Skip to main content
Top

2010 | OriginalPaper | Chapter

6. Governing Equations in Porous Media

Author : A. Anandarajah

Published in: Computational Methods in Elasticity and Plasticity

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The equations governing deformation of single-phase materials and the associated finite element formulations have been presented in Chaps. 3 and 5, respectively. While all materials are porous at some scale, they may be modeled as single-phase materials when the pores in the materials are macroscopically homogeneous and empty. In some cases, the stresses in the skeleton may be so much greater than those in the fluid that the effect of the fluid on the behavior of the skeleton may be neglected (e.g., dry concrete used in members supporting a bridge where the pores are filled with air). In a two-phase material (e.g., saturated soil), if the conditions (e.g., high permeability and/or slow loading) allow full drainage, the loading does not cause pressure build up and hence the fluid phase does not influence the behavior of the skeleton (i.e., the behavior of the skeleton under fully saturated and dry conditions are the same). At the other extreme, in a fully saturated material, if the conditions are such that relative movement of the fluid with respect to the skeleton is negligible (as in undrained behavior), the material may be modeled as a single-phase material. The theories presented in Chaps. 3 and 5 may then be used to model such problems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ahmadi, G. and Farshad, M. (1974). On the continuum theory of solid-fluid mixtures – A superimposed model of equipresent constituents. Indian Journal of Technology, 12: 195. Ahmadi, G. and Farshad, M. (1974). On the continuum theory of solid-fluid mixtures – A superimposed model of equipresent constituents. Indian Journal of Technology, 12: 195.
go back to reference Anandarajah, A. (1993a). VELACS Project: elasto-plastic finite element prediction of the liquefaction behavior of centrifuge models nos. 1, 3 and 4a. Proceedings of the International Conference on Verification of Numerical Procedures for the Analysis of Soil Liquefaction Problems, Davis, CA, Oct. 17–20. (Eds. K. Arulanandan and R. F. Scott), pp. 1075–1104. Anandarajah, A. (1993a). VELACS Project: elasto-plastic finite element prediction of the liquefaction behavior of centrifuge models nos. 1, 3 and 4a. Proceedings of the International Conference on Verification of Numerical Procedures for the Analysis of Soil Liquefaction Problems, Davis, CA, Oct. 17–20. (Eds. K. Arulanandan and R. F. Scott), pp. 1075–1104.
go back to reference Anandarajah, A. and Chen, J. (1997). Van der Waals attractive force between clay particles in water and contaminants. Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Engineering, 37(2): 27–37. Anandarajah, A. and Chen, J. (1997). Van der Waals attractive force between clay particles in water and contaminants. Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Engineering, 37(2): 27–37.
go back to reference Anandarajah, A. and Lu, N. (1992). Numerical study of the electrical double-layer repulsion between non-parallel clay particles of finite length. International Journal for Numerical and Analytical Methods in Geomechanics, 15(10): 683–703.CrossRef Anandarajah, A. and Lu, N. (1992). Numerical study of the electrical double-layer repulsion between non-parallel clay particles of finite length. International Journal for Numerical and Analytical Methods in Geomechanics, 15(10): 683–703.CrossRef
go back to reference Anandarajah, A., Rashidi, H. and Arulanandan, K. (1995). Elasto-plastic finite element analyses of earthquake pile-soil-structure interaction problems tested in a centrifuge. Computers and Geotechnics, 17: 301–325.CrossRef Anandarajah, A., Rashidi, H. and Arulanandan, K. (1995). Elasto-plastic finite element analyses of earthquake pile-soil-structure interaction problems tested in a centrifuge. Computers and Geotechnics, 17: 301–325.CrossRef
go back to reference Bear, J. and Bachmat, Y. (1986). Macroscopic modeling of transport phenomena in porous media: 2. Application to mass momentum and energy transport. Transport in Porous Media, 1: 241–269.CrossRef Bear, J. and Bachmat, Y. (1986). Macroscopic modeling of transport phenomena in porous media: 2. Application to mass momentum and energy transport. Transport in Porous Media, 1: 241–269.CrossRef
go back to reference Biot, M.A. (1941). General theory of three-dimensional consolidation. Journal of Applied Physics, 12: 155–164.MATHCrossRef Biot, M.A. (1941). General theory of three-dimensional consolidation. Journal of Applied Physics, 12: 155–164.MATHCrossRef
go back to reference Biot, M.A. (1956). Theory of propagation of elastic waves in a fluid-saturated porous solid. I: Low frequency range. Journal of the Acoustic Society of America, 28: 168–191.MathSciNetCrossRef Biot, M.A. (1956). Theory of propagation of elastic waves in a fluid-saturated porous solid. I: Low frequency range. Journal of the Acoustic Society of America, 28: 168–191.MathSciNetCrossRef
go back to reference Biot, M.A. and Willis, P.A. (1957). Elastic coefficients of the theory of consolidation. Journal of Applied Mechanics, 24: 594–601.MathSciNet Biot, M.A. and Willis, P.A. (1957). Elastic coefficients of the theory of consolidation. Journal of Applied Mechanics, 24: 594–601.MathSciNet
go back to reference Bishop, A.W. (1959). The principle of effective stress. Teknisk Ukeblad, 39: 859–863. Bishop, A.W. (1959). The principle of effective stress. Teknisk Ukeblad, 39: 859–863.
