Skip to main content
Top
Published in: Quantum Information Processing 7/2021

01-07-2021

Geometric discord in a dissipative double-cavity optomechanical system

Authors: Hamid Reza Baghshahi, Mohammad Haddad, Mohammad Javad Faghihi

Published in: Quantum Information Processing | Issue 7/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we propose a theoretical scheme to study the dynamics of the geometric measure of quantum discord (GMQD) between two non-interacting qubits in a dissipative optomechanical system composed of two Fabry–Pérot cavities. In this system, each cavity contains a single-mode quantized radiation field which, in the rotating wave approximation, interacts with both mechanical resonator and two-level atom. In addition, the effects of dissipation are taken into account by considering cavity decay, losses of cavity mirror, and spontaneous emission from the atom. We start with the master equation approach and under some circumstances, we find a non-Hermitian Hamiltonian. Adopting this procedure yields the problem with an acceptable analytical solution. This means that all enough information in the study of the considered open quantum system is exactly obtained. Thereupon, we study the quantum correlations between the atoms with the help of the GMQD. It can be seen that the GMQD between two atoms can be controlled by the optomechanical coupling coefficient, the atom-field coupling strength and the dissipation parameters. Moreover, decreasing the coefficient of optomechanical coupling as well as reducing the strength of atom-field coupling improves the GMQD between two atoms. It is also mentioned that, taking the dissipation effects into account, we see that, as the time proceeds, the GMQD approaches to a stable value. In addition, eliminating the effect of spontaneous emission leads to a diminution in the amount of GMQD. Consequently, the quantum correlations between two atoms can be enhanced by considering the effect of spontaneous emission.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Feng, Z.B., Wang, H.L., Yan, R.Y.: Quantum state transfer between an optomechanical cavity and a diamond nuclear spin ensemble. Quantum Inf. Process. 15(8), 3151–3167 (2016)ADSMathSciNetMATHCrossRef Feng, Z.B., Wang, H.L., Yan, R.Y.: Quantum state transfer between an optomechanical cavity and a diamond nuclear spin ensemble. Quantum Inf. Process. 15(8), 3151–3167 (2016)ADSMathSciNetMATHCrossRef
2.
go back to reference Sete, E.A., Eleuch, H.: High-efficiency quantum state transfer and quantum memory using a mechanical oscillator. Phys. Rev. A 91, 032309 (2015) Sete, E.A., Eleuch, H.: High-efficiency quantum state transfer and quantum memory using a mechanical oscillator. Phys. Rev. A 91, 032309 (2015)
3.
go back to reference Teh, R.Y., Kiesewetter, S., Reid, M.D., Drummond, P.D.: Simulation of an optomechanical quantum memory in the nonlinear regime. Phys. Rev. A 96, 013854 (2017) Teh, R.Y., Kiesewetter, S., Reid, M.D., Drummond, P.D.: Simulation of an optomechanical quantum memory in the nonlinear regime. Phys. Rev. A 96, 013854 (2017)
4.
go back to reference Stannigel, K., Komar, P., Habraken, S.J.M., Bennett, S.D., Lukin, M.D., Zoller, P., Rabl, P.: Optomechanical quantum information processing with photons and phonons. Phys. Rev. Lett. 109, 013603 (2012) Stannigel, K., Komar, P., Habraken, S.J.M., Bennett, S.D., Lukin, M.D., Zoller, P., Rabl, P.: Optomechanical quantum information processing with photons and phonons. Phys. Rev. Lett. 109, 013603 (2012)
5.
go back to reference Momenabadi, F.M., Baghshahi, H.R., Faghihi, M.J., Mirafzali, S.Y.: Stable entanglement in a quadripartite cavity optomechanics. Eur. Phys. J. Plus 136(1), 7 (2021)CrossRef Momenabadi, F.M., Baghshahi, H.R., Faghihi, M.J., Mirafzali, S.Y.: Stable entanglement in a quadripartite cavity optomechanics. Eur. Phys. J. Plus 136(1), 7 (2021)CrossRef
6.
go back to reference Taylor, M.A., Janousek, J., Daria, V., Knittel, J., Hage, B., Bachor, H.A., Bowen, W.P.: Biological measurement beyond the quantum limit. Nat. Photonics 7(3), 229 (2013)ADSCrossRef Taylor, M.A., Janousek, J., Daria, V., Knittel, J., Hage, B., Bachor, H.A., Bowen, W.P.: Biological measurement beyond the quantum limit. Nat. Photonics 7(3), 229 (2013)ADSCrossRef
7.
