Skip to main content
Top
Published in: Machine Vision and Applications 6/2013

01-08-2013 | Original Paper

Geometric steerable medial maps

Authors: Sergio Vera, Debora Gil, Agnés Borràs, Marius George Linguraru, Miguel Angel González Ballester

Published in: Machine Vision and Applications | Issue 6/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To provide more intuitive and easily interpretable representations of complex shapes/organs, medial manifolds should reach a compromise between simplicity in geometry and capability of restoring the anatomy/shape of the organ/volume. Existing morphological methods show excellent results when applied to 2D objects, but their quality drops across dimensions. This paper contributes to the computation of medial manifolds from a theoretical and a practical point of view. First, we introduce a continuous operator for accurate and efficient computation of medial structures of arbitrary dimension. Second, we present a validation protocol for assessing the suitability of medial surfaces for anatomical representation in medical applications. We evaluate quantitatively the performance of our method with respect to existing approaches and show its higher performance for medical imaging applications in terms of medial simplicity and capability of reconstructing the anatomical volume.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ahuja, N., Chuang, J.H.: Shape representation using a generalized potential field model. IEEE Trans Pattern Anal. Mach. Intell. 19(2), 169–176 (1997)CrossRef Ahuja, N., Chuang, J.H.: Shape representation using a generalized potential field model. IEEE Trans Pattern Anal. Mach. Intell. 19(2), 169–176 (1997)CrossRef
2.
3.
go back to reference Amenta, N., Choi, S., Kolluri, R.: The power crust, unions of balls, and the medial axis transform. Comput. Geom. Theory Appl. 19(2–3), 127–153 (2001)MathSciNetMATHCrossRef Amenta, N., Choi, S., Kolluri, R.: The power crust, unions of balls, and the medial axis transform. Comput. Geom. Theory Appl. 19(2–3), 127–153 (2001)MathSciNetMATHCrossRef
4.
go back to reference Bertrand, G.: A parallel thinning algorithm for medial surfaces. Pattern Recognit. Lett. 16(9), 979–986 (1995) Bertrand, G.: A parallel thinning algorithm for medial surfaces. Pattern Recognit. Lett. 16(9), 979–986 (1995)
5.
go back to reference Bigun, J., Granlund, G.: Optimal orientation detection of linear symmetry. In: ICCV, pp. 433–438 (1987) Bigun, J., Granlund, G.: Optimal orientation detection of linear symmetry. In: ICCV, pp. 433–438 (1987)
6.
go back to reference Blum, H.: A Transformation for extracting descriptors of shape. MIT Press, Cambridge (1967) Blum, H.: A Transformation for extracting descriptors of shape. MIT Press, Cambridge (1967)
7.
go back to reference Bouix, S., Siddiqi, K.: Divergence-based medial surfaces. In: ECCV, pp. 603–618 (2000) Bouix, S., Siddiqi, K.: Divergence-based medial surfaces. In: ECCV, pp. 603–618 (2000)
8.
go back to reference Bouix, S., Siddiqi, K., Tannenbaum, A.: Flux driven automatic centerline extraction. Med. Image Anal. 9(3), 209–221 (2005)CrossRef Bouix, S., Siddiqi, K., Tannenbaum, A.: Flux driven automatic centerline extraction. Med. Image Anal. 9(3), 209–221 (2005)CrossRef
9.
go back to reference Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698 (1986)CrossRef Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698 (1986)CrossRef
10.
go back to reference Chang, M., Leymarie, F., Kimia, B.: 3d shape registration using regularized medial scaffolds. In: Proceedings of the 3D data processing, visualization, and transmission (3DPVT), pp. 987–994. IEEE Computer Society, Washington, DC (2004) Chang, M., Leymarie, F., Kimia, B.: 3d shape registration using regularized medial scaffolds. In: Proceedings of the 3D data processing, visualization, and transmission (3DPVT), pp. 987–994. IEEE Computer Society, Washington, DC (2004)
11.
go back to reference Crouch, J., Pizer, S., Chaney, E., Hu, Y.C., Mageras, G., Zaider, M.: Automated finite-element analysis for deformable registration of prostate images. IEEE Trans. Med. Imaging 26(10), 1379–1390 (2007)CrossRef Crouch, J., Pizer, S., Chaney, E., Hu, Y.C., Mageras, G., Zaider, M.: Automated finite-element analysis for deformable registration of prostate images. IEEE Trans. Med. Imaging 26(10), 1379–1390 (2007)CrossRef
12.