go back to reference Bowen, R.M. (1975). Theory of mixtures. In Continuum Physics. (Ed. A. C. Eringen), Academic, New York, Vol. 3, pp. 1–127. Bowen, R.M. (1975). Theory of mixtures. In Continuum Physics. (Ed. A. C. Eringen), Academic, New York, Vol. 3, pp. 1–127.
go back to reference Coussy, O. (1995). Mechanics of Porous Media. Wiley, Chichester. Coussy, O. (1995). Mechanics of Porous Media. Wiley, Chichester.
go back to reference De Boer, R. (1996). Highlights in the historical development of the porous media theory. Applied Mechanics Review, 49: 201–262.CrossRef De Boer, R. (1996). Highlights in the historical development of the porous media theory. Applied Mechanics Review, 49: 201–262.CrossRef
go back to reference Drew, D.A. (1971). Averaged field equation for two-phase media. Studies in Applied Mechanics, 50: 133–166.MATH Drew, D.A. (1971). Averaged field equation for two-phase media. Studies in Applied Mechanics, 50: 133–166.MATH
go back to reference Fisher, R.A. (1948). The fracture of liquids. Journal of Applied Physics, 19: 1062–1067.CrossRef Fisher, R.A. (1948). The fracture of liquids. Journal of Applied Physics, 19: 1062–1067.CrossRef
go back to reference Fredlund, D.G. and Rahardjo, H. (1993). Soil Mechanics for Unsaturated Soils. Wiley, New York.CrossRef Fredlund, D.G. and Rahardjo, H. (1993). Soil Mechanics for Unsaturated Soils. Wiley, New York.CrossRef
go back to reference Gawin, D. and Schrefler, B.A. (1996). Thermo-hydro-mechanical analysis of partially saturated porous materials. Engineering Computations, 13(7): 113–143.MATHCrossRef Gawin, D. and Schrefler, B.A. (1996). Thermo-hydro-mechanical analysis of partially saturated porous materials. Engineering Computations, 13(7): 113–143.MATHCrossRef
go back to reference Ghaboussi, J. and Wilson, E.L. (1972). Variational formulation of dynamics of fluid saturated porous elastic solids. Journal of Engineering Mechanics, ASCE, 98(EM4): 947–963. Ghaboussi, J. and Wilson, E.L. (1972). Variational formulation of dynamics of fluid saturated porous elastic solids. Journal of Engineering Mechanics, ASCE, 98(EM4): 947–963.
go back to reference Gray, W.G. and Hassanizadeh, M. (1989). Averaging theorems and averaged equations for transport of interface properties in multi-phase systems. International Journal of Multi-Phase Flow, 15: 81–95.MATHCrossRef Gray, W.G. and Hassanizadeh, M. (1989). Averaging theorems and averaged equations for transport of interface properties in multi-phase systems. International Journal of Multi-Phase Flow, 15: 81–95.MATHCrossRef
go back to reference Green, A.E. and Naghdi, P.M. (1965). A dynamical theory of interacting continua. International Journal of Engineering Science, 3: 231–241.MathSciNetCrossRef Green, A.E. and Naghdi, P.M. (1965). A dynamical theory of interacting continua. International Journal of Engineering Science, 3: 231–241.MathSciNetCrossRef
go back to reference Guan, Y. and Fredlund, D. (1997). Use of tensile strength of water for the direct measurement of high soil suction. Canadian Geotechnical Journal, 34(4): 604–614. Guan, Y. and Fredlund, D. (1997). Use of tensile strength of water for the direct measurement of high soil suction. Canadian Geotechnical Journal, 34(4): 604–614.
