Skip to main content
Top

2015 | OriginalPaper | Chapter

Graphene-Based Polymer Nanocomposites: Chemistry and Applications

Authors : Mehdi Mogharabi, Mohammad Ali Faramarzi

Published in: Eco-friendly Polymer Nanocomposites

Publisher: Springer India

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Graphene, a monolayer sp2 hybridized carbon atom, received worldwide attention due to its extraordinary physical, chemical, thermal, and electrical properties. In recent years, the development of nanoscale dispersion techniques using graphene particles in a polymer matrix has been crowned a new and interesting horizon in material science. Graphene-based polymer nanocomposites reveal superior mechanical and thermal properties compared with the conventional graphite-based composites or neat polymers which are obtained through very low filler loadings in the polymer matrix. Graphene derivatives as unique nanofillers are used in the production of lightweight, low cost, and high-performance polymer nanocomposites with a wide range of applications, such as fuel cells, supercapacitors, solar cells, sensors, and lightweight gasoline tanks. This chapter reviews the preparation methods of graphene-based polymer nanocomposites, their characteristics, and their wide range of potential applications in technological fields.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Achaby ME, Arrakhiz F-E, Vaudreuil S, Qaiss AE, Bousmina M, Fassi-Fehri O (2012) Mechanical, thermal, and rheological properties of graphene-based polypropylene nanocomposites prepared by melt mixing. Polym Compos 33:733–744 Achaby ME, Arrakhiz F-E, Vaudreuil S, Qaiss AE, Bousmina M, Fassi-Fehri O (2012) Mechanical, thermal, and rheological properties of graphene-based polypropylene nanocomposites prepared by melt mixing. Polym Compos 33:733–744
2.
go back to reference Akhavan O, Ghaderi E, Rahighi R (2012) Toward single-DNA electrochemical biosensing by graphene nanowalls. ACS Nano 6:2904–2916 Akhavan O, Ghaderi E, Rahighi R (2012) Toward single-DNA electrochemical biosensing by graphene nanowalls. ACS Nano 6:2904–2916
3.
go back to reference Akhtar MS, Kwon SJ, Stadlerc FJ, Yang OB (2013) High efficiency solid state dye sensitized solar cells with graphene-polyethylene oxide composite electrolytes. Nanoscale 5:5403–5411 Akhtar MS, Kwon SJ, Stadlerc FJ, Yang OB (2013) High efficiency solid state dye sensitized solar cells with graphene-polyethylene oxide composite electrolytes. Nanoscale 5:5403–5411
4.
go back to reference Al-Mashat L, Shin K, Kalantar-zadeh K, Plessis JD, Han SH, Kojima RW, Kaner RB, Li D, Gou X, Ippolito SJ, Wlodarski W (2010) Graphene/polyaniline nanocomposite for hydrogen sensing. J Phys Chem C 114:16168–16173 Al-Mashat L, Shin K, Kalantar-zadeh K, Plessis JD, Han SH, Kojima RW, Kaner RB, Li D, Gou X, Ippolito SJ, Wlodarski W (2010) Graphene/polyaniline nanocomposite for hydrogen sensing. J Phys Chem C 114:16168–16173
5.
go back to reference Ansari S, Giannelis EP (2009) Functionalized graphene sheet-poly(vinylidene fluoride) conductive nanocomposites. J Polym Sci, Part B: Polym Phys 47:888–897 Ansari S, Giannelis EP (2009) Functionalized graphene sheet-poly(vinylidene fluoride) conductive nanocomposites. J Polym Sci, Part B: Polym Phys 47:888–897
6.
go back to reference Appel A-K, Thomann R, Mülhaupt R (2012) Polyurethane nanocomposites prepared from solvent-free stable dispersions of functionalized graphene nanosheets in polyols. Polymer 53:4931–4939 Appel A-K, Thomann R, Mülhaupt R (2012) Polyurethane nanocomposites prepared from solvent-free stable dispersions of functionalized graphene nanosheets in polyols. Polymer 53:4931–4939
7.
go back to reference Araby S, Meng Q, Zhang L, Kang H, Majewski P, Tang Y, Ma J (2014) Electrically and thermally conductive elastomer/graphene nanocomposites by solution mixing. Polymer 55:201–210 Araby S, Meng Q, Zhang L, Kang H, Majewski P, Tang Y, Ma J (2014) Electrically and thermally conductive elastomer/graphene nanocomposites by solution mixing. Polymer 55:201–210
8.
