/2023

01-11-2023 | Computation & theory

Generative AI-enabled microstructure design of porous thermal interface materials with desired effective thermal conductivity

Authors: Chengjie Du, Guisheng Zou, Jinpeng Huo, Bin Feng, Zhanwen A, Lei Liu

Published in: Journal of Materials Science | Issue 41/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The conventional approach to achieve desired effective thermal conductivity (ETC) of porous thermal interface materials (TIM) is processing-microstructure-properties forward analysis, which contains various trial-and-error cycles and is hence inefficient for materials development. Establishing the linkage from ETC to microstructure is essential; however, the recently developed methods including microstructure characterization and reconstruction are suffering from limited accuracy and computational efficiency. To address these problem, in this paper, generative artificial intelligence (AI) model was first implemented to design microstructure of porous TIM with desired ETC. Here, we introduced a representative porous TIM, sintered silver, and a typical kind of generative AI model, conditional generative adversarial network (CGAN), as an example for illustration. The CGAN model can efficiently generate sharp and crisp microstructures of sintered Ag with excellent morphology realism. Besides visual inspection, the ETC values of generated microstructures were evaluated by convolution neural network (CNN) model. It was found that the CGAN model also exhibits satisfactory performance in physical meaning, since the determination coefficient R2 between target ETC and CNN predicted ETC values is 0.985. These results confirm the effectiveness of generative AI model capable of synthesizing microstructure of porous TIM with desired ETC, and not limited to porous TIM, the approaches present here can also be generalized and applicable to design microstructure of other porous media and composites.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hong M, Chen Z-G, Yang L, Chasapis TC, Kang SD, Zou YC, Auchterlonie GJ, Kanatzidis MG, Snyder GJ, Zou J (2017) Enhancing the thermoelectric performance of SnSe1−xTex nanoplates through band engineering. J Mater Chem A 5:10713–10721CrossRef Hong M, Chen Z-G, Yang L, Chasapis TC, Kang SD, Zou YC, Auchterlonie GJ, Kanatzidis MG, Snyder GJ, Zou J (2017) Enhancing the thermoelectric performance of SnSe1−xTex nanoplates through band engineering. J Mater Chem A 5:10713–10721CrossRef
2.
go back to reference Shi XL, Wu AY, Liu WD, Moshwan R, Wang Y, Chen Z-G, Zou J (2018) Polycrystalline SnSe with extraordinary thermoelectric property via nanoporous design. ACS Nano 12:11417–11425CrossRef Shi XL, Wu AY, Liu WD, Moshwan R, Wang Y, Chen Z-G, Zou J (2018) Polycrystalline SnSe with extraordinary thermoelectric property via nanoporous design. ACS Nano 12:11417–11425CrossRef
3.
go back to reference Shi X-L, Liu W-D, Li M, Sun Q, Xu S-D, Du D, Zou J, Chen Z-G (2022) A solvothermal synthetic environmental design for high-performance SnSe-based thermoelectric materials. Adv Energy Mater 12:2200670CrossRef Shi X-L, Liu W-D, Li M, Sun Q, Xu S-D, Du D, Zou J, Chen Z-G (2022) A solvothermal synthetic environmental design for high-performance SnSe-based thermoelectric materials. Adv Energy Mater 12:2200670CrossRef
4.
go back to reference Fujita T, Guan P, McKenna K et al (2012) Atomic origins of the high catalytic activity of nanoporous gold. Nat mater 11:775–780CrossRef Fujita T, Guan P, McKenna K et al (2012) Atomic origins of the high catalytic activity of nanoporous gold. Nat mater 11:775–780CrossRef
5.
go back to reference Zou XX, Yang YL, Chen HJ, Shi X-L, Song SL, Chen Z-G (2021) Hierarchical meso/macro-porous TiO2/graphitic carbon nitride nanofibers with enhanced hydrogen evolution. Mater Des 202:109542CrossRef Zou XX, Yang YL, Chen HJ, Shi X-L, Song SL, Chen Z-G (2021) Hierarchical meso/macro-porous TiO2/graphitic carbon nitride nanofibers with enhanced hydrogen evolution. Mater Des 202:109542CrossRef
6.
go back to reference Abdolrahim N, Bahr DF, Revard B, Reilly C, Ye J, Balk TJ, Zbib HM (2013) The mechanical response of core-shell structures for nanoporous metallic materials. Philos Mag 93:736–748CrossRef Abdolrahim N, Bahr DF, Revard B, Reilly C, Ye J, Balk TJ, Zbib HM (2013) The mechanical response of core-shell structures for nanoporous metallic materials. Philos Mag 93:736–748CrossRef
