Skip to main content
Top

2016 | OriginalPaper | Chapter

GIP: Generic Image Prior for No Reference Image Quality Assessment

Authors : Qingbo Wu, Hongliang Li, King N. Ngan

Published in: Advances in Multimedia Information Processing - PCM 2016

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

No reference image quality assessment (NR-IQA) has attracted great attention due to the increasing demand in developing perceptually friendly applications. The crucial challenge of this task is how to accurately measure the naturalness of an image. In this paper, we propose a novel parametric image representation which is derived from the generic image prior (GIP). More specifically, we utilize the classic fields of experts model to capture the prior distribution of an image with respect to a random field, which is learned from a great deal of natural images. Then, the parameters in modeling this prior distribution are used as the quality-relevant image feature, which is represented by a simple two-dimension vector. Experimental results show that the proposed method achieves competitive quality prediction accuracy in comparison with the state-of-the-art NR-IQA algorithms at the expense of much less memory usage and computational complexity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chen, D., Cao, X., Wen, F., Sun, J.: Blessing of dimensionality: high-dimensional feature and its efficient compression for face verification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3025–3032 (2013) Chen, D., Cao, X., Wen, F., Sun, J.: Blessing of dimensionality: high-dimensional feature and its efficient compression for face verification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3025–3032 (2013)
2.
go back to reference Clarke, B., Fokoue, E., Zhang, H.: Principles and Theory for Data Mining and Machine Learning. Springer Series in Statistics. Springer, New York (2009)CrossRefMATH Clarke, B., Fokoue, E., Zhang, H.: Principles and Theory for Data Mining and Machine Learning. Springer Series in Statistics. Springer, New York (2009)CrossRefMATH
4.
go back to reference Fang, Y., Ma, K., Wang, Z., Lin, W., Fang, Z., Zhai, G.: No-reference quality assessment of contrast-distorted images based on natural scene statistics. IEEE Sig. Process. Lett. 22(7), 838–842 (2015) Fang, Y., Ma, K., Wang, Z., Lin, W., Fang, Z., Zhai, G.: No-reference quality assessment of contrast-distorted images based on natural scene statistics. IEEE Sig. Process. Lett. 22(7), 838–842 (2015)
5.
go back to reference Fang, Y., Zeng, K., Wang, Z., Lin, W., Fang, Z., Lin, C.W.: Objective quality assessment for image retargeting based on structural similarity. IEEE J. Emerg. Sel. Top. Circ. Syst. 4(1), 95–105 (2014)CrossRef Fang, Y., Zeng, K., Wang, Z., Lin, W., Fang, Z., Lin, C.W.: Objective quality assessment for image retargeting based on structural similarity. IEEE J. Emerg. Sel. Top. Circ. Syst. 4(1), 95–105 (2014)CrossRef
6.
go back to reference Han, J., Pei, J., Kamber, M.: Data Mining, Southeast Asia Edition. The Morgan Kaufmann Series in Data Management Systems. Elsevier, Amsterdam (2006) Han, J., Pei, J., Kamber, M.: Data Mining, Southeast Asia Edition. The Morgan Kaufmann Series in Data Management Systems. Elsevier, Amsterdam (2006)
7.
go back to reference Hsu, C.W., Chang, C.C., Lin, C.J., et al.: A practical guide to support vector classification, Technical report (2003) Hsu, C.W., Chang, C.C., Lin, C.J., et al.: A practical guide to support vector classification, Technical report (2003)
8.
go back to reference Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: IEEE International Conference on Computer Vision, vol. 2, pp. 416–423 (2001) Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: IEEE International Conference on Computer Vision, vol. 2, pp. 416–423 (2001)
9.
go back to reference Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)MathSciNetCrossRef Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)MathSciNetCrossRef
10.
go back to reference Mittal, A., Soundararajan, R., Bovik, A.C.: Making a “completely blind” image quality analyzer. IEEE Signal Process. Lett. 20(3), 209–212 (2013)CrossRef Mittal, A., Soundararajan, R., Bovik, A.C.: Making a “completely blind” image quality analyzer. IEEE Signal Process. Lett. 20(3), 209–212 (2013)CrossRef
11.
go back to reference Moorthy, A.K., Bovik, A.C.: Blind image quality assessment: From natural scene statistics to perceptual quality. IEEE Trans. Image Process. 20(12), 3350–3364 (2011)MathSciNetCrossRef Moorthy, A.K., Bovik, A.C.: Blind image quality assessment: From natural scene statistics to perceptual quality. IEEE Trans. Image Process. 20(12), 3350–3364 (2011)MathSciNetCrossRef
12.