go back to reference Artiles MS, Rout CS, Fisher TS (2011) Graphene-based hybrid materials and devices for biosensing. Adv Drug Deliv Rev 63:1352–1360 Artiles MS, Rout CS, Fisher TS (2011) Graphene-based hybrid materials and devices for biosensing. Adv Drug Deliv Rev 63:1352–1360
9.
go back to reference Bae S-H, Lee Y, Sharma BK, Lee H-J, Kim J-H, Ahn J-H (2013) Graphene-based transparent strain sensor. Carbon 51:236–242 Bae S-H, Lee Y, Sharma BK, Lee H-J, Kim J-H, Ahn J-H (2013) Graphene-based transparent strain sensor. Carbon 51:236–242
10.
go back to reference Basu S, Bhattacharyya P (2012) Recent developments on graphene and graphene oxide based solid state gas sensors. Sens Actuators, B 173:1–21 Basu S, Bhattacharyya P (2012) Recent developments on graphene and graphene oxide based solid state gas sensors. Sens Actuators, B 173:1–21
11.
go back to reference Bi H, Xie X, Yin K, Zhou Y, Wan S, He L, Xu F, Banhart F, Sun L, Ruoff RS (2012) Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv Funct Mater 22:4421–4425 Bi H, Xie X, Yin K, Zhou Y, Wan S, He L, Xu F, Banhart F, Sun L, Ruoff RS (2012) Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv Funct Mater 22:4421–4425
12.
go back to reference Bieri M, Treier M, Cai J, Aït-Mansour k, Ruffieux P, Gröning O, Gröning, Kastler M, Rieger R, Feng X, Müllen K, Fasel R (2009) Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chem Commun 6919–6921 Bieri M, Treier M, Cai J, Aït-Mansour k, Ruffieux P, Gröning O, Gröning, Kastler M, Rieger R, Feng X, Müllen K, Fasel R (2009) Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chem Commun 6919–6921
13.
go back to reference Boehm HP, Setton R, Stumpp E (1986) Nomenclature and terminology of graphite intercalation compounds. Carbon 24:241–245 Boehm HP, Setton R, Stumpp E (1986) Nomenclature and terminology of graphite intercalation compounds. Carbon 24:241–245
14.
go back to reference Brodie BC (1859) On the atomic weight of graphite. Philos Trans R Soc Lond 149:249–259 Brodie BC (1859) On the atomic weight of graphite. Philos Trans R Soc Lond 149:249–259
15.
go back to reference Butler SZ, Hollen SM, Cao L, Cui Y, Gupta JA, Gutiérrez HR, Heinz TF, Hong SS, Huang J, Ismach AF, Johnston-Halperin E, Kuno M, Plashnitsa VV, Robinson RD, Ruoff RS, Salahuddin S, Shan J, Shi L, Spencer MG, Terrones M, Windl W, Goldberger JE (2013) Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7:2898–2926 Butler SZ, Hollen SM, Cao L, Cui Y, Gupta JA, Gutiérrez HR, Heinz TF, Hong SS, Huang J, Ismach AF, Johnston-Halperin E, Kuno M, Plashnitsa VV, Robinson RD, Ruoff RS, Salahuddin S, Shan J, Shi L, Spencer MG, Terrones M, Windl W, Goldberger JE (2013) Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7:2898–2926
16.
go back to reference Cai D, Song M (2009) A simple route to enhance the interface between graphite oxide nanoplatelets and a semi-crystalline polymer for stress transfer. Nanotechnology 20:315708/1–315708/ Cai D, Song M (2009) A simple route to enhance the interface between graphite oxide nanoplatelets and a semi-crystalline polymer for stress transfer. Nanotechnology 20:315708/1–315708/
17.
go back to reference Cai M, Thorpe D, Adamson DH, Schniepp HC (2012) Methods of graphite exfoliation. J Mater Chem 22:24992–25002 Cai M, Thorpe D, Adamson DH, Schniepp HC (2012) Methods of graphite exfoliation. J Mater Chem 22:24992–25002
18.
go back to reference Cao H, Zhou X, Zhang Y, Chen L, Liu Z (2013) Microspherical polyaniline/graphene nanocomposites for high performance supercapacitors. J Power Sources 243:715–720 Cao H, Zhou X, Zhang Y, Chen L, Liu Z (2013) Microspherical polyaniline/graphene nanocomposites for high performance supercapacitors. J Power Sources 243:715–720
19.
go back to reference Ciesielski A, Samorì P (2014) Graphene via sonication assisted liquid-phase exfoliation. Chem Soc Rev 43:381–398 Ciesielski A, Samorì P (2014) Graphene via sonication assisted liquid-phase exfoliation. Chem Soc Rev 43:381–398
20.
go back to reference Chang H, Wu H (2013) Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications. Energy Environ Sci 6:3483–3507 Chang H, Wu H (2013) Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications. Energy Environ Sci 6:3483–3507
