Skip to main content
Top
Published in: Medical & Biological Engineering & Computing 1/2022

09-11-2021 | Review Article

GLYFE: review and benchmark of personalized glucose predictive models in type 1 diabetes

Authors: Maxime De Bois, Mounîm A. El Yacoubi, Mehdi Ammi

Published in: Medical & Biological Engineering & Computing | Issue 1/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Due to the sensitive nature of diabetes-related data, preventing them from being easily shared between studies, and the wide discrepancies in their data processing pipeline, progress in the field of glucose prediction is hard to assess. To address this issue, we introduce GLYFE (GLYcemia Forecasting Evaluation), a benchmark of machine learning-based glucose predictive models. We present the accuracy and clinical acceptability of nine different models coming from the literature, from standard autoregressive to more complex neural network-based models. These results are obtained on two different datasets, namely UVA/Padova Type 1 Diabetes Metabolic Simulator (T1DMS) and Ohio Type-1 Diabetes Mellitus (OhioT1DM), featuring artificial and real type 1 diabetic patients respectively. By providing extensive details about the data flow as well as by providing the whole source code of the benchmarking process, we ensure the reproducibility of the results and the usability of the benchmark by the community. Those results serve as a basis of comparison for future studies. In a field where data are hard to obtain, and where the comparison of results from different studies is often irrelevant, GLYFE gives the opportunity of gathering researchers around a standardized common environment.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Euglycemia is the glycemia region between hypoglycemia and hyperglycemia, or between 70 and 180 mg/dL.
 
Literature
1.
go back to reference World Health Organization et al (2016) Global report on diabetes. World Health Organization World Health Organization et al (2016) Global report on diabetes. World Health Organization
2.
go back to reference Ólafsdóttir AF, Attvall S, Sandgren U, Dahlqvist S, Pivodic A, Skrtic S, Theodorsson E, Lind M (2017) A clinical trial of the accuracy and treatment experience of the flash glucose monitor freestyle libre in adults with type 1 diabetes. Diabetes Technol Therapeut 19(3):164–172CrossRef Ólafsdóttir AF, Attvall S, Sandgren U, Dahlqvist S, Pivodic A, Skrtic S, Theodorsson E, Lind M (2017) A clinical trial of the accuracy and treatment experience of the flash glucose monitor freestyle libre in adults with type 1 diabetes. Diabetes Technol Therapeut 19(3):164–172CrossRef
3.
go back to reference Rose K, Koenig M, Wiesbauer F (2013) Evaluating success for behavioral change in diabetes via mhealth and gamification: Mysugr’s keys to retention and patient engagement. Diabetes Technol Therapeut 15:A114 Rose K, Koenig M, Wiesbauer F (2013) Evaluating success for behavioral change in diabetes via mhealth and gamification: Mysugr’s keys to retention and patient engagement. Diabetes Technol Therapeut 15:A114
4.
go back to reference Bequette BW (2012) Challenges and recent progress in the development of a closed-loop artificial pancreas. Ann Rev Control 36(2):255–266CrossRef Bequette BW (2012) Challenges and recent progress in the development of a closed-loop artificial pancreas. Ann Rev Control 36(2):255–266CrossRef
5.
go back to reference Man CD, Micheletto F, Lv D, Breton M, Kovatchev B, Cobelli C (2014) The uva/padova type 1 diabetes simulator: new features. J Diabetes Sci Technol 8(1):26–34PubMedPubMedCentralCrossRef Man CD, Micheletto F, Lv D, Breton M, Kovatchev B, Cobelli C (2014) The uva/padova type 1 diabetes simulator: new features. J Diabetes Sci Technol 8(1):26–34PubMedPubMedCentralCrossRef
6.
go back to reference Marling C, Bunescu RC (2018) The ohiot1dm dataset for blood glucose level prediction. In: KHD@ IJCAI, pp 60–63 Marling C, Bunescu RC (2018) The ohiot1dm dataset for blood glucose level prediction. In: KHD@ IJCAI, pp 60–63
7.
go back to reference Oviedo S, Vehí J, Calm R, Armengol J (2017) A review of personalized blood glucose prediction strategies for t1dm patients. Int J Numer Methods Biomed Eng 33(6):e2833CrossRef Oviedo S, Vehí J, Calm R, Armengol J (2017) A review of personalized blood glucose prediction strategies for t1dm patients. Int J Numer Methods Biomed Eng 33(6):e2833CrossRef
8.
go back to reference Huzooree G, Khedo KK, Joonas N (2017) Glucose prediction data analytics for diabetic patients monitoring, pp 188–195 Huzooree G, Khedo KK, Joonas N (2017) Glucose prediction data analytics for diabetic patients monitoring, pp 188–195
9.
go back to reference Woldaregay AZ, Årsand E, Walderhaug S, Albers D, Mamykina L, Botsis T, Hartvigsen G (2019) Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Artif Intell Med 98:109–134PubMedCrossRef Woldaregay AZ, Årsand E, Walderhaug S, Albers D, Mamykina L, Botsis T, Hartvigsen G (2019) Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Artif Intell Med 98:109–134PubMedCrossRef
10.
go back to reference Kovatchev BP, Breton M, Dalla Man C, Cobelli C (2009) In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes. J Diabetes Sci Technol Kovatchev BP, Breton M, Dalla Man C, Cobelli C (2009) In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes. J Diabetes Sci Technol
11.
go back to reference Ruedy KJ, Beck RW, Xing D, Kollman C (2007) Diabetes research in children network: availability of protocol data sets. J Diabetes Sci Technol 1(5):738–745PubMedPubMedCentralCrossRef Ruedy KJ, Beck RW, Xing D, Kollman C (2007) Diabetes research in children network: availability of protocol data sets. J Diabetes Sci Technol 1(5):738–745PubMedPubMedCentralCrossRef
13.
go back to reference Bazaev NA, Pozhar KV (2017) Blood glucose predir ”artificial pancreas” system. In: Gluconeogenesis InTech Bazaev NA, Pozhar KV (2017) Blood glucose predir ”artificial pancreas” system. In: Gluconeogenesis InTech
14.
go back to reference Rudenko P, Bazaev N, Pozhar K, Litinskaia E, Grinvald V, Chekasin A (2018) Getting daily blood glucose tracks using clinical protocols of the direcnet database. Biomed Eng 51(5):346–349CrossRef Rudenko P, Bazaev N, Pozhar K, Litinskaia E, Grinvald V, Chekasin A (2018) Getting daily blood glucose tracks using clinical protocols of the direcnet database. Biomed Eng 51(5):346–349CrossRef
15.