go back to reference Dey, T.K., Zhao, W.: Approximate medial axis as a voronoi subcomplex. In: Proceedings of the seventh ACM symposium on solid modeling and applications. SMA ’02, pp. 356–366. ACM, New york (2002) Dey, T.K., Zhao, W.: Approximate medial axis as a voronoi subcomplex. In: Proceedings of the seventh ACM symposium on solid modeling and applications. SMA ’02, pp. 356–366. ACM, New york (2002)
13.
go back to reference Fletcher, P.T., Lu, C., et al.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imaging 23(8), 995–1005 (2004)CrossRef Fletcher, P.T., Lu, C., et al.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imaging 23(8), 995–1005 (2004)CrossRef
14.
go back to reference Freeman, W., Adelson, E.: of Technology. Media Laboratory. Vision, M.I., Group, M.: The design and use of steerable filters. IEEE Trans. Pattern Ana. Mach. Intell. 13(9), 891–906 (1991) Freeman, W., Adelson, E.: of Technology. Media Laboratory. Vision, M.I., Group, M.: The design and use of steerable filters. IEEE Trans. Pattern Ana. Mach. Intell. 13(9), 891–906 (1991)
15.
go back to reference Garcia-Barnes, J., Gil, D., A. Hernandez, A.: 3d shape registration using regularized medial scaffolds. In: Proceedings of the 3D data processing, visualization, and transmission (3DPVT), pp. 987–994. IEEE Computer Society (2004) Garcia-Barnes, J., Gil, D., A. Hernandez, A.: 3d shape registration using regularized medial scaffolds. In: Proceedings of the 3D data processing, visualization, and transmission (3DPVT), pp. 987–994. IEEE Computer Society (2004)
16.
go back to reference Gil, D., Radeva, P.: Extending anisotropic operators to recover smooth shapes. Comput. Vis. Image Underst. 99(1), 110–125 (2005)CrossRef Gil, D., Radeva, P.: Extending anisotropic operators to recover smooth shapes. Comput. Vis. Image Underst. 99(1), 110–125 (2005)CrossRef
17.
18.
go back to reference Haralick, R.: Ridges and valleys on digital images. Comput. Vis. Gr. Image Process. 22(10), 28–38 (1983)CrossRef Haralick, R.: Ridges and valleys on digital images. Comput. Vis. Gr. Image Process. 22(10), 28–38 (1983)CrossRef
19.
go back to reference Heimann, T., van Ginneken, B., Styner, M.A., Arzhaeva, Y., Aurich, V.: Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans. Med. Imaging 28(8), 1251–1265 (2009)CrossRef Heimann, T., van Ginneken, B., Styner, M.A., Arzhaeva, Y., Aurich, V.: Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans. Med. Imaging 28(8), 1251–1265 (2009)CrossRef
20.
go back to reference Ju, T., Baker, M.L., Chiu, W.: Computing a family of skeletons of volumetric models for shape description. In: Geometric Modeling and Processing, pp. 235–247 (2007) Ju, T., Baker, M.L., Chiu, W.: Computing a family of skeletons of volumetric models for shape description. In: Geometric Modeling and Processing, pp. 235–247 (2007)
21.
go back to reference Keim, D., Panse, C., North, S.: Medial-axis-based cartograms. IEEE Comput. Gr. Appl. 25, 60–68 (2005)CrossRef Keim, D., Panse, C., North, S.: Medial-axis-based cartograms. IEEE Comput. Gr. Appl. 25, 60–68 (2005)CrossRef
22.
go back to reference Lee, T.C., Kashyap, R.L., Chu, C.N.: Building skeleton models via 3-D medial surface axis thinning algorithms. Gr. Model Imaging Process. 56(6), 462–478 (1994)CrossRef Lee, T.C., Kashyap, R.L., Chu, C.N.: Building skeleton models via 3-D medial surface axis thinning algorithms. Gr. Model Imaging Process. 56(6), 462–478 (1994)CrossRef
23.
go back to reference Lindeberg, T.: Feature detection with automatic scale selection. Int. J. Comput. Vis. 30(2), 79–116 (1998)CrossRef Lindeberg, T.: Feature detection with automatic scale selection. Int. J. Comput. Vis. 30(2), 79–116 (1998)CrossRef
24.