go back to reference Abadie, J., Abbott, B.P., Abbott, R., Abbott, T.D., Abernathy, M., Adams, C., Adhikari, R., Affeldt, C., Allen, B., Allen, G., et al.: A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat. Phys. 7(12), 962 (2011)CrossRef Abadie, J., Abbott, B.P., Abbott, R., Abbott, T.D., Abernathy, M., Adams, C., Adhikari, R., Affeldt, C., Allen, B., Allen, G., et al.: A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat. Phys. 7(12), 962 (2011)CrossRef
8.
go back to reference Salehi, M.J., Baghshahi, H.R., Mirafzali, S.Y.: Quantum correlation and squeezing dynamics of a dissipative nonlinear optomechanical oscillator: Heisenberg-Langevin approach. Eur. Phys. J. Plus 133(11), 471 (2018)CrossRef Salehi, M.J., Baghshahi, H.R., Mirafzali, S.Y.: Quantum correlation and squeezing dynamics of a dissipative nonlinear optomechanical oscillator: Heisenberg-Langevin approach. Eur. Phys. J. Plus 133(11), 471 (2018)CrossRef
9.
go back to reference Lee, J.H., Suh, J., Seok, H.: Dissipation-driven nonclassical-state generation in optomechanics with squeezed light. Phys. Rev. A 98, 043821 (2018) Lee, J.H., Suh, J., Seok, H.: Dissipation-driven nonclassical-state generation in optomechanics with squeezed light. Phys. Rev. A 98, 043821 (2018)
10.
go back to reference Nejad, A.A., Askari, H., Baghshahi, H.: Normal mode splitting in an optomechanical system: effects of coulomb and parametric interactions. J. Opt. Soc. Am. B 35(9), 2237–2243 (2018)ADSCrossRef Nejad, A.A., Askari, H., Baghshahi, H.: Normal mode splitting in an optomechanical system: effects of coulomb and parametric interactions. J. Opt. Soc. Am. B 35(9), 2237–2243 (2018)ADSCrossRef
11.
go back to reference Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014)ADSCrossRef Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014)ADSCrossRef
12.
go back to reference Brooks, D.W., Botter, T., Schreppler, S., Purdy, T.P., Brahms, N., Stamper-Kurn, D.M.: Non-classical light generated by quantum-noise-driven cavity optomechanics. Nature 488(7412), 476–480 (2012)ADSCrossRef Brooks, D.W., Botter, T., Schreppler, S., Purdy, T.P., Brahms, N., Stamper-Kurn, D.M.: Non-classical light generated by quantum-noise-driven cavity optomechanics. Nature 488(7412), 476–480 (2012)ADSCrossRef
13.
go back to reference Metcalfe, M.: Applications of cavity optomechanics. Appl. Phys. Rev. 1(3), 031105 (2014) Metcalfe, M.: Applications of cavity optomechanics. Appl. Phys. Rev. 1(3), 031105 (2014)
14.
go back to reference Pirkkalainen, J.M., Cho, S., Massel, F., Tuorila, J., Heikkilä, T., Hakonen, P., Sillanpää, M.: Cavity optomechanics mediated by a quantum two-level system. Nat. Commun. 6(1), 1–6 (2015)CrossRef Pirkkalainen, J.M., Cho, S., Massel, F., Tuorila, J., Heikkilä, T., Hakonen, P., Sillanpää, M.: Cavity optomechanics mediated by a quantum two-level system. Nat. Commun. 6(1), 1–6 (2015)CrossRef
15.
go back to reference Liao, J.Q., Tian, L.: Macroscopic quantum superposition in cavity optomechanics. Phys. Rev. Lett. 116, 163602 (2016) Liao, J.Q., Tian, L.: Macroscopic quantum superposition in cavity optomechanics. Phys. Rev. Lett. 116, 163602 (2016)
16.
go back to reference Wang, D.Y., Bai, C.H., Wang, H.F., Zhu, A.D., Zhang, S.: Steady-state mechanical squeezing in a hybrid atom-optomechanical system with a highly dissipative cavity. Sci. Rep. 6(1), 1–8 (2016) Wang, D.Y., Bai, C.H., Wang, H.F., Zhu, A.D., Zhang, S.: Steady-state mechanical squeezing in a hybrid atom-optomechanical system with a highly dissipative cavity. Sci. Rep. 6(1), 1–8 (2016)
17.
go back to reference Tan, H., Deng, W., Wu, Q., Li, G.: Steady-state light-mechanical quantum steerable correlations in cavity optomechanics. Phys. Rev. A 95, 053842 (2017) Tan, H., Deng, W., Wu, Q., Li, G.: Steady-state light-mechanical quantum steerable correlations in cavity optomechanics. Phys. Rev. A 95, 053842 (2017)
18.