go back to reference Balakrishnan NP, Samavedham L, Rangaiah GP (2014) Personalized mechanistic models for exercise, meal and insulin interventions in children and adolescents with type 1 diabetes. J Theoret Biol 357:62–73CrossRef Balakrishnan NP, Samavedham L, Rangaiah GP (2014) Personalized mechanistic models for exercise, meal and insulin interventions in children and adolescents with type 1 diabetes. J Theoret Biol 357:62–73CrossRef
16.
go back to reference Mhaskar HN, Pereverzyev SV, van der Walt MD (2017) A deep learning approach to diabetic blood glucose prediction. Front Appl Math Stat 3:14CrossRef Mhaskar HN, Pereverzyev SV, van der Walt MD (2017) A deep learning approach to diabetic blood glucose prediction. Front Appl Math Stat 3:14CrossRef
17.
go back to reference Jones TW, Davis EA (2003) Hypoglycemia in children with type 1 diabetes: current issues and controversies. Pediat Diabetes 4(3):143–150CrossRef Jones TW, Davis EA (2003) Hypoglycemia in children with type 1 diabetes: current issues and controversies. Pediat Diabetes 4(3):143–150CrossRef
19.
go back to reference Khan T, Masud M, Mamun KA (2017) Methods to predict blood glucose level for type 2 diabetes patients. In: Humanitarian technology conference (r10-HTC), 2017, IEEE Region 10. IEEE, pp 392–395 Khan T, Masud M, Mamun KA (2017) Methods to predict blood glucose level for type 2 diabetes patients. In: Humanitarian technology conference (r10-HTC), 2017, IEEE Region 10. IEEE, pp 392–395
20.
go back to reference Aibinu A, Salami M, Shafie A (2010) Blood glucose level prediction using intelligent based modeling techniques Aibinu A, Salami M, Shafie A (2010) Blood glucose level prediction using intelligent based modeling techniques
21.
go back to reference Tomczak JM (2016) Gaussian process regression with categorical inputs for predicting the blood glucose level, pp 98–108 Tomczak JM (2016) Gaussian process regression with categorical inputs for predicting the blood glucose level, pp 98–108
23.
go back to reference Lehmann E, Deutsch T, Carson E, Sönksen P (1994) Aida: an interactive diabetes advisor. Comput Methods Prog Biomed 41(3-4):183–203CrossRef Lehmann E, Deutsch T, Carson E, Sönksen P (1994) Aida: an interactive diabetes advisor. Comput Methods Prog Biomed 41(3-4):183–203CrossRef
24.
go back to reference Hidalgo JI, Colmenar JM, Risco-Martin JL, Cuesta-Infante A, Maqueda E, Botella M, Rubio JA (2014) Modeling glycemia in humans by means of grammatical evolution. Appl Soft Comput 20:40–53CrossRef Hidalgo JI, Colmenar JM, Risco-Martin JL, Cuesta-Infante A, Maqueda E, Botella M, Rubio JA (2014) Modeling glycemia in humans by means of grammatical evolution. Appl Soft Comput 20:40–53CrossRef
25.
go back to reference Reymann MP, Dorschky E, Groh BH, Martindale C, Blank P, Eskofier BM (2016) Blood glucose level prediction based on support vector regression using mobile platforms. In: 2016 IEEE 38th annual international conference of the engineering in medicine and biology society (EMBC). IEEE, pp 2990–2993 Reymann MP, Dorschky E, Groh BH, Martindale C, Blank P, Eskofier BM (2016) Blood glucose level prediction based on support vector regression using mobile platforms. In: 2016 IEEE 38th annual international conference of the engineering in medicine and biology society (EMBC). IEEE, pp 2990–2993
26.
go back to reference Assadi K, Hamdi T, Fnaiech F, Ginoux JM, Moreau E (2017) Estimation of blood glucose levels techniques. In: 2017 international conference on smart, monitored and controlled cities (SM2c). IEEE, pp 75–80 Assadi K, Hamdi T, Fnaiech F, Ginoux JM, Moreau E (2017) Estimation of blood glucose levels techniques. In: 2017 international conference on smart, monitored and controlled cities (SM2c). IEEE, pp 75–80
27.
go back to reference Bamgbose SO, Li X, Qian L (2017) Closed loop control of blood glucose level with neural network predictor for diabetic patients. In: IEEE 19th international conference on e-Health networking, applications and services (Healthcom), 2017. IEEE, pp 1–6 Bamgbose SO, Li X, Qian L (2017) Closed loop control of blood glucose level with neural network predictor for diabetic patients. In: IEEE 19th international conference on e-Health networking, applications and services (Healthcom), 2017. IEEE, pp 1–6
28.
go back to reference Mirshekarian S, Shen H, Bunescu R, Marling C (2019) Lstms and neural attention models for blood glucose prediction: Comparative experiments on real and synthetic data. In: 2019 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 706–712 Mirshekarian S, Shen H, Bunescu R, Marling C (2019) Lstms and neural attention models for blood glucose prediction: Comparative experiments on real and synthetic data. In: 2019 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 706–712
29.
go back to reference Wilinska ME, Chassin LJ, Acerini CL, Allen JM, Dunger DB, Hovorka R (2010) Simulation environment to evaluate closed-loop insulin delivery systems in type 1 diabetes. J Diabetes Sci Technol 4(1):132–144PubMedPubMedCentralCrossRef Wilinska ME, Chassin LJ, Acerini CL, Allen JM, Dunger DB, Hovorka R (2010) Simulation environment to evaluate closed-loop insulin delivery systems in type 1 diabetes. J Diabetes Sci Technol 4(1):132–144PubMedPubMedCentralCrossRef
30.
go back to reference Hovorka R, Canonico V, Chassin LJ, Haueter U, Massi-Benedetti M, Federici MO, Pieber TR, Schaller HC, Schaupp L, Vering T et al (2004) Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol Meas 25(4):905PubMedCrossRef Hovorka R, Canonico V, Chassin LJ, Haueter U, Massi-Benedetti M, Federici MO, Pieber TR, Schaller HC, Schaupp L, Vering T et al (2004) Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol Meas 25(4):905PubMedCrossRef
31.
