Skip to main content
Top

2019 | OriginalPaper | Chapter

14. Generative Low-Dose CT Image Denoising

Authors : Qingsong Yang, Pingkun Yan, Yanbo Zhang, Hengyong Yu, Yongyi Shi, Xuanqin Mou, Mannudeep K. Kalra, Yi Zhang, Ling Sun, Ge Wang

Published in: Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The continuous development and extensive use of CT in medical practice have raised a public concern over the associated radiation dose to patients. Reducing the radiation dose may lead to increased noise and artifacts, which can adversely affect radiologists’ judgment and confidence. Hence, advanced image reconstruction from low-dose CT data is needed to improve the diagnostic performance, which is a challenging problem due to its ill-posed nature. Over the past years, various low-dose CT methods have produced impressive results. However, most of the algorithms developed for this application, including the recently popularized deep learning techniques, aim for minimizing the mean squared error (MSE) between a denoised CT image and the ground truth under generic penalties. Although the peak signal-to-noise ratio (PSNR) is improved, MSE- or weighted-MSE-based methods can compromise the visibility of important structural details after aggressive denoising. This paper introduces a new CT image denoising method based on the generative adversarial network (GAN) with Wasserstein distance and perceptual similarity. The Wasserstein distance is a key concept of the optimal transport theory, and promises to improve the performance of GAN. The perceptual loss suppresses noise by comparing the perceptual features of a denoised output against those of the ground truth in an established feature space, while the GAN focuses more on migrating the data noise distribution from strong to weak statistically. Therefore, our proposed method transfers our knowledge of visual perception to the image denoising task and is capable of not only reducing the image noise level but also trying to keep the critical information at the same time. Promising results have been obtained in our experiments with clinical CT images.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M et al (2016) Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv:1603.04467 Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M et al (2016) Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv:​1603.​04467
3.
go back to reference Arjovsky M, Bottou L (2017) Towards principled methods for training generative adversarial networks. In: NIPS 2016 workshop on adversarial training. In review for ICLR, vol 2016 Arjovsky M, Bottou L (2017) Towards principled methods for training generative adversarial networks. In: NIPS 2016 workshop on adversarial training. In review for ICLR, vol 2016
5.
go back to reference Beister M, Kolditz D, Kalender WA (2012) Iterative reconstruction methods in x-ray CT. Phys Med: Eur J Med Phys 28(2):94–108CrossRef Beister M, Kolditz D, Kalender WA (2012) Iterative reconstruction methods in x-ray CT. Phys Med: Eur J Med Phys 28(2):94–108CrossRef
6.
go back to reference Brenner DJ, Hall EJ (2007) Computed tomography — an increasing source of radiation exposure. N Engl J Med 357(22):2277–2284CrossRef Brenner DJ, Hall EJ (2007) Computed tomography — an increasing source of radiation exposure. N Engl J Med 357(22):2277–2284CrossRef
8.
go back to reference Chen H, Zhang Y, Zhang W, Liao P, Li K, Zhou J, Wang G (2016) Low-dose CT denoising with convolutional neural network. arXiv:1610.00321 Chen H, Zhang Y, Zhang W, Liao P, Li K, Zhou J, Wang G (2016) Low-dose CT denoising with convolutional neural network. arXiv:​1610.​00321
9.
go back to reference Chen H, Zhang Y, Kalra MK, Lin F, Chen Y, Liao P, Zhou J, Wang G (2017) Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans Med Imaging 36(12):2524–2535CrossRef Chen H, Zhang Y, Kalra MK, Lin F, Chen Y, Liao P, Zhou J, Wang G (2017) Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans Med Imaging 36(12):2524–2535CrossRef
10.
go back to reference Chen Y, Yin X, Shi L, Shu H, Luo L, Coatrieux JL, Toumoulin C (2013) Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing. Phys Med Biol 58(16):5803CrossRef Chen Y, Yin X, Shi L, Shu H, Luo L, Coatrieux JL, Toumoulin C (2013) Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing. Phys Med Biol 58(16):5803CrossRef
11.