go back to reference Cripe, J., Aggarwal, N., Singh, R., Lanza, R., Libson, A., Yap, M..J., Cole, G..D., McClelland, D..E., Mavalvala, N., Corbitt, T.: Radiation-pressure-mediated control of an optomechanical cavity. Phys. Rev. A 97, 013827 (2018)ADSCrossRef Cripe, J., Aggarwal, N., Singh, R., Lanza, R., Libson, A., Yap, M..J., Cole, G..D., McClelland, D..E., Mavalvala, N., Corbitt, T.: Radiation-pressure-mediated control of an optomechanical cavity. Phys. Rev. A 97, 013827 (2018)ADSCrossRef
19.
go back to reference Liu, J.H., Zhang, Y.B., Yu, Y.F., Zhang, Z.M.: Photon-phonon squeezing and entanglement in a cavity optomechanical system with a flying atom. Front. Phys. 14(1), 12601 (2019)ADSCrossRef Liu, J.H., Zhang, Y.B., Yu, Y.F., Zhang, Z.M.: Photon-phonon squeezing and entanglement in a cavity optomechanical system with a flying atom. Front. Phys. 14(1), 12601 (2019)ADSCrossRef
20.
go back to reference Liao, Q., Xiao, X., Nie, W., Zhou, N.: Transparency and tunable slow-fast light in a hybrid cavity optomechanical system. Opt. Express 28(4), 5288–5305 (2020)ADSCrossRef Liao, Q., Xiao, X., Nie, W., Zhou, N.: Transparency and tunable slow-fast light in a hybrid cavity optomechanical system. Opt. Express 28(4), 5288–5305 (2020)ADSCrossRef
21.
go back to reference Yan, X.B., Cui, C.L., Gu, K.H., Tian, X.D., Fu, C.B., Wu, J.H.: Coherent perfect absorption, transmission, and synthesis in a double-cavity optomechanical system. Opt. Express 22(5), 4886–4895 (2014)ADSCrossRef Yan, X.B., Cui, C.L., Gu, K.H., Tian, X.D., Fu, C.B., Wu, J.H.: Coherent perfect absorption, transmission, and synthesis in a double-cavity optomechanical system. Opt. Express 22(5), 4886–4895 (2014)ADSCrossRef
22.
go back to reference Guo, Y., Li, K., Nie, W., Li, Y.: Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system. Phys. Rev. A 90, 053841 (2014) Guo, Y., Li, K., Nie, W., Li, Y.: Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system. Phys. Rev. A 90, 053841 (2014)
23.
go back to reference El Qars, J., Daoud, M., Laamara, A.: Entanglement versus Gaussian quantum discord in a double-cavity opto-mechanical system. Int. J. Quantum Inf. 13(06), 1550041 (2015)MathSciNetMATHCrossRef El Qars, J., Daoud, M., Laamara, A.: Entanglement versus Gaussian quantum discord in a double-cavity opto-mechanical system. Int. J. Quantum Inf. 13(06), 1550041 (2015)MathSciNetMATHCrossRef
24.
go back to reference Yan, X.B., Jia, W., Li, Y., Wu, J.H., Li, X.L., Mu, H.W.: Optomechanically induced amplification and perfect transparency in double-cavity optomechanics. Front. Phys. 10(3), 351–357 (2015)ADSCrossRef Yan, X.B., Jia, W., Li, Y., Wu, J.H., Li, X.L., Mu, H.W.: Optomechanically induced amplification and perfect transparency in double-cavity optomechanics. Front. Phys. 10(3), 351–357 (2015)ADSCrossRef
25.
go back to reference Huan, T., Zhou, R., Ian, H.: Dynamic entanglement transfer in a double-cavity optomechanical system. Phys. Rev. A 92, 022301 (2015) Huan, T., Zhou, R., Ian, H.: Dynamic entanglement transfer in a double-cavity optomechanical system. Phys. Rev. A 92, 022301 (2015)
26.
go back to reference Wang, D.Y., Bai, C.H., Wang, H.F., Zhu, A.D., Zhang, S.: Steady-state mechanical squeezing in a double-cavity optomechanical system. Sci. Rep. 6, 38559 (2016)ADSCrossRef Wang, D.Y., Bai, C.H., Wang, H.F., Zhu, A.D., Zhang, S.: Steady-state mechanical squeezing in a double-cavity optomechanical system. Sci. Rep. 6, 38559 (2016)ADSCrossRef
27.
go back to reference Chen, Z.X., Lin, Q., He, B., Lin, Z.Y.: Entanglement dynamics in double-cavity optomechanical systems. Opt. Express 25(15), 17237–17248 (2017)ADSCrossRef Chen, Z.X., Lin, Q., He, B., Lin, Z.Y.: Entanglement dynamics in double-cavity optomechanical systems. Opt. Express 25(15), 17237–17248 (2017)ADSCrossRef
28.