go back to reference Laguna AJ, Rossetti P, Ampudia-Blasco FJ, Vehí J, Bondia J (2014) Experimental blood glucose interval identification of patients with type 1 diabetes. J Process Control 24(1):171–181CrossRef Laguna AJ, Rossetti P, Ampudia-Blasco FJ, Vehí J, Bondia J (2014) Experimental blood glucose interval identification of patients with type 1 diabetes. J Process Control 24(1):171–181CrossRef
32.
go back to reference Szalay P, Benyó Z, Kovács L (2016) Long-term prediction for t1dm model during state-feedback control. In: 2016 12th IEEE international conference on control and automation (ICCA). IEEE, pp 311–316 Szalay P, Benyó Z, Kovács L (2016) Long-term prediction for t1dm model during state-feedback control. In: 2016 12th IEEE international conference on control and automation (ICCA). IEEE, pp 311–316
33.
go back to reference Boiroux D, Duun-Henriksen AK, Schmidt S, Nørgaard K, Poulsen NK, Madsen H, Jørgensen JB (2017) Adaptive control in an artificial pancreas for people with type 1 diabetes. Control Eng Pract 58:332–342CrossRef Boiroux D, Duun-Henriksen AK, Schmidt S, Nørgaard K, Poulsen NK, Madsen H, Jørgensen JB (2017) Adaptive control in an artificial pancreas for people with type 1 diabetes. Control Eng Pract 58:332–342CrossRef
34.
go back to reference Visentin R, Campos-Náñez E, Schiavon M, Lv D, Vettoretti M, Breton M, Kovatchev BP, Dalla Man C, Cobelli C (2018) The uva/padova type 1 diabetes simulator goes from single meal to single day. J Diabetes Sci Technol 12(2):273–281PubMedPubMedCentralCrossRef Visentin R, Campos-Náñez E, Schiavon M, Lv D, Vettoretti M, Breton M, Kovatchev BP, Dalla Man C, Cobelli C (2018) The uva/padova type 1 diabetes simulator goes from single meal to single day. J Diabetes Sci Technol 12(2):273–281PubMedPubMedCentralCrossRef
35.
go back to reference Laguna Sanz AJ, Doyle III FJ, Dassau E (2017) An enhanced model predictive control for the artificial pancreas using a confidence index based on residual analysis of past predictions. J Diabetes Sci Technol 11(3):537–544PubMedCrossRef Laguna Sanz AJ, Doyle III FJ, Dassau E (2017) An enhanced model predictive control for the artificial pancreas using a confidence index based on residual analysis of past predictions. J Diabetes Sci Technol 11(3):537–544PubMedCrossRef
36.
go back to reference Turksoy K, Samadi S, Feng J, Littlejohn E, Quinn L, Cinar A (2016) Meal detection in patients with type 1 diabetes: a new module for the multivariable adaptive artificial pancreas control system. IEEE J Biomed Health Inform 20(1):47–54PubMedCrossRef Turksoy K, Samadi S, Feng J, Littlejohn E, Quinn L, Cinar A (2016) Meal detection in patients with type 1 diabetes: a new module for the multivariable adaptive artificial pancreas control system. IEEE J Biomed Health Inform 20(1):47–54PubMedCrossRef
37.
go back to reference Feng J, Turksoy K, Cinar A (2016) Performance assessment of model-based artificial pancreas control systems. In: Prediction methods for blood glucose concentration. Springer, pp 243–265 Feng J, Turksoy K, Cinar A (2016) Performance assessment of model-based artificial pancreas control systems. In: Prediction methods for blood glucose concentration. Springer, pp 243–265
38.
go back to reference Li C, Zhao C, Zhao H, Yu C (2017) Blood glucose control based on rapid model identification with particle swarm optimization method. In: 29th Chinese control and decision conference (CCDC), 2017. IEEE, pp 947–952 Li C, Zhao C, Zhao H, Yu C (2017) Blood glucose control based on rapid model identification with particle swarm optimization method. In: 29th Chinese control and decision conference (CCDC), 2017. IEEE, pp 947–952
39.
go back to reference Contreras I, Oviedo S, Vettoretti M, Visentin R, Vehí J (2017) Personalized blood glucose prediction: A hybrid approach using grammatical evolution and physiological models. PloS One 12 (11):e0187754PubMedPubMedCentralCrossRef Contreras I, Oviedo S, Vettoretti M, Visentin R, Vehí J (2017) Personalized blood glucose prediction: A hybrid approach using grammatical evolution and physiological models. PloS One 12 (11):e0187754PubMedPubMedCentralCrossRef
40.
go back to reference Contreras I, Vehí J, Visentin R, Vettoretti M (2017) A hybrid clustering prediction for type 1 diabetes aid: towards decision support systems based upon scenario profile analysis. In: Proceedings of the second IEEE/ACM international conference on connected health: applications, systems and engineering technologies. IEEE Press, pp 64–69 Contreras I, Vehí J, Visentin R, Vettoretti M (2017) A hybrid clustering prediction for type 1 diabetes aid: towards decision support systems based upon scenario profile analysis. In: Proceedings of the second IEEE/ACM international conference on connected health: applications, systems and engineering technologies. IEEE Press, pp 64–69
41.
go back to reference Zhao H, Zhao C, Yu C, Dassau E (2018) Multiple order model migration and optimal model selection for online glucose prediction in type 1 diabetes. AIChE J 64(3):822–834CrossRef Zhao H, Zhao C, Yu C, Dassau E (2018) Multiple order model migration and optimal model selection for online glucose prediction in type 1 diabetes. AIChE J 64(3):822–834CrossRef
42.
go back to reference Yu X, Turksoy K, Rashid M, Feng J, Hobbs N, Hajizadeh I, Samadi S, Sevil M, Lazaro C, Maloney Z et al (2018) Model-fusion-based online glucose concentration predictions in people with type 1 diabetes. Control Eng Pract 71:129–141PubMedPubMedCentralCrossRef Yu X, Turksoy K, Rashid M, Feng J, Hobbs N, Hajizadeh I, Samadi S, Sevil M, Lazaro C, Maloney Z et al (2018) Model-fusion-based online glucose concentration predictions in people with type 1 diabetes. Control Eng Pract 71:129–141PubMedPubMedCentralCrossRef
43.