7.
go back to reference Ke H, Loaiza A, Jimenez AG, Bahr DF, Mastorakos I (2022) A multiscale simulation approach for the mechanical response of copper/nickel nanofoams with experimental validation. J Eng Mater Technolo 144:011011CrossRef Ke H, Loaiza A, Jimenez AG, Bahr DF, Mastorakos I (2022) A multiscale simulation approach for the mechanical response of copper/nickel nanofoams with experimental validation. J Eng Mater Technolo 144:011011CrossRef
8.
go back to reference Xu L, Guo M, Hung C-T, Shi X-L, Yuan YW, Zhang XM, Jin R-H, Li W, Dong Q, Zhao DY (2023) Chiral skeletons of mesoporous silica nanospheres to mitigate alzheimer’s β-amyloid aggregation. J Am Chem Soc 145:7810–7819CrossRef Xu L, Guo M, Hung C-T, Shi X-L, Yuan YW, Zhang XM, Jin R-H, Li W, Dong Q, Zhao DY (2023) Chiral skeletons of mesoporous silica nanospheres to mitigate alzheimer’s β-amyloid aggregation. J Am Chem Soc 145:7810–7819CrossRef
9.
go back to reference Tang FQ, Li LL, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv mater 24:1504–1534CrossRef Tang FQ, Li LL, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv mater 24:1504–1534CrossRef
10.
go back to reference Liu P, Luo YY, Liu JM, Chiang SW, Wu D, Dai WY, Kang FY, Lin W, Wong C-P, Yang C (2021) Laminar metal foam: a soft and highly thermally conductive thermal interface material with a reliable joint for semiconductor packaging. ACS Appl Mat Interfaces 13:15791–15801CrossRef Liu P, Luo YY, Liu JM, Chiang SW, Wu D, Dai WY, Kang FY, Lin W, Wong C-P, Yang C (2021) Laminar metal foam: a soft and highly thermally conductive thermal interface material with a reliable joint for semiconductor packaging. ACS Appl Mat Interfaces 13:15791–15801CrossRef
11.
go back to reference Chen TF, Siow KS (2021) Comparing the mechanical and thermal-electrical properties of sintered copper (Cu) and sintered silver (Ag) joints. J Alloy Compd 866:158783CrossRef Chen TF, Siow KS (2021) Comparing the mechanical and thermal-electrical properties of sintered copper (Cu) and sintered silver (Ag) joints. J Alloy Compd 866:158783CrossRef
12.
go back to reference Feng B, Shen DZ, Wang WG, Deng ZY, Lin LC, Ren H, Wu AP, Zou GS, Liu L, Zhou YN (2019) Cooperative bilayer of lattice-disordered nanoparticles as room-temperature sinterable nanoarchitecture for device integrations. ACS Appl Mat Interfaces 11:16972–16980CrossRef Feng B, Shen DZ, Wang WG, Deng ZY, Lin LC, Ren H, Wu AP, Zou GS, Liu L, Zhou YN (2019) Cooperative bilayer of lattice-disordered nanoparticles as room-temperature sinterable nanoarchitecture for device integrations. ACS Appl Mat Interfaces 11:16972–16980CrossRef
13.
go back to reference Razeeb KM, Dalton E, Cross GLW, Robinson AJ (2018) Present and future thermal interface materials for electronic devices. Int Mater Rev 63:1–21CrossRef Razeeb KM, Dalton E, Cross GLW, Robinson AJ (2018) Present and future thermal interface materials for electronic devices. Int Mater Rev 63:1–21CrossRef
14.
go back to reference Guo XX, Cheng SJ, Cai WW, Zhang YF, Zhang X-a (2021) A review of carbon-based thermal interface materials: Mechanism, thermal measurements and thermal properties. Mat Des 209:109936 Guo XX, Cheng SJ, Cai WW, Zhang YF, Zhang X-a (2021) A review of carbon-based thermal interface materials: Mechanism, thermal measurements and thermal properties. Mat Des 209:109936
15.
go back to reference Gillman A, Roelofs MJGH, Matouš K, Kouznetsova VG, van der Sluis O, van Maris M (2017) Microstructure statistics–property relations of silver particle-based interconnects. Mater Des 118:304–313CrossRef Gillman A, Roelofs MJGH, Matouš K, Kouznetsova VG, van der Sluis O, van Maris M (2017) Microstructure statistics–property relations of silver particle-based interconnects. Mater Des 118:304–313CrossRef
16.
go back to reference Ordonez-Miranda J, Hermens M, Nikitin I et al (2016) Measurement and modeling of the effective thermal conductivity of sintered silver pastes. Int J Therm Sci 108:185–194CrossRef Ordonez-Miranda J, Hermens M, Nikitin I et al (2016) Measurement and modeling of the effective thermal conductivity of sintered silver pastes. Int J Therm Sci 108:185–194CrossRef
17.
go back to reference Wei H, Zhao SS, Rong QY, Bao H (2018) Predicting the effective thermal conductivities of composite materials and porous media by machine learning methods. Int J Heat Mass Transf 127:908–916CrossRef Wei H, Zhao SS, Rong QY, Bao H (2018) Predicting the effective thermal conductivities of composite materials and porous media by machine learning methods. Int J Heat Mass Transf 127:908–916CrossRef