go back to reference Chao, S.L., Xiong, B., Zhou, L.: Generating a squeezed-coherent-cat state in a double-cavity optomechanical system. Ann. Phys. (Berlin) 531(11), 1900196 (2019)ADSMathSciNetCrossRef Chao, S.L., Xiong, B., Zhou, L.: Generating a squeezed-coherent-cat state in a double-cavity optomechanical system. Ann. Phys. (Berlin) 531(11), 1900196 (2019)ADSMathSciNetCrossRef
29.
go back to reference Liao, Q.H., Dai, Y.Z., Nie, W.J., Liu, X., Liu, Y.C.: Cooling of mechanical resonator in a double-cavity system with two-level atomic ensemble. J. Phys. B: At., Mol. Opt. Phys. 53(8), 085402 (2020) Liao, Q.H., Dai, Y.Z., Nie, W.J., Liu, X., Liu, Y.C.: Cooling of mechanical resonator in a double-cavity system with two-level atomic ensemble. J. Phys. B: At., Mol. Opt. Phys. 53(8), 085402 (2020)
30.
go back to reference Yan, X.B., Lu, H.L., Gao, F., Yang, L.: Perfect optical nonreciprocity in a double-cavity optomechanical system. Front. Phys. 14(5), 52601 (2019)ADSCrossRef Yan, X.B., Lu, H.L., Gao, F., Yang, L.: Perfect optical nonreciprocity in a double-cavity optomechanical system. Front. Phys. 14(5), 52601 (2019)ADSCrossRef
31.
go back to reference Han, Y., Xue, L., Chen, B.: Generation of two-mode squeezing of mechanical oscillators in the multi-mode optomechanical systems. Quantum Inf. Process. 19(4), 1–12 (2020)MathSciNetCrossRef Han, Y., Xue, L., Chen, B.: Generation of two-mode squeezing of mechanical oscillators in the multi-mode optomechanical systems. Quantum Inf. Process. 19(4), 1–12 (2020)MathSciNetCrossRef
32.
go back to reference Huang, S., Agarwal, G.S.: Robust force sensing for a free particle in a dissipative optomechanical system with a parametric amplifier. Phys. Rev. A 95, 023844 (2017) Huang, S., Agarwal, G.S.: Robust force sensing for a free particle in a dissipative optomechanical system with a parametric amplifier. Phys. Rev. A 95, 023844 (2017)
33.
go back to reference Liao, C.G., Xie, H., Shang, X., Chen, Z.H., Lin, X.M.: Enhancement of steady-state bosonic squeezing and entanglement in a dissipative optomechanical system. Opt. Express 26(11), 13783–13799 (2018)ADSCrossRef Liao, C.G., Xie, H., Shang, X., Chen, Z.H., Lin, X.M.: Enhancement of steady-state bosonic squeezing and entanglement in a dissipative optomechanical system. Opt. Express 26(11), 13783–13799 (2018)ADSCrossRef
34.
go back to reference Mehmood, A., Qamar, S., Qamar, S.: Effects of laser phase fluctuation on force sensing for a free particle in a dissipative optomechanical system. Phys. Rev. A 98, 053841 (2018) Mehmood, A., Qamar, S., Qamar, S.: Effects of laser phase fluctuation on force sensing for a free particle in a dissipative optomechanical system. Phys. Rev. A 98, 053841 (2018)
35.
go back to reference Huang, S., Chen, A.: Improving the cooling of a mechanical oscillator in a dissipative optomechanical system with an optical parametric amplifier. Phys. Rev. A 98, 063818 (2018) Huang, S., Chen, A.: Improving the cooling of a mechanical oscillator in a dissipative optomechanical system with an optical parametric amplifier. Phys. Rev. A 98, 063818 (2018)
36.
go back to reference Liao, C.G., Chen, R.X., Xie, H., He, M.Y., Lin, X.M.: Quantum synchronization and correlations of two mechanical resonators in a dissipative optomechanical system. Phys. Rev. A 99, 033818 (2019) Liao, C.G., Chen, R.X., Xie, H., He, M.Y., Lin, X.M.: Quantum synchronization and correlations of two mechanical resonators in a dissipative optomechanical system. Phys. Rev. A 99, 033818 (2019)
37.
go back to reference de Moraes Neto, G.D., Montenegro, V., Teizen, V.F., Vernek, E.: Dissipative phonon-Fock-state production in strong nonlinear optomechanics. Phys. Rev. A 99, 043836 (2019) de Moraes Neto, G.D., Montenegro, V., Teizen, V.F., Vernek, E.: Dissipative phonon-Fock-state production in strong nonlinear optomechanics. Phys. Rev. A 99, 043836 (2019)
38.