go back to reference Zecchin C, Facchinetti A, Sparacino G, De Nicolao G, Cobelli C (2012) Neural network incorporating meal information improves accuracy of short-time prediction of glucose concentration. IEEE Trans Biomed Eng 59(6):1550–1560PubMedCrossRef Zecchin C, Facchinetti A, Sparacino G, De Nicolao G, Cobelli C (2012) Neural network incorporating meal information improves accuracy of short-time prediction of glucose concentration. IEEE Trans Biomed Eng 59(6):1550–1560PubMedCrossRef
44.
go back to reference Sun X, Yu X, Liu J, Wang H (2017) Glucose prediction for type 1 diabetes using klms algorithm. In: 2017 36th Chines control conference (CCC). IEEE, pp 1124–1128 Sun X, Yu X, Liu J, Wang H (2017) Glucose prediction for type 1 diabetes using klms algorithm. In: 2017 36th Chines control conference (CCC). IEEE, pp 1124–1128
45.
go back to reference Sun Q, Jankovic MV, Bally L, Mougiakakou SG (2018) Predicting blood glucose with an lstm and bi-lstm based deep neural network. In: 2018 14th symposium on neural networks and applications (NEUREL), pp 1–5 Sun Q, Jankovic MV, Bally L, Mougiakakou SG (2018) Predicting blood glucose with an lstm and bi-lstm based deep neural network. In: 2018 14th symposium on neural networks and applications (NEUREL), pp 1–5
46.
go back to reference Vehí J, Contreras I, Oviedo S, Biagi L, Bertachi A (2019) Prediction and prevention of hypoglycaemic events in type-1 diabetic patients using machine learning. Health Inf J: 1460458219850682 Vehí J, Contreras I, Oviedo S, Biagi L, Bertachi A (2019) Prediction and prevention of hypoglycaemic events in type-1 diabetic patients using machine learning. Health Inf J: 1460458219850682
47.
go back to reference Li K, Liu C, Zhu T, Herrero P, Georgiou P (2019) Glunet: A deep learning framework for accurate glucose forecasting. IEEE J Biomed Health Inf Li K, Liu C, Zhu T, Herrero P, Georgiou P (2019) Glunet: A deep learning framework for accurate glucose forecasting. IEEE J Biomed Health Inf
48.
go back to reference Zhu T, Li K, Herrero P, Chen J, Georgiou P (2018) A deep learning algorithm for personalized blood glucose prediction. In: KHD@ IJCAI, pp 64–78 Zhu T, Li K, Herrero P, Chen J, Georgiou P (2018) A deep learning algorithm for personalized blood glucose prediction. In: KHD@ IJCAI, pp 64–78
49.
go back to reference Bertachi A, Biagi L, Contreras I, Luo N, Vehí J (2018) Prediction of blood glucose levels and nocturnal hypoglycemia using physiological models and artificial neural networks. In: KHD@ IJCAI, pp 85–90 Bertachi A, Biagi L, Contreras I, Luo N, Vehí J (2018) Prediction of blood glucose levels and nocturnal hypoglycemia using physiological models and artificial neural networks. In: KHD@ IJCAI, pp 85–90
50.
go back to reference Contreras I, Bertachi A, Biagi L, Vehí J, Oviedo S (2018) Using grammatical evolution to generate short-term blood glucose prediction models. In: KHD@ IJCAI, pp 91–96 Contreras I, Bertachi A, Biagi L, Vehí J, Oviedo S (2018) Using grammatical evolution to generate short-term blood glucose prediction models. In: KHD@ IJCAI, pp 91–96
51.
go back to reference Midroni C, Leimbigler PJ, Baruah G, Kolla M, Whitehead AJ, Fossat Y (2018) Predicting glycemia in type 1 diabetes patients:, experiments with xgboost. Heart 60(90):120 Midroni C, Leimbigler PJ, Baruah G, Kolla M, Whitehead AJ, Fossat Y (2018) Predicting glycemia in type 1 diabetes patients:, experiments with xgboost. Heart 60(90):120
52.
go back to reference Jeon J, Leimbigler PJ, Baruah G, Li MH, Fossat Y, Whitehead AJ (2019) Predicting glycaemia in type 1 diabetes patients: Experiments in feature engineering and data imputation. J Healthcare Inf Res: 1–20 Jeon J, Leimbigler PJ, Baruah G, Li MH, Fossat Y, Whitehead AJ (2019) Predicting glycaemia in type 1 diabetes patients: Experiments in feature engineering and data imputation. J Healthcare Inf Res: 1–20
53.
go back to reference Mayo M, Chepulis L, Paul RG (2019) Glycemic-aware metrics and oversampling techniques for predicting blood glucose levels using machine learning. PloS One 12:14 Mayo M, Chepulis L, Paul RG (2019) Glycemic-aware metrics and oversampling techniques for predicting blood glucose levels using machine learning. PloS One 12:14
54.
go back to reference De Bois M, El Yacoubi MA, Ammi M (2019) Prediction-coherent lstm-based recurrent neural network for safer glucose predictions in diabetic people. In: International conference on neural information processing. Springer, pp 510–521 De Bois M, El Yacoubi MA, Ammi M (2019) Prediction-coherent lstm-based recurrent neural network for safer glucose predictions in diabetic people. In: International conference on neural information processing. Springer, pp 510–521
55.
go back to reference Martinsson J, Schliep A, Eliasson B, Mogren O (2019) Blood glucose prediction with variance estimation using recurrent neural networks. J Healthcare Inf Res 1–18 Martinsson J, Schliep A, Eliasson B, Mogren O (2019) Blood glucose prediction with variance estimation using recurrent neural networks. J Healthcare Inf Res 1–18
56.
go back to reference Akbari M, Chunara R (2019) Using contextual information to improve blood glucose prediction. arXiv:1909.01735 Akbari M, Chunara R (2019) Using contextual information to improve blood glucose prediction. arXiv:1909.​01735
57.
go back to reference Dalla Man C, Rizza RA, Cobelli C (2007) Meal simulation model of the glucose-insulin system. IEEE Trans Biomed Eng 54(10):1740–1749PubMedCrossRef Dalla Man C, Rizza RA, Cobelli C (2007) Meal simulation model of the glucose-insulin system. IEEE Trans Biomed Eng 54(10):1740–1749PubMedCrossRef
58.
go back to reference Bergman RN, Ider YZ, Bowden CR, Cobelli C (1979) Quantitative estimation of insulin sensitivity. Amer J Physiol Endocrinol Metabol 236(6):E667CrossRef Bergman RN, Ider YZ, Bowden CR, Cobelli C (1979) Quantitative estimation of insulin sensitivity. Amer J Physiol Endocrinol Metabol 236(6):E667CrossRef
59.