go back to reference Linguraru, L., Pura, J., Chowdhury, A., Summers, R.: Multi-organ segmentation from multi-phase abdominal CT via 4D graphs using enhancement, shape and location optimization. In: Med Image Comput Comput Assist Interv., LNCS, vol. 13(Pt 3), pp. 89–96. Springer, Berlin (2010) Linguraru, L., Pura, J., Chowdhury, A., Summers, R.: Multi-organ segmentation from multi-phase abdominal CT via 4D graphs using enhancement, shape and location optimization. In: Med Image Comput Comput Assist Interv., LNCS, vol. 13(Pt 3), pp. 89–96. Springer, Berlin (2010)
25.
go back to reference Liu, X., Linguraru, M., Yao, J., Summers, R.: Organ pose distribution model and an MAP framework for automated abdominal multi-organ localization, pp. 393–402. Springer, Berlin, (2010) Liu, X., Linguraru, M., Yao, J., Summers, R.: Organ pose distribution model and an MAP framework for automated abdominal multi-organ localization, pp. 393–402. Springer, Berlin, (2010)
26.
go back to reference Lopez, A., Lumbreras, F., Serrat, J., Villanueva, J.: Evaluation of methods for ridge and valley detection. IEEE Trans. Pattern Anal. Mach. Intell. 21(4), 327–335 (1999)CrossRef Lopez, A., Lumbreras, F., Serrat, J., Villanueva, J.: Evaluation of methods for ridge and valley detection. IEEE Trans. Pattern Anal. Mach. Intell. 21(4), 327–335 (1999)CrossRef
27.
go back to reference Palagyi, K., Kuba, A.: A parallel 3d 12-subiteration thinning algorithm. Gr. Models Image Process. 61(4), 199–221 (1999)CrossRef Palagyi, K., Kuba, A.: A parallel 3d 12-subiteration thinning algorithm. Gr. Models Image Process. 61(4), 199–221 (1999)CrossRef
28.
go back to reference Pizer, S., Fletcher, P., et al.: Deformable M-Reps for 3D medical image segmentation. Int. J. Comput. Vis. 55(2), 85–106 (2003)CrossRef Pizer, S., Fletcher, P., et al.: Deformable M-Reps for 3D medical image segmentation. Int. J. Comput. Vis. 55(2), 85–106 (2003)CrossRef
29.
go back to reference Pizer, S., Fletcher, P., et al.: A method and software for segmentation of anatomic object ensembles by deformable M-Reps. Med. Phys. 32(5), 1335–1345 (2005)CrossRef Pizer, S., Fletcher, P., et al.: A method and software for segmentation of anatomic object ensembles by deformable M-Reps. Med. Phys. 32(5), 1335–1345 (2005)CrossRef
30.
go back to reference Pudney, C.: Distance-ordered homotopic thinning: a skeletonization algorithm for 3D digital images. Comput. Vis. Image Underst. 72(2), 404–413 (1998)CrossRef Pudney, C.: Distance-ordered homotopic thinning: a skeletonization algorithm for 3D digital images. Comput. Vis. Image Underst. 72(2), 404–413 (1998)CrossRef
31.
go back to reference Sheehy, D., Armstrong, C., Robinson, D.: Shape description by medial surface construction. IEEE Trans. Vis. Comput. Gr. 2(1), 62–72 (1996)CrossRef Sheehy, D., Armstrong, C., Robinson, D.: Shape description by medial surface construction. IEEE Trans. Vis. Comput. Gr. 2(1), 62–72 (1996)CrossRef
32.
go back to reference Siddiqi, K., Bouix, S., Tannenbaum, A., Zucker, S.: Hamilton-Jacobi skeletons. Int. J. Comput. Vis. 48(3), 215–231 (2002)MATHCrossRef Siddiqi, K., Bouix, S., Tannenbaum, A., Zucker, S.: Hamilton-Jacobi skeletons. Int. J. Comput. Vis. 48(3), 215–231 (2002)MATHCrossRef
33.
go back to reference Stough, J., Broadhurst, R., Pizer, S., Chaney, E.: Regional appearance in deformable model segmentation, vol. 4584, pp. 532–543 (2007) Stough, J., Broadhurst, R., Pizer, S., Chaney, E.: Regional appearance in deformable model segmentation, vol. 4584, pp. 532–543 (2007)
34.