go back to reference Gurtin, M.E., Oliver, M.L. and Williams, W.O. (1972). On balance of forces for mixtures. Quarterly of Applied Mathematics, 30: 527–530. Gurtin, M.E., Oliver, M.L. and Williams, W.O. (1972). On balance of forces for mixtures. Quarterly of Applied Mathematics, 30: 527–530.
go back to reference Hassanizadeh, M. and Gray, W.G. (1990). Mechanics and thermodynamics of multi-phase flow in porous media including inter-phase transport. Advances in Water Resources, 13(4): 169–186.CrossRef Hassanizadeh, M. and Gray, W.G. (1990). Mechanics and thermodynamics of multi-phase flow in porous media including inter-phase transport. Advances in Water Resources, 13(4): 169–186.CrossRef
go back to reference Ishii, M. (1975). Thermo-Fluid Dynamic Theory of Two-Phase Flow, Eyrolles, Paris.MATH Ishii, M. (1975). Thermo-Fluid Dynamic Theory of Two-Phase Flow, Eyrolles, Paris.MATH
go back to reference Kalaydjian, F. (1987). A macroscopic description of multiphase flow involving spacetime and evolution of fluid/fluid interfaces. Transport in Porous Media, 2: 537–552.CrossRef Kalaydjian, F. (1987). A macroscopic description of multiphase flow involving spacetime and evolution of fluid/fluid interfaces. Transport in Porous Media, 2: 537–552.CrossRef
go back to reference Lewis, R.W. and Schrefler, B.A. (1998). The Finite Element Method in the Deformation and Consolidation of Porous Media. Wiley, New York.MATH Lewis, R.W. and Schrefler, B.A. (1998). The Finite Element Method in the Deformation and Consolidation of Porous Media. Wiley, New York.MATH
go back to reference Li, X.S. (2004). Modeling the hysteresis response for arbitrary wetting/drying paths. Computers and Geotechnics, 32: 133–137.CrossRef Li, X.S. (2004). Modeling the hysteresis response for arbitrary wetting/drying paths. Computers and Geotechnics, 32: 133–137.CrossRef
go back to reference Likos, W.J. and Lu, N. (2004). Hysteresis of capillary stress in unsaturated granular soil. Journal of Engineering Mechanics, ASCE, 130(6): 646–655.CrossRef Likos, W.J. and Lu, N. (2004). Hysteresis of capillary stress in unsaturated granular soil. Journal of Engineering Mechanics, ASCE, 130(6): 646–655.CrossRef
go back to reference Lu, N. (2008). Is metric suction a stress variable? Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 134(7): 899–905.CrossRef Lu, N. (2008). Is metric suction a stress variable? Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 134(7): 899–905.CrossRef
go back to reference Lu, N. and Likos, W.J. (2004). Unsaturated Soil Mechanics. Wiley. Lu, N. and Likos, W.J. (2004). Unsaturated Soil Mechanics. Wiley.