18.
go back to reference Rong QY, Wei H, Huang XY, Bao H (2019) Predicting the effective thermal conductivity of composites from cross sections images using deep learning methods. Compos Sci Technol 184:107861CrossRef Rong QY, Wei H, Huang XY, Bao H (2019) Predicting the effective thermal conductivity of composites from cross sections images using deep learning methods. Compos Sci Technol 184:107861CrossRef
19.
go back to reference Du CJ, Zou GS, Zhanwen A, Lu BZ, Feng B, Huo JP, Xiao Y, Jiang Y, Liu L (2023) Highly accurate and efficient prediction of effective thermal conductivity of sintered silver based on deep learning method. Int J Heat Mass Transf 201:123654CrossRef Du CJ, Zou GS, Zhanwen A, Lu BZ, Feng B, Huo JP, Xiao Y, Jiang Y, Liu L (2023) Highly accurate and efficient prediction of effective thermal conductivity of sintered silver based on deep learning method. Int J Heat Mass Transf 201:123654CrossRef
20.
go back to reference Wang Z-L, Adachi Y (2019) Property prediction and properties-to-microstructure inverse analysis of steels by a machine-learning approach. Mater Sci Eng A 744:661–670CrossRef Wang Z-L, Adachi Y (2019) Property prediction and properties-to-microstructure inverse analysis of steels by a machine-learning approach. Mater Sci Eng A 744:661–670CrossRef
21.
go back to reference Li X, Liu ZL, Cui SQ, Luo CC, Li CF, Zhuang Z (2019) Predicting the effective mechanical property of heterogeneous materials by image based modeling and deep learning. Comput Methods Appl Mech Engrg 347:735–753CrossRef Li X, Liu ZL, Cui SQ, Luo CC, Li CF, Zhuang Z (2019) Predicting the effective mechanical property of heterogeneous materials by image based modeling and deep learning. Comput Methods Appl Mech Engrg 347:735–753CrossRef
22.
go back to reference Qian C, Tan RK, Ye WJ (2022) Design of architectured composite materials with an efficient, adaptive artificial neural network-based generative design method. Acta Mater 225:117548CrossRef Qian C, Tan RK, Ye WJ (2022) Design of architectured composite materials with an efficient, adaptive artificial neural network-based generative design method. Acta Mater 225:117548CrossRef
23.
go back to reference Yang ZJ, Li XL, Brinson LC, Choudhary AN, Chen W, Agrawal A (2018) Microstructural materials design via deep adversarial learning methodology. J Mech Des 140:111416CrossRef Yang ZJ, Li XL, Brinson LC, Choudhary AN, Chen W, Agrawal A (2018) Microstructural materials design via deep adversarial learning methodology. J Mech Des 140:111416CrossRef
24.
go back to reference Liu X, Tian S, Tao F, Yu WB (2021) A review of artificial neural networks in the constitutive modeling of composite materials. Compos Part B Eng 224:109152CrossRef Liu X, Tian S, Tao F, Yu WB (2021) A review of artificial neural networks in the constitutive modeling of composite materials. Compos Part B Eng 224:109152CrossRef
25.
go back to reference Jabbar R, Jabbar R, Kamoun S (2022) Recent progress in generative adversarial networks applied to inversely designing inorganic materials: A brief review. Comput Mater Sci 213:111612CrossRef Jabbar R, Jabbar R, Kamoun S (2022) Recent progress in generative adversarial networks applied to inversely designing inorganic materials: A brief review. Comput Mater Sci 213:111612CrossRef
26.
go back to reference Guo K, Yang ZZ, Yu C-H, Buehler MJ (2021) Artificial intelligence and machine learning in design of mechanical materials. Mater Horiz 8:1153–1172CrossRef Guo K, Yang ZZ, Yu C-H, Buehler MJ (2021) Artificial intelligence and machine learning in design of mechanical materials. Mater Horiz 8:1153–1172CrossRef
28.
go back to reference Mao YW, Yang ZJ, Jha D, Paul A, W-k Liao A, Choudhary AA (2022) Generative Adversarial Networks and Mixture Density Networks-Based Inverse Modeling for Microstructural Materials Design. Integr Mater Manuf Innov 11:637–647CrossRef Mao YW, Yang ZJ, Jha D, Paul A, W-k Liao A, Choudhary AA (2022) Generative Adversarial Networks and Mixture Density Networks-Based Inverse Modeling for Microstructural Materials Design. Integr Mater Manuf Innov 11:637–647CrossRef
29.