go back to reference Styner, M., Gerig, G., Lieberman, J., Jones, D., Weinberger, D.: Statistical shape analysis of neuroanatomical structures based on medial models. Med. Image Anal. 7(3), 207–220 (2003) Styner, M., Gerig, G., Lieberman, J., Jones, D., Weinberger, D.: Statistical shape analysis of neuroanatomical structures based on medial models. Med. Image Anal. 7(3), 207–220 (2003)
35.
go back to reference Styner, M., Lieberman, J.A., Pantazis, D., Gerig, G.: Boundary and medial shape analysis of the hippocampus in schizophrenia. Med. Image Anal. 8(3), 197–203 (2004) Styner, M., Lieberman, J.A., Pantazis, D., Gerig, G.: Boundary and medial shape analysis of the hippocampus in schizophrenia. Med. Image Anal. 8(3), 197–203 (2004)
36.
go back to reference Sun, H., Avants, B., Frangi, A., Sukno, F., Gee, J., Yushkevich, P.: Cardiac medial modeling and time-course heart wall thickness analysis. In: MICCAI, vol. 5242, pp. 766–773 (2008) Sun, H., Avants, B., Frangi, A., Sukno, F., Gee, J., Yushkevich, P.: Cardiac medial modeling and time-course heart wall thickness analysis. In: MICCAI, vol. 5242, pp. 766–773 (2008)
37.
go back to reference Sun, H., Frangi, A.F., Wang, H., et al.: Automatic cardiac mri segmentation using a biventricular deformable medial model. In: MICCAI, vol. 6361, pp. 468–475. Springer, Berlin (2010) Sun, H., Frangi, A.F., Wang, H., et al.: Automatic cardiac mri segmentation using a biventricular deformable medial model. In: MICCAI, vol. 6361, pp. 468–475. Springer, Berlin (2010)
38.
go back to reference Svensson, S., Nyström, I., di Baja, G.S.: Curve skeletonization of surface-like objects in 3d images guided by voxel classification. Pattern Recognit. Lett. 23(12), 1419–1426 (2002) Svensson, S., Nyström, I., di Baja, G.S.: Curve skeletonization of surface-like objects in 3d images guided by voxel classification. Pattern Recognit. Lett. 23(12), 1419–1426 (2002)
39.
go back to reference Terriberry, T., Gerig, G.: A continuous 3-d medial shape model with branching. In: International workshop on mathematical foundations of computational anatomy MFCA-2006, in conjunction with MICCAI (2006) Terriberry, T., Gerig, G.: A continuous 3-d medial shape model with branching. In: International workshop on mathematical foundations of computational anatomy MFCA-2006, in conjunction with MICCAI (2006)
40.
go back to reference Udrea, R.M., Vizireanu, N.: Iterative generalization of morphological skeleton. J. Electron. Imaging 16(1), 010,501–010,501-3 (2007) Udrea, R.M., Vizireanu, N.: Iterative generalization of morphological skeleton. J. Electron. Imaging 16(1), 010,501–010,501-3 (2007)
41.
go back to reference Vera, S., Gil, D., Borràs, A., Sánchez, X., Pérez, F., Linguraru, M.G., Ballester, M.A.G.: Computation and evaluation of medial surfaces for shape representation of abdominal organs. In: LNCS. Springer, Berlin (2010) Vera, S., Gil, D., Borràs, A., Sánchez, X., Pérez, F., Linguraru, M.G., Ballester, M.A.G.: Computation and evaluation of medial surfaces for shape representation of abdominal organs. In: LNCS. Springer, Berlin (2010)
42.
go back to reference Vera, S., Gonzalez, M.A., Gil, D.: A medial map capturing the essential geometry of organs. In: IEEE Proceedings of ISBI (2012) Vera, S., Gonzalez, M.A., Gil, D.: A medial map capturing the essential geometry of organs. In: IEEE Proceedings of ISBI (2012)
43.
go back to reference Vera, S., González, M.A., Linguraru, M.G., Gil, D.: Optimal medial surface generation for anatomical volume representations. In: Abdominal imaging. Computational and clinical applications. Lecture notes in computer science, vol. 7601, pp. 265–273 (2012) Vera, S., González, M.A., Linguraru, M.G., Gil, D.: Optimal medial surface generation for anatomical volume representations. In: Abdominal imaging. Computational and clinical applications. Lecture notes in computer science, vol. 7601, pp. 265–273 (2012)
44.