go back to reference De Gonzalez AB, Darby S (2004) Risk of cancer from diagnostic x-rays: estimates for the UK and 14 other countries. Lancet 363(9406):345–351CrossRef De Gonzalez AB, Darby S (2004) Risk of cancer from diagnostic x-rays: estimates for the UK and 14 other countries. Lancet 363(9406):345–351CrossRef
12.
go back to reference De Man B, Basu S (2004) Distance-driven projection and backprojection in three dimensions. Phys Med Biol 49(11):2463CrossRef De Man B, Basu S (2004) Distance-driven projection and backprojection in three dimensions. Phys Med Biol 49(11):2463CrossRef
14.
go back to reference Dong C, Loy CC, He K, Tang X (2016) Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell 38(2):295–307CrossRef Dong C, Loy CC, He K, Tang X (2016) Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell 38(2):295–307CrossRef
15.
go back to reference Elbakri IA, Fessler JA (2002) Statistical image reconstruction for polyenergetic x-ray computed tomography. IEEE Trans Med Imaging 21(2):89–99CrossRef Elbakri IA, Fessler JA (2002) Statistical image reconstruction for polyenergetic x-ray computed tomography. IEEE Trans Med Imaging 21(2):89–99CrossRef
16.
go back to reference Feruglio PF, Vinegoni C, Gros J, Sbarbati A, Weissleder R (2010) Block matching 3D random noise filtering for absorption optical projection tomography. Phys Med Biol 55(18):5401CrossRef Feruglio PF, Vinegoni C, Gros J, Sbarbati A, Weissleder R (2010) Block matching 3D random noise filtering for absorption optical projection tomography. Phys Med Biol 55(18):5401CrossRef
18.
go back to reference Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. Advances in neural information processing systems, pp 2672–2680 Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. Advances in neural information processing systems, pp 2672–2680
20.
go back to reference Hara AK, Paden RG, Silva AC, Kujak JL, Lawder HJ, Pavlicek W (2009) Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. Am J Roentgenol 193(3):764–771CrossRef Hara AK, Paden RG, Silva AC, Kujak JL, Lawder HJ, Pavlicek W (2009) Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. Am J Roentgenol 193(3):764–771CrossRef
21.
23.
go back to reference Kang D, Slomka P, Nakazato R, Woo J, Berman DS, Kuo CCJ, Dey D (2013) Image denoising of low-radiation dose coronary CT angiography by an adaptive block-matching 3D algorithm. In: SPIE medical imaging, international society for optics and photonics, pp 86,692G–86,692G Kang D, Slomka P, Nakazato R, Woo J, Berman DS, Kuo CCJ, Dey D (2013) Image denoising of low-radiation dose coronary CT angiography by an adaptive block-matching 3D algorithm. In: SPIE medical imaging, international society for optics and photonics, pp 86,692G–86,692G
24.
go back to reference Kang E, Min J, Ye JC (2016) A deep convolutional neural network using directional wavelets for low-dose x-ray CT reconstruction. arXiv:1610.09736 Kang E, Min J, Ye JC (2016) A deep convolutional neural network using directional wavelets for low-dose x-ray CT reconstruction. arXiv:​1610.​09736
26.
go back to reference Ledig C, Theis L, Huszar F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz J, Wang Z, Shi W (2016) Photo-realistic single image super-resolution using a generative adversarial network. arXiv:1609.04802 Ledig C, Theis L, Huszar F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz J, Wang Z, Shi W (2016) Photo-realistic single image super-resolution using a generative adversarial network. arXiv:​1609.​04802
27.
go back to reference Lewitt RM (1990) Multidimensional digital image representations using generalized Kaiser–Bessel window functions. J Opt Soc Am A 7(10):1834–1846CrossRef Lewitt RM (1990) Multidimensional digital image representations using generalized Kaiser–Bessel window functions. J Opt Soc Am A 7(10):1834–1846CrossRef
28.