go back to reference Marle, C.M. (1982). On macroscopic equations governing multiphase flow with diffusion and chemical reactions in porous media. International Journal of Engineering Science, 20: 643–662.MathSciNetMATHCrossRef Marle, C.M. (1982). On macroscopic equations governing multiphase flow with diffusion and chemical reactions in porous media. International Journal of Engineering Science, 20: 643–662.MathSciNetMATHCrossRef
go back to reference Meroi, E.A., Schrefler, B.A. and Zienkiewicz, O.C. (1995). Large strain static and dynamic semisaturated soil behavior. International Journal of Numerical and Analytical Methods in Geomechanics, 19: 81–106.MATHCrossRef Meroi, E.A., Schrefler, B.A. and Zienkiewicz, O.C. (1995). Large strain static and dynamic semisaturated soil behavior. International Journal of Numerical and Analytical Methods in Geomechanics, 19: 81–106.MATHCrossRef
go back to reference Morland, L.W. (1972). A simple constitutive theory for a fluid-saturated porous solids. Journal of Geophysical Research, 77: 890–900.CrossRef Morland, L.W. (1972). A simple constitutive theory for a fluid-saturated porous solids. Journal of Geophysical Research, 77: 890–900.CrossRef
go back to reference Muraleetharan, K.K. and Wei, C. (1999). Dynamic behavior of unsaturated porous media: governing equations using the theory of mixtures with interfaces. International Journal for Numerical and Analytical Methods in Geomechanics, 23: 1579–1608.MATHCrossRef Muraleetharan, K.K. and Wei, C. (1999). Dynamic behavior of unsaturated porous media: governing equations using the theory of mixtures with interfaces. International Journal for Numerical and Analytical Methods in Geomechanics, 23: 1579–1608.MATHCrossRef
go back to reference Muraleetharan, K.K., Liu, C., Wei, C-F., Kibbey, T.C.G., and Chen, L. (2009). An elastoplastic framework for coupling hydraulic and mechanical behavior of unsaturated soils. International Journal of Plasticity, 25, 473–490.MATHCrossRef Muraleetharan, K.K., Liu, C., Wei, C-F., Kibbey, T.C.G., and Chen, L. (2009). An elastoplastic framework for coupling hydraulic and mechanical behavior of unsaturated soils. International Journal of Plasticity, 25, 473–490.MATHCrossRef
go back to reference Nigmatulin, R.I. (1979). Spatial averaging in the mechanics of heterogeneous and dispersed systems. International Journal of Multi-Phase Flow, 5: 353–385.MATHCrossRef Nigmatulin, R.I. (1979). Spatial averaging in the mechanics of heterogeneous and dispersed systems. International Journal of Multi-Phase Flow, 5: 353–385.MATHCrossRef
go back to reference Pietruszczak, S. and Pande, G.N. (1996). Constitutive relations for partially saturated soils containing gas inclusions. Journal of Geotechnical Engineering, ASCE, 122(1): 50–59.CrossRef Pietruszczak, S. and Pande, G.N. (1996). Constitutive relations for partially saturated soils containing gas inclusions. Journal of Geotechnical Engineering, ASCE, 122(1): 50–59.CrossRef
go back to reference Prevost, J.H. (1980). Mechnics of continuous porous media. International Journal of Engineering Science, 18(5): 787–800.MATHCrossRef Prevost, J.H. (1980). Mechnics of continuous porous media. International Journal of Engineering Science, 18(5): 787–800.MATHCrossRef
go back to reference Sandhu, R.S. and Wilson, E.L. (1969). Finite element analysis of flow in saturated porous elastic media. Journal of Engineering Mechanics, ASCE, 95: 641–652. Sandhu, R.S. and Wilson, E.L. (1969). Finite element analysis of flow in saturated porous elastic media. Journal of Engineering Mechanics, ASCE, 95: 641–652.
go back to reference Schiffman, R.L. (1970). Stress components of a porous medium. Journal of Geophysical Research, 75: 4035–4038.CrossRef Schiffman, R.L. (1970). Stress components of a porous medium. Journal of Geophysical Research, 75: 4035–4038.CrossRef
go back to reference Schrefler, B.A. and Simoni, L. (1995). Numerical solutions of thermo-hydro-mechanical problems. In Modern Issues in Non-Saturated Soils. (Eds. A. Gens, P. Jouanna and B.A. Schrefler), Springer, Berlin, pp. 213–276. Schrefler, B.A. and Simoni, L. (1995). Numerical solutions of thermo-hydro-mechanical problems. In Modern Issues in Non-Saturated Soils. (Eds. A. Gens, P. Jouanna and B.A. Schrefler), Springer, Berlin, pp. 213–276.
go back to reference Slattery, J.M. (1981). Momentum, Energy and Mass Transfer in Continua. (2nd Edition). McGraw Hill, New York. Slattery, J.M. (1981). Momentum, Energy and Mass Transfer in Continua. (2nd Edition). McGraw Hill, New York.
go back to reference Taylor, D.W. (1948). Fundamentals of Soil Mechanics. Wiley, New York. Taylor, D.W. (1948). Fundamentals of Soil Mechanics. Wiley, New York.