go back to reference Vizireanu, D.N.: Generalizations of binary morphological shape decomposition. J. Electron. Imaging 16(1), 013,002 (2007) Vizireanu, D.N.: Generalizations of binary morphological shape decomposition. J. Electron. Imaging 16(1), 013,002 (2007)
45.
go back to reference Vizireanu, D.N.: Morphological shape decomposition interframe interpolation method. J. Electron. Imaging 17(1), 013,007–013,007–5 (2008) Vizireanu, D.N.: Morphological shape decomposition interframe interpolation method. J. Electron. Imaging 17(1), 013,007–013,007–5 (2008)
46.
go back to reference Vizireanu, N., Halunga, S., Marghescu, G.: Morphological skeleton decomposition interframe interpolation method. J. Electron. Imaging 19(2), 023,018–023,018–3 (2010) Vizireanu, N., Halunga, S., Marghescu, G.: Morphological skeleton decomposition interframe interpolation method. J. Electron. Imaging 19(2), 023,018–023,018–3 (2010)
47.
go back to reference Vizireanu, N., Udrea, R.M.: Visual-oriented morphological foreground content grayscale frames interpolation method. J. Electron. Imaging 18(2), 020,502 (2009) Vizireanu, N., Udrea, R.M.: Visual-oriented morphological foreground content grayscale frames interpolation method. J. Electron. Imaging 18(2), 020,502 (2009)
48.
go back to reference Wade, L., Parent, R.: Automated generation of control skeletons for use in animation. Vis. Comput. 18, 97–110 (2002)MATHCrossRef Wade, L., Parent, R.: Automated generation of control skeletons for use in animation. Vis. Comput. 18, 97–110 (2002)MATHCrossRef
49.
go back to reference Wilcoxon, F.: Individual comparisons by ranking methods. Biometr. Bull. 1(6), 80–83 (1945)CrossRef Wilcoxon, F.: Individual comparisons by ranking methods. Biometr. Bull. 1(6), 80–83 (1945)CrossRef
50.
go back to reference Yao, J., Summers, R.: Statistical location model for abdominal organ localization. In: MICCAI, LNCS, vol. 12(Pt 2), pp. 9–17. Springer, Berlin (2009) Yao, J., Summers, R.: Statistical location model for abdominal organ localization. In: MICCAI, LNCS, vol. 12(Pt 2), pp. 9–17. Springer, Berlin (2009)
51.
go back to reference Yushkevich, P.: Continuous medial representation of brain structures using the biharmonic PDE. NeuroImage 45(1), 99–110 (2009)MathSciNetCrossRef Yushkevich, P.: Continuous medial representation of brain structures using the biharmonic PDE. NeuroImage 45(1), 99–110 (2009)MathSciNetCrossRef
52.
go back to reference Yushkevich, P., Zhang, H., Gee, J.: Continuous medial representation for anatomical structures. IEEE Trans. Med. Imaging 25(12), 1547–1564 (2006)CrossRef Yushkevich, P., Zhang, H., Gee, J.: Continuous medial representation for anatomical structures. IEEE Trans. Med. Imaging 25(12), 1547–1564 (2006)CrossRef
53.
go back to reference Yushkevich, P., Zhang, H., Simon, T., Gee, J.: Structure-specific statistical mapping of white matter tracts. NeuroImage 41(2), 448–461 (2008)CrossRef Yushkevich, P., Zhang, H., Simon, T., Gee, J.: Structure-specific statistical mapping of white matter tracts. NeuroImage 41(2), 448–461 (2008)CrossRef
Metadata
Title
Geometric steerable medial maps
Authors
Sergio Vera
Debora Gil
Agnés Borràs
Marius George Linguraru
Miguel Angel González Ballester
Publication date
01-08-2013
Publisher
Springer Berlin Heidelberg
Published in
Machine Vision and Applications / Issue 6/2013
Print ISSN: 0932-8092
Electronic ISSN: 1432-1769
DOI
https://doi.org/10.1007/s00138-013-0490-4

Other articles of this Issue 6/2013

Machine Vision and Applications 6/2013 Go to the issue

Premium Partner