go back to reference Nadiki, M.H., Tavassoly, M.: The amplitude of the cavity pump field and dissipation effects on the entanglement dynamics and statistical properties of an optomechanical system. Opt. Commun. 452, 31–39 (2019)ADSCrossRef Nadiki, M.H., Tavassoly, M.: The amplitude of the cavity pump field and dissipation effects on the entanglement dynamics and statistical properties of an optomechanical system. Opt. Commun. 452, 31–39 (2019)ADSCrossRef
39.
go back to reference Xiong, B., Li, X., Chao, S.L., Yang, Z., Peng, R., Zhou, L.: Strong squeezing of duffing oscillator in a highly dissipative optomechanical cavity system. Ann. Phys. 532(4), 1900596 (2020)CrossRef Xiong, B., Li, X., Chao, S.L., Yang, Z., Peng, R., Zhou, L.: Strong squeezing of duffing oscillator in a highly dissipative optomechanical cavity system. Ann. Phys. 532(4), 1900596 (2020)CrossRef
40.
go back to reference Vitali, D., Gigan, S., Ferreira, A., Böhm, H., Tombesi, P., Guerreiro, A., Vedral, V., Zeilinger, A., Aspelmeyer, M.: Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98(3), 030405 (2007) Vitali, D., Gigan, S., Ferreira, A., Böhm, H., Tombesi, P., Guerreiro, A., Vedral, V., Zeilinger, A., Aspelmeyer, M.: Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98(3), 030405 (2007)
41.
go back to reference Wang, Y.D., Clerk, A.A.: Reservoir-engineered entanglement in optomechanical systems. Physical review letters 110(25), 253601 (2013) Wang, Y.D., Clerk, A.A.: Reservoir-engineered entanglement in optomechanical systems. Physical review letters 110(25), 253601 (2013)
42.
go back to reference Wang, G., Huang, L., Lai, Y.C., Grebogi, C.: Nonlinear dynamics and quantum entanglement in optomechanical systems. Physical review letters 112(11), 110406 (2014) Wang, G., Huang, L., Lai, Y.C., Grebogi, C.: Nonlinear dynamics and quantum entanglement in optomechanical systems. Physical review letters 112(11), 110406 (2014)
43.
go back to reference Cheng, J., Zhang, W.Z., Zhou, L., Zhang, W.: Preservation macroscopic entanglement of optomechanical systems in non-markovian environment. Sci. Rep. 6(1), 1–8 (2016) Cheng, J., Zhang, W.Z., Zhou, L., Zhang, W.: Preservation macroscopic entanglement of optomechanical systems in non-markovian environment. Sci. Rep. 6(1), 1–8 (2016)
44.
go back to reference Bai, C.H., Wang, D.Y., Zhang, S., Liu, S., Wang, H.F.: Modulation-based atom-mirror entanglement and mechanical squeezing in an unresolved-sideband optomechanical system. Ann. Phys. (Berlin) 531(7), 1800271 (2019)ADSMathSciNetCrossRef Bai, C.H., Wang, D.Y., Zhang, S., Liu, S., Wang, H.F.: Modulation-based atom-mirror entanglement and mechanical squeezing in an unresolved-sideband optomechanical system. Ann. Phys. (Berlin) 531(7), 1800271 (2019)ADSMathSciNetCrossRef
45.
go back to reference Hu, C.S., Liu, Z.Q., Liu, Y., Shen, L.T., Wu, H., Zheng, S.B.: Entanglement beating in a cavity optomechanical system under two-field driving. Phys. Rev. A 101(3), 033810 (2020) Hu, C.S., Liu, Z.Q., Liu, Y., Shen, L.T., Wu, H., Zheng, S.B.: Entanglement beating in a cavity optomechanical system under two-field driving. Phys. Rev. A 101(3), 033810 (2020)
46.
go back to reference Jennewein, T., Simon, C., Weihs, G., Weinfurter, H., Zeilinger, A.: Quantum cryptography with entangled photons. Phys. Rev. Lett. 84, 4729–4732 (2000)ADSCrossRef Jennewein, T., Simon, C., Weihs, G., Weinfurter, H., Zeilinger, A.: Quantum cryptography with entangled photons. Phys. Rev. Lett. 84, 4729–4732 (2000)ADSCrossRef
47.
go back to reference Yang, X., Bai, M.q., Mo, Z.w., Xiang, Y.: Bidirectional and cyclic quantum dense coding in a high-dimension system. Quantum Inf. Process. 19(2), 43 (2020) Yang, X., Bai, M.q., Mo, Z.w., Xiang, Y.: Bidirectional and cyclic quantum dense coding in a high-dimension system. Quantum Inf. Process. 19(2), 43 (2020)
48.