go back to reference Bergman RN (2005) Minimal model: perspective from 2005. Hormone Res Paediat 164(Suppl. 3):8–15CrossRef Bergman RN (2005) Minimal model: perspective from 2005. Hormone Res Paediat 164(Suppl. 3):8–15CrossRef
60.
go back to reference Calm R, García-Jaramillo M, Bondia J, Sainz M, Vehí J (2011) Comparison of interval and monte carlo simulation for the prediction of postprandial glucose under uncertainty in type 1 diabetes mellitus. Comput Methods Prog Biomed 104(3):325–332CrossRef Calm R, García-Jaramillo M, Bondia J, Sainz M, Vehí J (2011) Comparison of interval and monte carlo simulation for the prediction of postprandial glucose under uncertainty in type 1 diabetes mellitus. Comput Methods Prog Biomed 104(3):325–332CrossRef
61.
go back to reference Duun-Henriksen AK, Schmidt S, Røge RM, Møller JB, Nørgaard K, Jørgensen JB, Madsen H (2013) Model identification using stochastic differential equation grey-box models in diabetes. J Diabetes Sci Technol 7(2):431–440PubMedPubMedCentralCrossRef Duun-Henriksen AK, Schmidt S, Røge RM, Møller JB, Nørgaard K, Jørgensen JB, Madsen H (2013) Model identification using stochastic differential equation grey-box models in diabetes. J Diabetes Sci Technol 7(2):431–440PubMedPubMedCentralCrossRef
62.
go back to reference Sparacino G, Zanderigo F, Corazza S, Maran A, Facchinetti A, Cobelli C (2007) Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series. IEEE Trans Biomed Eng 54(5):931–937PubMedCrossRef Sparacino G, Zanderigo F, Corazza S, Maran A, Facchinetti A, Cobelli C (2007) Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series. IEEE Trans Biomed Eng 54(5):931–937PubMedCrossRef
63.
go back to reference Eren-Oruklu M, Cinar A, Quinn L, Smith D (2009) Estimation of future glucose concentrations with subject-specific recursive linear models. Diabetes Technol Therap 11(4):243–253CrossRef Eren-Oruklu M, Cinar A, Quinn L, Smith D (2009) Estimation of future glucose concentrations with subject-specific recursive linear models. Diabetes Technol Therap 11(4):243–253CrossRef
64.
go back to reference Eren-Oruklu M, Cinar A, Rollins DK, Quinn L (2012) Adaptive system identification for estimating future glucose concentrations and hypoglycemia alarms. Automatica 48(8):1892–1897PubMedPubMedCentralCrossRef Eren-Oruklu M, Cinar A, Rollins DK, Quinn L (2012) Adaptive system identification for estimating future glucose concentrations and hypoglycemia alarms. Automatica 48(8):1892–1897PubMedPubMedCentralCrossRef
65.
go back to reference Yang J, Li L, Shi Y, Xie X (2018) An arima model with adaptive orders for predicting blood glucose concentrations and hypoglycemia. IEEE J Biomed Health Inf Yang J, Li L, Shi Y, Xie X (2018) An arima model with adaptive orders for predicting blood glucose concentrations and hypoglycemia. IEEE J Biomed Health Inf
66.
go back to reference Daskalaki E, Nørgaard K, Züger T, Prountzou A, Diem P, Mougiakakou S (2013) An early warning system for hypoglycemic/hyperglycemic events based on fusion of adaptive prediction models. J Diabetes Sci Technol 7(3):689–698PubMedPubMedCentralCrossRef Daskalaki E, Nørgaard K, Züger T, Prountzou A, Diem P, Mougiakakou S (2013) An early warning system for hypoglycemic/hyperglycemic events based on fusion of adaptive prediction models. J Diabetes Sci Technol 7(3):689–698PubMedPubMedCentralCrossRef
67.
go back to reference Jankovic MV, Mosimann S, Bally L, Stettler C, Mougiakakou S (2016) Deep prediction model:, The case of online adaptive prediction of subcutaneous glucose 1–5 Jankovic MV, Mosimann S, Bally L, Stettler C, Mougiakakou S (2016) Deep prediction model:, The case of online adaptive prediction of subcutaneous glucose 1–5
68.
go back to reference Wang Q, Molenaar P, Harsh S, Freeman K, Xie J, Gold C, Rovine M, Ulbrecht J (2014) Personalized state-space modeling of glucose dynamics for type 1 diabetes using continuously monitored glucose, insulin dose, and meal intake: an extended kalman filter approach. J Diabetes Sci Technol 8 (2):331–345PubMedPubMedCentralCrossRef Wang Q, Molenaar P, Harsh S, Freeman K, Xie J, Gold C, Rovine M, Ulbrecht J (2014) Personalized state-space modeling of glucose dynamics for type 1 diabetes using continuously monitored glucose, insulin dose, and meal intake: an extended kalman filter approach. J Diabetes Sci Technol 8 (2):331–345PubMedPubMedCentralCrossRef
69.
go back to reference Macas M, Lhotska L, Stechova K, Pithova P, Saiti K (2017) Particle swarm optimization based adaptable predictor of glycemia values. In: 2017 3rd IEEE international conference on cybernetics (CYBCONF). IEEE, pp 1–6 Macas M, Lhotska L, Stechova K, Pithova P, Saiti K (2017) Particle swarm optimization based adaptable predictor of glycemia values. In: 2017 3rd IEEE international conference on cybernetics (CYBCONF). IEEE, pp 1–6
70.
go back to reference Novara C, Pour NM, Vincent T, Grassi G (2016) A nonlinear blind identification approach to modeling of diabetic patients. IEEE Trans Control Syst Technol 24(3):1092–1100CrossRef Novara C, Pour NM, Vincent T, Grassi G (2016) A nonlinear blind identification approach to modeling of diabetic patients. IEEE Trans Control Syst Technol 24(3):1092–1100CrossRef
71.
go back to reference Zarkogianni K, Mitsis K, Litsa E, Arredondo M-T, Fico G, Fioravanti A, Nikita KS (2015) Comparative assessment of glucose prediction models for patients with type 1 diabetes mellitus applying sensors for glucose and physical activity monitoring. Med Biol Eng Comput 53(12):1333–1343PubMedCrossRef Zarkogianni K, Mitsis K, Litsa E, Arredondo M-T, Fico G, Fioravanti A, Nikita KS (2015) Comparative assessment of glucose prediction models for patients with type 1 diabetes mellitus applying sensors for glucose and physical activity monitoring. Med Biol Eng Comput 53(12):1333–1343PubMedCrossRef
72.