go back to reference Terzaghi, K. (1925). Erdbaumechanik auf bodenphysikalischer Grundlage. Leipzig, Deuticke.MATH Terzaghi, K. (1925). Erdbaumechanik auf bodenphysikalischer Grundlage. Leipzig, Deuticke.MATH
go back to reference Terzaghi, K. (1936). The shearing resistance of saturated soils. Proceedings of the 1st ICSMFE, 1: 54–56. Terzaghi, K. (1936). The shearing resistance of saturated soils. Proceedings of the 1st ICSMFE, 1: 54–56.
go back to reference Truesdell, C. (1965). The Elements of Continuum Mechanics. Springer, New York. Truesdell, C. (1965). The Elements of Continuum Mechanics. Springer, New York.
go back to reference Truesdell, C. and Toupin, R. (1960). The classical field theories. In Handbuch der physic. (Ed. S. Flugge), Springer, Berlin, Vol. III/1. Truesdell, C. and Toupin, R. (1960). The classical field theories. In Handbuch der physic. (Ed. S. Flugge), Springer, Berlin, Vol. III/1.
go back to reference Voyiadjis, G.Z., and Song, C.R. (2006). The Coupled Theory of Mixtures in Geomechanics with Applications, Springer, Heidelberg, ISBN: 3540-25130–8, 438 p. Voyiadjis, G.Z., and Song, C.R. (2006). The Coupled Theory of Mixtures in Geomechanics with Applications, Springer, Heidelberg, ISBN: 3540-25130–8, 438 p.
go back to reference Whitaker, S. (1986). Flow in porous media II: The governing equations for immiscible two-phase flow. Transport in Porous Media, 1: 105–126.CrossRef Whitaker, S. (1986). Flow in porous media II: The governing equations for immiscible two-phase flow. Transport in Porous Media, 1: 105–126.CrossRef
go back to reference Whitaker, S. (1999). The Method of Volume Averaging. Kluwer, Dordrecht/Boston/London, 219 pages. Whitaker, S. (1999). The Method of Volume Averaging. Kluwer, Dordrecht/Boston/London, 219 pages.
go back to reference Williams, W.O. (1973). On the theory of mixtures. Archives for Rational Mechanics and Analysis, 51: 239–260.MATHCrossRef Williams, W.O. (1973). On the theory of mixtures. Archives for Rational Mechanics and Analysis, 51: 239–260.MATHCrossRef
go back to reference Wroth, C.P. and Houlsby, G.T. (1985). Soil mechanics: property characterization and analysis procedures. Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, 1: 1–55. Wroth, C.P. and Houlsby, G.T. (1985). Soil mechanics: property characterization and analysis procedures. Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, 1: 1–55.
go back to reference Zienkiewicz, O.C. (1982). Basic formulation of static and dynamic behavior of soils and other porous materials. In Numerical Methods in Geomechanics. (Ed. J.B. Martins), D. Reidel, Boston and London. Zienkiewicz, O.C. (1982). Basic formulation of static and dynamic behavior of soils and other porous materials. In Numerical Methods in Geomechanics. (Ed. J.B. Martins), D. Reidel, Boston and London.
go back to reference Zienkiewicz, O.C. and Shiomi, T. (1984). Dynamic behavior of saturated porous media: the generalized Biot formulation and its solution. International Journal for Numerical and Analytical Methods in Geomechanics, 8: 71–96.MATHCrossRef Zienkiewicz, O.C. and Shiomi, T. (1984). Dynamic behavior of saturated porous media: the generalized Biot formulation and its solution. International Journal for Numerical and Analytical Methods in Geomechanics, 8: 71–96.MATHCrossRef
go back to reference Zienkiewicz, O.C., Chan, A.H.C., Pastor, M., Schrefler, B.A. and Shiomi, T. (1999). Computational Geomechanics with Special Reference to Earthquake Engineering. Wiley, New York.MATH Zienkiewicz, O.C., Chan, A.H.C., Pastor, M., Schrefler, B.A. and Shiomi, T. (1999). Computational Geomechanics with Special Reference to Earthquake Engineering. Wiley, New York.MATH
Metadata
Title
Governing Equations in Porous Media
Author
A. Anandarajah
Copyright Year
2010
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4419-6379-6_6

Premium Partners