go back to reference Anagha, M., Mohan, A., Muruganandan, T., Behera, B..K., Panigrahi, P..K.: A new scheme of quantum teleportation using highly entangled brown et al. state: an IBM quantum experience. Quantum Inf. Process 19(5), 1–12 (2020)MathSciNetCrossRef Anagha, M., Mohan, A., Muruganandan, T., Behera, B..K., Panigrahi, P..K.: A new scheme of quantum teleportation using highly entangled brown et al. state: an IBM quantum experience. Quantum Inf. Process 19(5), 1–12 (2020)MathSciNetCrossRef
49.
go back to reference D’ambrosio, V., Spagnolo, N., Del Re, L., Slussarenko, S., Li, Y., Kwek, L.C., Marrucci, L., Walborn, S.P., Aolita, L., Sciarrino, F.: Photonic polarization gears for ultra-sensitive angular measurements. Nat. Commun. 4(1), 1–8 (2013) D’ambrosio, V., Spagnolo, N., Del Re, L., Slussarenko, S., Li, Y., Kwek, L.C., Marrucci, L., Walborn, S.P., Aolita, L., Sciarrino, F.: Photonic polarization gears for ultra-sensitive angular measurements. Nat. Commun. 4(1), 1–8 (2013)
50.
go back to reference Koike, S., Takahashi, H., Yonezawa, H., Takei, N., Braunstein, S.L., Aoki, T., Furusawa, A.: Demonstration of quantum telecloning of optical coherent states. Phys. Rev. Lett. 96, 060504 (2006) Koike, S., Takahashi, H., Yonezawa, H., Takei, N., Braunstein, S.L., Aoki, T., Furusawa, A.: Demonstration of quantum telecloning of optical coherent states. Phys. Rev. Lett. 96, 060504 (2006)
51.
go back to reference Ollivier, H., Zurek, W.H.: Quantum discord: A measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001) Ollivier, H., Zurek, W.H.: Quantum discord: A measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)
53.
go back to reference Ferraro, A., Aolita, L., Cavalcanti, D., Cucchietti, F.M., Acín, A.: Almost all quantum states have nonclassical correlations. Phys. Rev. A 81, 052318 (2010) Ferraro, A., Aolita, L., Cavalcanti, D., Cucchietti, F.M., Acín, A.: Almost all quantum states have nonclassical correlations. Phys. Rev. A 81, 052318 (2010)
54.
go back to reference Rana, S., Parashar, P.: Entanglement is not a lower bound for geometric discord. Phys. Rev. A 86, 030302 (2012) Rana, S., Parashar, P.: Entanglement is not a lower bound for geometric discord. Phys. Rev. A 86, 030302 (2012)
55.
go back to reference Dakić, B., Vedral, V., Brukner, I..C..V.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)ADSMATHCrossRef Dakić, B., Vedral, V., Brukner, I..C..V.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)ADSMATHCrossRef
56.
go back to reference Dakić, B., Lipp, Y.O., Ma, X., Ringbauer, M., Kropatschek, S., Barz, S., Paterek, T., Vedral, V., Zeilinger, A., Brukner, Č, et al.: Quantum discord as resource for remote state preparation. Nat. Phys. 8(9), 666–670 (2012)CrossRef Dakić, B., Lipp, Y.O., Ma, X., Ringbauer, M., Kropatschek, S., Barz, S., Paterek, T., Vedral, V., Zeilinger, A., Brukner, Č, et al.: Quantum discord as resource for remote state preparation. Nat. Phys. 8(9), 666–670 (2012)CrossRef
57.
go back to reference Tufarelli, T., Girolami, D., Vasile, R., Bose, S., Adesso, G.: Quantum resources for hybrid communication via qubit-oscillator states. Phys. Rev. A 86, 052326 (2012) Tufarelli, T., Girolami, D., Vasile, R., Bose, S., Adesso, G.: Quantum resources for hybrid communication via qubit-oscillator states. Phys. Rev. A 86, 052326 (2012)
58.
go back to reference Chaves, R., de Melo, F.: Noisy one-way quantum computations: the role of correlations. Phys. Rev. A 84, 022324 (2011)ADSCrossRef Chaves, R., de Melo, F.: Noisy one-way quantum computations: the role of correlations. Phys. Rev. A 84, 022324 (2011)ADSCrossRef
59.
go back to reference Yao, Y., Li, H.W., Zou, X.B., Huang, J.Z., Zhang, C.M., Yin, Z.Q., Chen, W., Guo, G.C., Han, Z.F.: Quantum discord in quantum random access codes and its connection to dimension witnesses. Phys. Rev. A 86, 062310 (2012) Yao, Y., Li, H.W., Zou, X.B., Huang, J.Z., Zhang, C.M., Yin, Z.Q., Chen, W., Guo, G.C., Han, Z.F.: Quantum discord in quantum random access codes and its connection to dimension witnesses. Phys. Rev. A 86, 062310 (2012)
60.