go back to reference Georga EI, Protopappas VC, Ardigò D, Polyzos D, Fotiadis DI (2013) A glucose model based on support vector regression for the prediction of hypoglycemic events under free-living conditions. Diabetes Technol Therap 15(8):634–643CrossRef Georga EI, Protopappas VC, Ardigò D, Polyzos D, Fotiadis DI (2013) A glucose model based on support vector regression for the prediction of hypoglycemic events under free-living conditions. Diabetes Technol Therap 15(8):634–643CrossRef
73.
go back to reference Ali JB, Hamdi T, Fnaiech N, Di Costanzo V, Fnaiech F, Ginoux J-M (2018) Continuous blood glucose level prediction of type 1 diabetes based on artificial neural network. Biocybern Biomed Eng 38(4):828–840CrossRef Ali JB, Hamdi T, Fnaiech N, Di Costanzo V, Fnaiech F, Ginoux J-M (2018) Continuous blood glucose level prediction of type 1 diabetes based on artificial neural network. Biocybern Biomed Eng 38(4):828–840CrossRef
74.
go back to reference Sandham W, Nikoletou D, Hamilton D, Paterson K, Japp A, MacGregor C (1998) Blood glucose prediction for diabetes therapy using a recurrent artificial neural network. In: 9th European signal processing conference (EUSIPCO 1998). IEEE, pp 1–4 Sandham W, Nikoletou D, Hamilton D, Paterson K, Japp A, MacGregor C (1998) Blood glucose prediction for diabetes therapy using a recurrent artificial neural network. In: 9th European signal processing conference (EUSIPCO 1998). IEEE, pp 1–4
75.
go back to reference Fiorini S, Martini C, Malpassi D, Cordera R, Maggi D, Verri A, Barla A (2017) Data-driven strategies for robust forecast of continuous glucose monitoring time-series. In: 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 1680–1683 Fiorini S, Martini C, Malpassi D, Cordera R, Maggi D, Verri A, Barla A (2017) Data-driven strategies for robust forecast of continuous glucose monitoring time-series. In: 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 1680–1683
76.
go back to reference Mirshekarian S, Bunescu R, Marling C, Schwartz F (2017) Using lstms to learn physiological models of blood glucose behavior. In: 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 2887–2891 Mirshekarian S, Bunescu R, Marling C, Schwartz F (2017) Using lstms to learn physiological models of blood glucose behavior. In: 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 2887–2891
77.
go back to reference Gers FA, Schmidhuber J, Cummins F (1999) Learning to forget: Continual prediction with lstm Gers FA, Schmidhuber J, Cummins F (1999) Learning to forget: Continual prediction with lstm
78.
go back to reference Huang G-B, Zhu Q-Y, Siew C-K (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. In: IEEE International Joint Conference on Neural Networks, 2004. Proceedings 2004, vol 2. IEEE, pp 985–990 Huang G-B, Zhu Q-Y, Siew C-K (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. In: IEEE International Joint Conference on Neural Networks, 2004. Proceedings 2004, vol 2. IEEE, pp 985–990
79.
go back to reference Pao Y-H, Park G-H, Sobajic DJ (1994) Learning and generalization characteristics of the random vector functional-link net. Neurocomputing 6(2):163–180CrossRef Pao Y-H, Park G-H, Sobajic DJ (1994) Learning and generalization characteristics of the random vector functional-link net. Neurocomputing 6(2):163–180CrossRef
80.
go back to reference Georga EI, Protopappas VC, Polyzos D, Fotiadis DI (2015) Online prediction of glucose concentration in type 1 diabetes using extreme learning machines. In: 2015 37th annual international conference of the engineering in medicine and biology society (EMBC). IEEE, pp 3262–3265 Georga EI, Protopappas VC, Polyzos D, Fotiadis DI (2015) Online prediction of glucose concentration in type 1 diabetes using extreme learning machines. In: 2015 37th annual international conference of the engineering in medicine and biology society (EMBC). IEEE, pp 3262–3265
81.
go back to reference Ling SH, San PP, Nguyen HT (2016) Non-invasive hypoglycemia monitoring system using extreme learning machine for type 1 diabetes. ISA Trans 64:440–446PubMedCrossRef Ling SH, San PP, Nguyen HT (2016) Non-invasive hypoglycemia monitoring system using extreme learning machine for type 1 diabetes. ISA Trans 64:440–446PubMedCrossRef
82.
go back to reference Zecchin C, Facchinetti A, Sparacino G, Cobelli C (2014) Jump neural network for online short-time prediction of blood glucose from continuous monitoring sensors and meal information. Comput Methods Prog Biomed 113(1):144–152CrossRef Zecchin C, Facchinetti A, Sparacino G, Cobelli C (2014) Jump neural network for online short-time prediction of blood glucose from continuous monitoring sensors and meal information. Comput Methods Prog Biomed 113(1):144–152CrossRef
83.
go back to reference Li K, Daniels J, Liu C, Herrero-Vinas P, Georgiou P (2019) Convolutional recurrent neural networks for glucose prediction. IEEE J Biomed Health Inf Li K, Daniels J, Liu C, Herrero-Vinas P, Georgiou P (2019) Convolutional recurrent neural networks for glucose prediction. IEEE J Biomed Health Inf
84.
go back to reference Zhu T, Li K, Chen J, Herrero P, Georgiou P (2020) Dilated recurrent neural networks for glucose forecasting in type 1 diabetes. J Healthcare Inf Res 4(3):308–324CrossRef Zhu T, Li K, Chen J, Herrero P, Georgiou P (2020) Dilated recurrent neural networks for glucose forecasting in type 1 diabetes. J Healthcare Inf Res 4(3):308–324CrossRef
85.
go back to reference De Bois M, El Yacoubi MA, Ammi M (2021) Adversarial multi-source transfer learning in healthcare: Application to glucose prediction for diabetic people. Comput Methods Prog Biomed 199:105874CrossRef De Bois M, El Yacoubi MA, Ammi M (2021) Adversarial multi-source transfer learning in healthcare: Application to glucose prediction for diabetic people. Comput Methods Prog Biomed 199:105874CrossRef
86.