go back to reference Moorthy, A., Bovik, A.: A two-step framework for constructing blind image quality indices. IEEE Sig. Process. Lett. 17(5), 513–516 (2010)CrossRef Moorthy, A., Bovik, A.: A two-step framework for constructing blind image quality indices. IEEE Sig. Process. Lett. 17(5), 513–516 (2010)CrossRef
13.
14.
go back to reference Roth, S., Black, M.: Fields of experts: a framework for learning image priors. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 860–867 (2005) Roth, S., Black, M.: Fields of experts: a framework for learning image priors. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 860–867 (2005)
15.
go back to reference Saad, M., Bovik, A.C., Charrier, C.: Blind image quality assessment: a natural scene statistics approach in the dct domain. IEEE Trans. Image Process. 21(8), 3339–3352 (2012)MathSciNetCrossRef Saad, M., Bovik, A.C., Charrier, C.: Blind image quality assessment: a natural scene statistics approach in the dct domain. IEEE Trans. Image Process. 21(8), 3339–3352 (2012)MathSciNetCrossRef
16.
go back to reference Schölkopf, B., Smola, A.J., Williamson, R.C., Bartlett, P.L.: New support vector algorithms. Neural Comput. 12(5), 1207–1245 (2000)CrossRef Schölkopf, B., Smola, A.J., Williamson, R.C., Bartlett, P.L.: New support vector algorithms. Neural Comput. 12(5), 1207–1245 (2000)CrossRef
18.
go back to reference Wang, Z.: Applications of objective image quality assessment methods [applications corner]. IEEE Sig. Process. Mag. 28(6), 137–142 (2011)CrossRef Wang, Z.: Applications of objective image quality assessment methods [applications corner]. IEEE Sig. Process. Mag. 28(6), 137–142 (2011)CrossRef
19.
go back to reference Welling, M., Osindero, S., Hinton, G.E.: Learning sparse topographic representations with products of student-t distributions. In: Advances in Neural Information Processing Systems, pp. 1359–1366 (2002) Welling, M., Osindero, S., Hinton, G.E.: Learning sparse topographic representations with products of student-t distributions. In: Advances in Neural Information Processing Systems, pp. 1359–1366 (2002)
20.
go back to reference Welling, M., Osindero, S., Hinton, G.E.: Learning sparse topographic representations with products of student-t distributions. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information Processing Systems, pp. 1383–1390 (2003) Welling, M., Osindero, S., Hinton, G.E.: Learning sparse topographic representations with products of student-t distributions. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information Processing Systems, pp. 1383–1390 (2003)
21.
go back to reference Wu, Q., Li, H., Meng, F., Ngan, K.N., Luo, B., Huang, C., Zeng, B.: Blind image quality assessment based on multichannel feature fusion and label transfer. IEEE Trans. Circ. Syst. Video Technol. 26(3), 425–440 (2016)CrossRef Wu, Q., Li, H., Meng, F., Ngan, K.N., Luo, B., Huang, C., Zeng, B.: Blind image quality assessment based on multichannel feature fusion and label transfer. IEEE Trans. Circ. Syst. Video Technol. 26(3), 425–440 (2016)CrossRef
22.
go back to reference Wu, Q., Wang, Z., Li, H.: A highly efficient method for blind image quality assessment. In: IEEE International Conference on Image Processing, pp. 339–343 (2015) Wu, Q., Wang, Z., Li, H.: A highly efficient method for blind image quality assessment. In: IEEE International Conference on Image Processing, pp. 339–343 (2015)
23.
go back to reference Wu, Q., Li, H., Meng, F., Ngan, K.N., Zhu, S.: No reference image quality assessment metric via multi-domain structural information and piecewise regression. J. Vis. Commun. Image Representation 32, 205–216 (2015)CrossRef Wu, Q., Li, H., Meng, F., Ngan, K.N., Zhu, S.: No reference image quality assessment metric via multi-domain structural information and piecewise regression. J. Vis. Commun. Image Representation 32, 205–216 (2015)CrossRef
24.
go back to reference Ye, P., Doermann, D.: No-reference image quality assessment using visual codebooks. IEEE Trans. Image Process. 21(7), 3129–3138 (2012)MathSciNetCrossRef Ye, P., Doermann, D.: No-reference image quality assessment using visual codebooks. IEEE Trans. Image Process. 21(7), 3129–3138 (2012)MathSciNetCrossRef
25.
go back to reference Ye, P., Kumar, J., Kang, L., Doermann, D.: Unsupervised feature learning framework for no-reference image quality assessment. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1098–1105 (2012) Ye, P., Kumar, J., Kang, L., Doermann, D.: Unsupervised feature learning framework for no-reference image quality assessment. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1098–1105 (2012)
Metadata
Title
GIP: Generic Image Prior for No Reference Image Quality Assessment
Authors
Qingbo Wu
Hongliang Li
King N. Ngan
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-48896-7_59