go back to reference Giampaolo, S.M., Streltsov, A., Roga, W., Bruß, D., Illuminati, F.: Quantifying nonclassicality: Global impact of local unitary evolutions. Phys. Rev. A 87, 012313 (2013) Giampaolo, S.M., Streltsov, A., Roga, W., Bruß, D., Illuminati, F.: Quantifying nonclassicality: Global impact of local unitary evolutions. Phys. Rev. A 87, 012313 (2013)
61.
go back to reference Laha, P., Lakshmibala, S., Balakrishnan, V.: Nonclassical effects in optomechanics: dynamics and collapse of entanglement. J. Opt. Soc. Am. B 36(3), 575–584 (2019)ADSCrossRef Laha, P., Lakshmibala, S., Balakrishnan, V.: Nonclassical effects in optomechanics: dynamics and collapse of entanglement. J. Opt. Soc. Am. B 36(3), 575–584 (2019)ADSCrossRef
62.
go back to reference Barnett, S.M., Jeffers, J.: The damped Jaynes-Cummings model. J. Mod. Opt. 54(13–15), 2033–2048 (2007)ADSMATHCrossRef Barnett, S.M., Jeffers, J.: The damped Jaynes-Cummings model. J. Mod. Opt. 54(13–15), 2033–2048 (2007)ADSMATHCrossRef
63.
go back to reference Di Fidio, C., Vogel, W., Khanbekyan, M., Welsch, D.G.: Photon emission by an atom in a lossy cavity. Phys. Rev. A 77, 043822 (2008) Di Fidio, C., Vogel, W., Khanbekyan, M., Welsch, D.G.: Photon emission by an atom in a lossy cavity. Phys. Rev. A 77, 043822 (2008)
64.
go back to reference Di Fidio, C., Vogel, W.: Entanglement signature in the mode structure of a single photon. Phys. Rev. A 79, 050303 (2009) Di Fidio, C., Vogel, W.: Entanglement signature in the mode structure of a single photon. Phys. Rev. A 79, 050303 (2009)
65.
go back to reference Di Fidio, C., Vogel, W.: Entanglement evolution in a cascaded system with losses. Physica E 42(3), 369–373 (2010)ADSCrossRef Di Fidio, C., Vogel, W.: Entanglement evolution in a cascaded system with losses. Physica E 42(3), 369–373 (2010)ADSCrossRef
66.
go back to reference Baghshahi, H.R., Tavassoly, M.K., Behjat, A.: Entanglement of a damped non-degenerate \(\diamond \)-type atom interacting nonlinearly with a single-mode cavity. Eur. Phys. J. Plus 131(4), 80 (2016)CrossRef Baghshahi, H.R., Tavassoly, M.K., Behjat, A.: Entanglement of a damped non-degenerate \(\diamond \)-type atom interacting nonlinearly with a single-mode cavity. Eur. Phys. J. Plus 131(4), 80 (2016)CrossRef
67.
go back to reference Mohamed, A.B.A.: Bipartite non-classical correlations for a lossy two connected qubit-cavity systems: trace distance discord and Bell’s non-locality. Quantum Inf. Process. 17(4), 1–18 (2018)MathSciNetMATHCrossRef Mohamed, A.B.A.: Bipartite non-classical correlations for a lossy two connected qubit-cavity systems: trace distance discord and Bell’s non-locality. Quantum Inf. Process. 17(4), 1–18 (2018)MathSciNetMATHCrossRef
68.
go back to reference Alqahtani, M.M.: Multiphoton process in cavity QED photons for implementing a three-qubit quantum gate operation. Quantum Inf. Process. 19(1), 1–15 (2020)MathSciNetCrossRef Alqahtani, M.M.: Multiphoton process in cavity QED photons for implementing a three-qubit quantum gate operation. Quantum Inf. Process. 19(1), 1–15 (2020)MathSciNetCrossRef
69.
go back to reference Liao, J.Q., Nori, F.: Photon blockade in quadratically coupled optomechanical systems. Phys. Rev. A 88, 023853 (2013) Liao, J.Q., Nori, F.: Photon blockade in quadratically coupled optomechanical systems. Phys. Rev. A 88, 023853 (2013)
70.
go back to reference Xie, H., Lin, G.W., Chen, X., Chen, Z.H., Lin, X.M.: Single-photon nonlinearities in a strongly driven optomechanical system with quadratic coupling. Phys. Rev. A 93, 063860 (2016) Xie, H., Lin, G.W., Chen, X., Chen, Z.H., Lin, X.M.: Single-photon nonlinearities in a strongly driven optomechanical system with quadratic coupling. Phys. Rev. A 93, 063860 (2016)
71.