go back to reference Li N, Tuo J, Wang Y (2018) Chaotic time series analysis approach for prediction blood glucose concentration based on echo state networks. In: 2018 Chinese control and decision conference (CCDC). IEEE, pp 2017–2022 Li N, Tuo J, Wang Y (2018) Chaotic time series analysis approach for prediction blood glucose concentration based on echo state networks. In: 2018 Chinese control and decision conference (CCDC). IEEE, pp 2017–2022
87.
go back to reference Hofmann T, Schölkopf B, Smola AJ (2008) Kernel methods in machine learning. Ann Stat 1171–1220 Hofmann T, Schölkopf B, Smola AJ (2008) Kernel methods in machine learning. Ann Stat 1171–1220
88.
go back to reference De Paula M, Avila LO, Martinez EC (2015) Controlling blood glucose variability under uncertainty using reinforcement learning and gaussian processes. Appl Soft Comput 35:310–332CrossRef De Paula M, Avila LO, Martinez EC (2015) Controlling blood glucose variability under uncertainty using reinforcement learning and gaussian processes. Appl Soft Comput 35:310–332CrossRef
89.
go back to reference Bunescu R, Struble N, Marling C, Shubrook J, Schwartz F (2013) Blood glucose level prediction using physiological models and support vector regression. In: 12th international conference on machine learning and applications (ICMLA), 2013, vol 1. IEEE, pp 135–140 Bunescu R, Struble N, Marling C, Shubrook J, Schwartz F (2013) Blood glucose level prediction using physiological models and support vector regression. In: 12th international conference on machine learning and applications (ICMLA), 2013, vol 1. IEEE, pp 135–140
90.
go back to reference Georga EI, Protopappas VC, Ardigò D, Marina M, Zavaroni I, Polyzos D, Fotiadis DI (2013) Multivariate prediction of subcutaneous glucose concentration in type 1 diabetes patients based on support vector regression. IEEE J Biomed Health Inf 17(1):71–81CrossRef Georga EI, Protopappas VC, Ardigò D, Marina M, Zavaroni I, Polyzos D, Fotiadis DI (2013) Multivariate prediction of subcutaneous glucose concentration in type 1 diabetes patients based on support vector regression. IEEE J Biomed Health Inf 17(1):71–81CrossRef
91.
go back to reference Hamdi T, Ali JB, Di Costanzo V, Fnaiech F, Moreau E, Ginoux J-M (2018) Accurate prediction of continuous blood glucose based on support vector regression and differential evolution algorithm. Biocybern Biomed Eng 38(2):362–372CrossRef Hamdi T, Ali JB, Di Costanzo V, Fnaiech F, Moreau E, Ginoux J-M (2018) Accurate prediction of continuous blood glucose based on support vector regression and differential evolution algorithm. Biocybern Biomed Eng 38(2):362–372CrossRef
92.
go back to reference Naumova V, Nita L, Poulsen JU, Pereverzyev SV (2016) Meta-learning based blood glucose predictor for diabetic smartphone app. In: Prediction methods for blood glucose concentration. Springer, pp 93–105 Naumova V, Nita L, Poulsen JU, Pereverzyev SV (2016) Meta-learning based blood glucose predictor for diabetic smartphone app. In: Prediction methods for blood glucose concentration. Springer, pp 93–105
93.
go back to reference Yu X, Rashid M, Feng J, Hobbs N, Hajizadeh I, Samadi S, Sevil M, Lazaro C, Maloney Z, Littlejohn E et al (2018) Online glucose prediction using computationally efficient sparse kernel filtering algorithms in type-1 diabetes. IEEE Trans Control Syst Technol 99:1–13 Yu X, Rashid M, Feng J, Hobbs N, Hajizadeh I, Samadi S, Sevil M, Lazaro C, Maloney Z, Littlejohn E et al (2018) Online glucose prediction using computationally efficient sparse kernel filtering algorithms in type-1 diabetes. IEEE Trans Control Syst Technol 99:1–13
94.
go back to reference Georga EI, Principe JC, Polyzos D, Fotiadis DI (2016) Non-linear dynamic modeling of glucose in type 1 diabetes with kernel adaptive filters. In: 2016 IEEE 38th annual international conference of the engineering in medicine and biology society (EMBC). IEEE, pp 5897–5900 Georga EI, Principe JC, Polyzos D, Fotiadis DI (2016) Non-linear dynamic modeling of glucose in type 1 diabetes with kernel adaptive filters. In: 2016 IEEE 38th annual international conference of the engineering in medicine and biology society (EMBC). IEEE, pp 5897–5900
95.
go back to reference Georga EI, Príncipe JC, Rizos EC, Fotiadis DI (2017) Kernel-based adaptive learning improves accuracy of glucose predictive modelling in type 1 diabetes:, A proof-of-concept study. In: 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 2765–2768 Georga EI, Príncipe JC, Rizos EC, Fotiadis DI (2017) Kernel-based adaptive learning improves accuracy of glucose predictive modelling in type 1 diabetes:, A proof-of-concept study. In: 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 2765–2768
96.
go back to reference Georga EI, Príncipe JC, Fotiadis DI (2019) Short-term prediction of glucose in type 1 diabetes using kernel adaptive filters. Med Biol Eng Comput 57(1):27–46PubMedCrossRef Georga EI, Príncipe JC, Fotiadis DI (2019) Short-term prediction of glucose in type 1 diabetes using kernel adaptive filters. Med Biol Eng Comput 57(1):27–46PubMedCrossRef
97.
go back to reference Zecchin C, Facchinetti A, Sparacino G, Dalla Man C, Manohar C, Levine JA, Basu A, Kudva YC, Cobelli C (2013) Physical activity measured by physical activity monitoring system correlates with glucose trends reconstructed from continuous glucose monitoring. Diabetes Technol Therap 15(10):836–844CrossRef Zecchin C, Facchinetti A, Sparacino G, Dalla Man C, Manohar C, Levine JA, Basu A, Kudva YC, Cobelli C (2013) Physical activity measured by physical activity monitoring system correlates with glucose trends reconstructed from continuous glucose monitoring. Diabetes Technol Therap 15(10):836–844CrossRef
98.
go back to reference Mougiakakou SG, Prountzou A, Iliopoulou D, Nikita KS, Vazeou A, Bartsocas CS (2006) Neural network based glucose-insulin metabolism models for children with type 1 diabetes. In: 28th annual international conference of the engineering in medicine and biology society, 2006. EMBS’06. IEEE, pp 3545–3548 Mougiakakou SG, Prountzou A, Iliopoulou D, Nikita KS, Vazeou A, Bartsocas CS (2006) Neural network based glucose-insulin metabolism models for children with type 1 diabetes. In: 28th annual international conference of the engineering in medicine and biology society, 2006. EMBS’06. IEEE, pp 3545–3548
99.