go back to reference Liu Y, Ma J, Fan Y, Liang Z (2012) Adaptive-weighted total variation minimization for sparse data toward low-dose x-ray computed tomography image reconstruction. Phys Med Biol 57(23):7923CrossRef Liu Y, Ma J, Fan Y, Liang Z (2012) Adaptive-weighted total variation minimization for sparse data toward low-dose x-ray computed tomography image reconstruction. Phys Med Biol 57(23):7923CrossRef
29.
go back to reference Ma J, Huang J, Feng Q, Zhang H, Lu H, Liang Z, Chen W (2011) Low-dose computed tomography image restoration using previous normal-dose scan. Med Phys 38(10):5713–5731CrossRef Ma J, Huang J, Feng Q, Zhang H, Lu H, Liang Z, Chen W (2011) Low-dose computed tomography image restoration using previous normal-dose scan. Med Phys 38(10):5713–5731CrossRef
30.
go back to reference Manduca A, Yu L, Trzasko JD, Khaylova N, Kofler JM, McCollough CM, Fletcher JG (2009) Projection space denoising with bilateral filtering and CT noise modeling for dose reduction in CT. Med Phys 36(11):4911–4919CrossRef Manduca A, Yu L, Trzasko JD, Khaylova N, Kofler JM, McCollough CM, Fletcher JG (2009) Projection space denoising with bilateral filtering and CT noise modeling for dose reduction in CT. Med Phys 36(11):4911–4919CrossRef
31.
go back to reference Nie D, Trullo R, Petitjean C, Ruan S, Shen D (2016) Medical image synthesis with context-aware generative adversarial networks. arXiv:1612.05362 Nie D, Trullo R, Petitjean C, Ruan S, Shen D (2016) Medical image synthesis with context-aware generative adversarial networks. arXiv:​1612.​05362
32.
go back to reference Nixon M, Aguado AS (2008) Feature extraction and image process, 2nd edn. Academic, New York Nixon M, Aguado AS (2008) Feature extraction and image process, 2nd edn. Academic, New York
33.
go back to reference Ramani S, Fessler JA (2012) A splitting-based iterative algorithm for accelerated statistical x-ray CT reconstruction. IEEE Trans Med Imaging 31(3):677–688CrossRef Ramani S, Fessler JA (2012) A splitting-based iterative algorithm for accelerated statistical x-ray CT reconstruction. IEEE Trans Med Imaging 31(3):677–688CrossRef
34.
go back to reference Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Proceedings of the international conference on medical image computing and computer-assisted intervention. Springer, pp 234–241 Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Proceedings of the international conference on medical image computing and computer-assisted intervention. Springer, pp 234–241
35.
go back to reference Sidky EY, Pan X (2008) Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys Med Biol 53(17):4777CrossRef Sidky EY, Pan X (2008) Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys Med Biol 53(17):4777CrossRef
37.
go back to reference Srinivas S, Sarvadevabhatla RK, Mopuri KR, Prabhu N, Kruthiventi SS, Babu RV (2016) A taxonomy of deep convolutional neural nets for computer vision. Front Robot AI 2:36CrossRef Srinivas S, Sarvadevabhatla RK, Mopuri KR, Prabhu N, Kruthiventi SS, Babu RV (2016) A taxonomy of deep convolutional neural nets for computer vision. Front Robot AI 2:36CrossRef
38.
go back to reference Tian Z, Jia X, Yuan K, Pan T, Jiang SB (2011) Low-dose CT reconstruction via edge-preserving total variation regularization. Phys Med Biol 56(18):5949CrossRef Tian Z, Jia X, Yuan K, Pan T, Jiang SB (2011) Low-dose CT reconstruction via edge-preserving total variation regularization. Phys Med Biol 56(18):5949CrossRef
39.