go back to reference Zheng Q, Zhang DX (2022) Digital rock reconstruction with user-defined properties using conditional generative adversarial networks. Transp Porous Media 144:255–281CrossRef Zheng Q, Zhang DX (2022) Digital rock reconstruction with user-defined properties using conditional generative adversarial networks. Transp Porous Media 144:255–281CrossRef
30.
go back to reference van Dis EA, Bollen J, Zuidema W, van Rooij R, Bockting CL (2023) ChatGPT: five priorities for research. Nature 614:224–226CrossRef van Dis EA, Bollen J, Zuidema W, van Rooij R, Bockting CL (2023) ChatGPT: five priorities for research. Nature 614:224–226CrossRef
31.
go back to reference Abdolahnejad M, Liu PX (2020) Deep learning for face image synthesis and semantic manipulations: a review and future perspectives. Artif Intell Rev 53:5847–5880CrossRef Abdolahnejad M, Liu PX (2020) Deep learning for face image synthesis and semantic manipulations: a review and future perspectives. Artif Intell Rev 53:5847–5880CrossRef
32.
go back to reference Huang SS, Jin X, Jiang Q, Liu L (2022) Deep learning for image colorization: Current and future prospects. Eng Appl Artif Intell 114:105006CrossRef Huang SS, Jin X, Jiang Q, Liu L (2022) Deep learning for image colorization: Current and future prospects. Eng Appl Artif Intell 114:105006CrossRef
33.
go back to reference Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. Adv Neural Inf Process Syst 3:2672–2680 Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. Adv Neural Inf Process Syst 3:2672–2680
34.
go back to reference Nguyen PC, Vlassis NN, Bahmani B, Sun WC, Udaykumar HS, Baek SS (2022) Synthesizing controlled microstructures of porous media using generative adversarial networks and reinforcement learning. Sci Rep 12:9034CrossRef Nguyen PC, Vlassis NN, Bahmani B, Sun WC, Udaykumar HS, Baek SS (2022) Synthesizing controlled microstructures of porous media using generative adversarial networks and reinforcement learning. Sci Rep 12:9034CrossRef
35.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classification with deep convolutional neural networks. Commun ACM 60:84–90CrossRef Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classification with deep convolutional neural networks. Commun ACM 60:84–90CrossRef
36.
go back to reference Chun S, Roy S, Nguyen YT, Choi JB, Udaykumar HS, Baek SS (2020) Deep learning for synthetic microstructure generation in a materials-by-design framework for heterogeneous energetic materials. Sci Rep 10:13307CrossRef Chun S, Roy S, Nguyen YT, Choi JB, Udaykumar HS, Baek SS (2020) Deep learning for synthetic microstructure generation in a materials-by-design framework for heterogeneous energetic materials. Sci Rep 10:13307CrossRef
37.
go back to reference Wang Z, Yang WH, Xiang LY, Wang X, Zhao YJ, Xiao YH, Liu PW, Liu YC, Banu M, Zikanov O, Chen L (2022) Multi-input convolutional network for ultrafast simulation of field evolvement. Patterns 3:100494CrossRef Wang Z, Yang WH, Xiang LY, Wang X, Zhao YJ, Xiao YH, Liu PW, Liu YC, Banu M, Zikanov O, Chen L (2022) Multi-input convolutional network for ultrafast simulation of field evolvement. Patterns 3:100494CrossRef
38.
go back to reference Du CJ, Zou GS, Feng B, Huo JP, Xiao Y, Wang WG, Liu L (2023) Predicting Effective Thermal Conductivity of Sintered Silver by Microstructural-Simulation-Based Machine Learning. J Electro Mater 52:2347–2358CrossRef Du CJ, Zou GS, Feng B, Huo JP, Xiao Y, Wang WG, Liu L (2023) Predicting Effective Thermal Conductivity of Sintered Silver by Microstructural-Simulation-Based Machine Learning. J Electro Mater 52:2347–2358CrossRef
39.
go back to reference Wei H, Bao H, Ruan XL (2020) Machine learning prediction of thermal transport in porous media with physics-based descriptors. Int J Heat Mass Transf 160:120176CrossRef Wei H, Bao H, Ruan XL (2020) Machine learning prediction of thermal transport in porous media with physics-based descriptors. Int J Heat Mass Transf 160:120176CrossRef
Metadata
Title
Generative AI-enabled microstructure design of porous thermal interface materials with desired effective thermal conductivity
Authors
Chengjie Du
Guisheng Zou
Jinpeng Huo
Bin Feng
Zhanwen A
Lei Liu
Publication date
01-11-2023
Publisher
Springer US
Published in
Journal of Materials Science / Issue 41/2023
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-023-09018-w

Other articles of this Issue 41/2023

Journal of Materials Science 41/2023 Go to the issue

Premium Partners