go back to reference Xie, H., Liao, C.G., Shang, X., Ye, M.Y., Lin, X.M.: Phonon blockade in a quadratically coupled optomechanical system. Phys. Rev. A 96, 013861 (2017) Xie, H., Liao, C.G., Shang, X., Ye, M.Y., Lin, X.M.: Phonon blockade in a quadratically coupled optomechanical system. Phys. Rev. A 96, 013861 (2017)
72.
go back to reference Zhang, J.S., Li, M.C., Chen, A.X.: Enhancing quadratic optomechanical coupling via a nonlinear medium and lasers. Phys. Rev. A 99, 013843 (2019) Zhang, J.S., Li, M.C., Chen, A.X.: Enhancing quadratic optomechanical coupling via a nonlinear medium and lasers. Phys. Rev. A 99, 013843 (2019)
73.
go back to reference Wang, D.Y., Bai, C.H., Liu, S., Zhang, S., Wang, H.F.: Photon blockade in a double-cavity optomechanical system with nonreciprocal coupling. New J. Phys. 22(9), 093006 (2020) Wang, D.Y., Bai, C.H., Liu, S., Zhang, S., Wang, H.F.: Photon blockade in a double-cavity optomechanical system with nonreciprocal coupling. New J. Phys. 22(9), 093006 (2020)
74.
go back to reference Eleuch, H.: Photon statistics of light in semiconductor microcavities. J. Phys. B: At. Mol. Opt. Phys. 41(5), 055502 (2008) Eleuch, H.: Photon statistics of light in semiconductor microcavities. J. Phys. B: At. Mol. Opt. Phys. 41(5), 055502 (2008)
75.
go back to reference Mohamed, A.B., Eleuch, H.: Non-classical effects in cavity QED containing a nonlinear optical medium and a quantum well: Entanglement and non-Gaussanity. Eur. Phys. J. D 69(8), 191 (2015)ADSCrossRef Mohamed, A.B., Eleuch, H.: Non-classical effects in cavity QED containing a nonlinear optical medium and a quantum well: Entanglement and non-Gaussanity. Eur. Phys. J. D 69(8), 191 (2015)ADSCrossRef
76.
go back to reference Altintas, F.: Geometric measure of quantum discord in non-Markovian environments. Opt. Commun. 283(24), 5264–5268 (2010)ADSCrossRef Altintas, F.: Geometric measure of quantum discord in non-Markovian environments. Opt. Commun. 283(24), 5264–5268 (2010)ADSCrossRef
77.
go back to reference Lecocq, F., Teufel, J.D., Aumentado, J., Simmonds, R.W.: Resolving the vacuum fluctuations of an optomechanical system using an artificial atom. Nat. Phys. 11(8), 635–639 (2015)CrossRef Lecocq, F., Teufel, J.D., Aumentado, J., Simmonds, R.W.: Resolving the vacuum fluctuations of an optomechanical system using an artificial atom. Nat. Phys. 11(8), 635–639 (2015)CrossRef
78.
go back to reference Altintas, F., Eryigit, R.: Creation of quantum correlations between two atoms in a dissipative environment from an initial vacuum state. Phys. Lett. A 376(22), 1791–1796 (2012)ADSCrossRef Altintas, F., Eryigit, R.: Creation of quantum correlations between two atoms in a dissipative environment from an initial vacuum state. Phys. Lett. A 376(22), 1791–1796 (2012)ADSCrossRef
79.
go back to reference Altintas, F., Eryigit, R.: Dissipative dynamics of quantum correlations in the strong-coupling regime. Phys. Rev. A 87, 022124 (2013) Altintas, F., Eryigit, R.: Dissipative dynamics of quantum correlations in the strong-coupling regime. Phys. Rev. A 87, 022124 (2013)
80.
go back to reference Gamel, O., James, D.F.V.: Time-averaged quantum dynamics and the validity of the effective hamiltonian model. Phys. Rev. A 82, 052106 (2010) Gamel, O., James, D.F.V.: Time-averaged quantum dynamics and the validity of the effective hamiltonian model. Phys. Rev. A 82, 052106 (2010)
Metadata
Title
Geometric discord in a dissipative double-cavity optomechanical system
Authors
Hamid Reza Baghshahi
Mohammad Haddad
Mohammad Javad Faghihi
Publication date
01-07-2021
Publisher
Springer US
Published in
Quantum Information Processing / Issue 7/2021
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-021-03166-1

Other articles of this Issue 7/2021

Quantum Information Processing 7/2021 Go to the issue