40.
go back to reference Wang G, Kalra M, Orton CG (2017) Machine learning will transform radiology significantly within the next 5 years. Med Phys 44(6):2041–2044CrossRef Wang G, Kalra M, Orton CG (2017) Machine learning will transform radiology significantly within the next 5 years. Med Phys 44(6):2041–2044CrossRef
41.
go back to reference Wang J, Lu H, Li T, Liang Z (2005) Sinogram noise reduction for low-dose CT by statistics-based nonlinear filters. In: Medical imaging 2005: image processing, international society for optics and photonics, vol 5747, pp 2058–2067 Wang J, Lu H, Li T, Liang Z (2005) Sinogram noise reduction for low-dose CT by statistics-based nonlinear filters. In: Medical imaging 2005: image processing, international society for optics and photonics, vol 5747, pp 2058–2067
42.
go back to reference Wang J, Li T, Lu H, Liang Z (2006) Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose x-ray computed tomography. IEEE Trans Med Imaging 25(10):1272–1283CrossRef Wang J, Li T, Lu H, Liang Z (2006) Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose x-ray computed tomography. IEEE Trans Med Imaging 25(10):1272–1283CrossRef
43.
go back to reference Whiting BR, Massoumzadeh P, Earl OA, O’Sullivan JA, Snyder DL, Williamson JF (2006) Properties of preprocessed sinogram data in x-ray computed tomography. Med Phys 33(9):3290–3303CrossRef Whiting BR, Massoumzadeh P, Earl OA, O’Sullivan JA, Snyder DL, Williamson JF (2006) Properties of preprocessed sinogram data in x-ray computed tomography. Med Phys 33(9):3290–3303CrossRef
44.
go back to reference Wolterink JM, Leiner T, Viergever MA, Isgum I (2017) Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans Med Imaging Wolterink JM, Leiner T, Viergever MA, Isgum I (2017) Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans Med Imaging
45.
go back to reference Xu Q, Yu H, Mou X, Zhang L, Hsieh J, Wang G (2012) Low-dose x-ray CT reconstruction via dictionary learning. IEEE Trans Med Imaging 31(9):1682–1697CrossRef Xu Q, Yu H, Mou X, Zhang L, Hsieh J, Wang G (2012) Low-dose x-ray CT reconstruction via dictionary learning. IEEE Trans Med Imaging 31(9):1682–1697CrossRef
46.
go back to reference Yu S, Dong H, Yang G, Slabaugh G, Dragotti PL, Ye X, Liu F, Arridge S, Keegan J, Firmin D et al (2017) Deep de-aliasing for fast compressive sensing MRI. arXiv:1705.07137 Yu S, Dong H, Yang G, Slabaugh G, Dragotti PL, Ye X, Liu F, Arridge S, Keegan J, Firmin D et al (2017) Deep de-aliasing for fast compressive sensing MRI. arXiv:​1705.​07137
47.
go back to reference Zhang Y, Mou X, Wang G, Yu H (2017) Tensor-based dictionary learning for spectral CT reconstruction. IEEE Trans Med Imaging 36(1):142–154CrossRef Zhang Y, Mou X, Wang G, Yu H (2017) Tensor-based dictionary learning for spectral CT reconstruction. IEEE Trans Med Imaging 36(1):142–154CrossRef
48.
go back to reference Zhu JY, Krähenbühl P, Shechtman E, Efros AA (2016) Generative visual manipulation on the natural image manifold. In: European Conference on Computer Vision. Springer, pp 597–613 Zhu JY, Krähenbühl P, Shechtman E, Efros AA (2016) Generative visual manipulation on the natural image manifold. In: European Conference on Computer Vision. Springer, pp 597–613
Metadata
Title
Generative Low-Dose CT Image Denoising
Authors
Qingsong Yang
Pingkun Yan
Yanbo Zhang
Hengyong Yu
Yongyi Shi
Xuanqin Mou
Mannudeep K. Kalra
Yi Zhang
Ling Sun
Ge Wang
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-13969-8_14

Premium Partner