go back to reference Daskalaki E, Prountzou A, Diem P, Mougiakakou SG (2012) Real-time adaptive models for the personalized prediction of glycemic profile in type 1 diabetes patients. Diabetes Technol Therap 14 (2):168–174CrossRef Daskalaki E, Prountzou A, Diem P, Mougiakakou SG (2012) Real-time adaptive models for the personalized prediction of glycemic profile in type 1 diabetes patients. Diabetes Technol Therap 14 (2):168–174CrossRef
100.
go back to reference Zarkogianni K, Vazeou A, Mougiakakou SG, Prountzou A, Nikita KS (2011) An insulin infusion advisory system based on autotuning nonlinear model-predictive control. IEEE Trans Biomed Eng 58 (9):2467–2477PubMedCrossRef Zarkogianni K, Vazeou A, Mougiakakou SG, Prountzou A, Nikita KS (2011) An insulin infusion advisory system based on autotuning nonlinear model-predictive control. IEEE Trans Biomed Eng 58 (9):2467–2477PubMedCrossRef
101.
go back to reference Sparacino G, Zanderigo F, Maran A, Cobelli C (2006) Continuous glucose monitoring and hypo/hyperglycaemia prediction. Diabetes Res Clin Pract 74:S160–S163CrossRef Sparacino G, Zanderigo F, Maran A, Cobelli C (2006) Continuous glucose monitoring and hypo/hyperglycaemia prediction. Diabetes Res Clin Pract 74:S160–S163CrossRef
102.
go back to reference De Bois M, El Yacoubi MA, Ammi M Study of short-term personalized glucose predictive models on type-1 diabetic children, accepted at IJCNN 2019, date to be determined De Bois M, El Yacoubi MA, Ammi M Study of short-term personalized glucose predictive models on type-1 diabetic children, accepted at IJCNN 2019, date to be determined
103.
go back to reference Klambauer G, Unterthiner T, Mayr A, Hochreiter S (2017) Self-normalizing neural networks. In: Advances in neural information processing systems, pp 971–980 Klambauer G, Unterthiner T, Mayr A, Hochreiter S (2017) Self-normalizing neural networks. In: Advances in neural information processing systems, pp 971–980
104.
105.
go back to reference Gani A, Gribok AV, Rajaraman S, Ward WK, Reifman J (2009) Predicting subcutaneous glucose concentration in humans: data-driven glucose modeling. IEEE Trans Biomed Eng 56(2):246PubMedCrossRef Gani A, Gribok AV, Rajaraman S, Ward WK, Reifman J (2009) Predicting subcutaneous glucose concentration in humans: data-driven glucose modeling. IEEE Trans Biomed Eng 56(2):246PubMedCrossRef
106.
go back to reference Facchinetti A, Sparacino G, Trifoglio E, Cobelli C (2011) A new index to optimally design and compare continuous glucose monitoring glucose prediction algorithms. Diabetes Technol Therap 13(2):111–119CrossRef Facchinetti A, Sparacino G, Trifoglio E, Cobelli C (2011) A new index to optimally design and compare continuous glucose monitoring glucose prediction algorithms. Diabetes Technol Therap 13(2):111–119CrossRef
107.
go back to reference Kovatchev BP, Gonder-Frederick LA, Cox DJ, Clarke WL (2004) Evaluating the accuracy of continuous glucose-monitoring sensors: continuous glucose–error grid analysis illustrated by therasense freestyle navigator data. Diabetes Care 27(8):1922–1928PubMedCrossRef Kovatchev BP, Gonder-Frederick LA, Cox DJ, Clarke WL (2004) Evaluating the accuracy of continuous glucose-monitoring sensors: continuous glucose–error grid analysis illustrated by therasense freestyle navigator data. Diabetes Care 27(8):1922–1928PubMedCrossRef
108.
go back to reference Clarke WL (2005) The original clarke error grid analysis (ega). Diabetes Technol Therap 7 (5):776–779CrossRef Clarke WL (2005) The original clarke error grid analysis (ega). Diabetes Technol Therap 7 (5):776–779CrossRef
109.
go back to reference Parkes JL, Slatin SL, Pardo S, Ginsberg BH (2000) A new consensus error grid to evaluate the clinical significance of inaccuracies in the measurement of blood glucose. Diabetes Care 23(8):1143–1148PubMedCrossRef Parkes JL, Slatin SL, Pardo S, Ginsberg BH (2000) A new consensus error grid to evaluate the clinical significance of inaccuracies in the measurement of blood glucose. Diabetes Care 23(8):1143–1148PubMedCrossRef
111.
go back to reference Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al (2011) Scikit-learn: Machine learning in python. J Mach Learn Res 12(Oct):2825–2830 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al (2011) Scikit-learn: Machine learning in python. J Mach Learn Res 12(Oct):2825–2830
112.
go back to reference McKinney W, Perktold J, Seabold S (2011) Time series analysis in python with statsmodels. Jarrodmillman Com 96–102 McKinney W, Perktold J, Seabold S (2011) Time series analysis in python with statsmodels. Jarrodmillman Com 96–102
113.
go back to reference Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A (2017) Automatic differentiation in pytorch Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A (2017) Automatic differentiation in pytorch
114.
go back to reference Gers FA, Eck D, Schmidhuber J (2002) Applying lstm to time series predictable through time-window approaches. In: Neural nets WIRN Vietri-01. Springer, pp 193–200 Gers FA, Eck D, Schmidhuber J (2002) Applying lstm to time series predictable through time-window approaches. In: Neural nets WIRN Vietri-01. Springer, pp 193–200
Metadata
Title
GLYFE: review and benchmark of personalized glucose predictive models in type 1 diabetes
Authors
Maxime De Bois
Mounîm A. El Yacoubi
Mehdi Ammi
Publication date
09-11-2021
Publisher
Springer Berlin Heidelberg
Published in
Medical & Biological Engineering & Computing / Issue 1/2022
Print ISSN: 0140-0118
Electronic ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-021-02437-4

Other articles of this Issue 1/2022

Medical & Biological Engineering & Computing 1/2022 Go to the issue

Premium Partner