21.
go back to reference Chikhi N, Fellahi S, Bakar M (2003) Modification of epoxy resin using reactive liquid (ATBN) rubber. Eur Polym J 38:251–264 Chikhi N, Fellahi S, Bakar M (2003) Modification of epoxy resin using reactive liquid (ATBN) rubber. Eur Polym J 38:251–264
22.
go back to reference Choi W, Lahiri I, Seelaboyina R, Kang YS (2010) Synthesis of graphene and its applications: a review. Crit Rev Solid State Mater Sci 35:52–71 Choi W, Lahiri I, Seelaboyina R, Kang YS (2010) Synthesis of graphene and its applications: a review. Crit Rev Solid State Mater Sci 35:52–71
23.
go back to reference Choi HJ, Jung SM, Seo JM, Chang DW, Dai L, Baek JB (2012) Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy 1:534–551 Choi HJ, Jung SM, Seo JM, Chang DW, Dai L, Baek JB (2012) Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy 1:534–551
24.
go back to reference Chua CK, Pumera M (2012) Friedel-Crafts acylation on graphene. Chem Asian J 7:1009–1012 Chua CK, Pumera M (2012) Friedel-Crafts acylation on graphene. Chem Asian J 7:1009–1012
25.
go back to reference Chua CK, Pumera M (2012) Covalent chemistry on graphene. Chem Soc Rev 42:3222–3233 Chua CK, Pumera M (2012) Covalent chemistry on graphene. Chem Soc Rev 42:3222–3233
26.
go back to reference Chua CK, Pumera M (2013) Covalent chemistry on graphene. Chem Soc Rev 42:3222−3233 Chua CK, Pumera M (2013) Covalent chemistry on graphene. Chem Soc Rev 42:3222−3233
27.
go back to reference Das B, Prasad KE, Ramamurty U, Rao CNR (2009) Nano-indentation studies on polymer matrix composites reinforced by few-layer graphene. Nanotechnology 20:125705/1–125705/5 Das B, Prasad KE, Ramamurty U, Rao CNR (2009) Nano-indentation studies on polymer matrix composites reinforced by few-layer graphene. Nanotechnology 20:125705/1–125705/5
28.
go back to reference Detsri E, Dubas ST (2013) Interfacial polymerization of polyaniline and its layer-by-layer assembly into polyelectrolytes multilayer thin-films. J Appl Polym Sci 128:558–565 Detsri E, Dubas ST (2013) Interfacial polymerization of polyaniline and its layer-by-layer assembly into polyelectrolytes multilayer thin-films. J Appl Polym Sci 128:558–565
29.
go back to reference Ding P, Su S, Song N, Tang S, Liu Y, Shi L (2014) Highly thermal conductive composites with polyamide-6 covalently-grafted graphene by an in situ polymerization and thermal reduction process. Carbon 66:576–584 Ding P, Su S, Song N, Tang S, Liu Y, Shi L (2014) Highly thermal conductive composites with polyamide-6 covalently-grafted graphene by an in situ polymerization and thermal reduction process. Carbon 66:576–584
30.
go back to reference Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228−240 Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228−240
31.
go back to reference Du W, Jiang X, Zhu L (2013) From graphite to graphene: direct liquid-phase exfoliation of graphite to produce single- and few-layered pristine graphene. J Mater Chem A 1:10592–10606 Du W, Jiang X, Zhu L (2013) From graphite to graphene: direct liquid-phase exfoliation of graphite to produce single- and few-layered pristine graphene. J Mater Chem A 1:10592–10606
32.
go back to reference Edwards RS, Coleman KS (2013) Graphene synthesis: relationship to applications. Nanoscale 5:38–51 Edwards RS, Coleman KS (2013) Graphene synthesis: relationship to applications. Nanoscale 5:38–51
33.
go back to reference Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS (2009) Control of graphene’s properties by reversible hydrogenation: evidence for graphene. Science 323:610–613 Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS (2009) Control of graphene’s properties by reversible hydrogenation: evidence for graphene. Science 323:610–613
34.
go back to reference Fan Z, Zhao Q, Li T, Yan J, Ren Y, Feng J, Wei T (2012) Easy synthesis of porous graphene nanosheets and their use in supercapacitors. Carbon 50:1699–1703 Fan Z, Zhao Q, Li T, Yan J, Ren Y, Feng J, Wei T (2012) Easy synthesis of porous graphene nanosheets and their use in supercapacitors. Carbon 50:1699–1703
35.
go back to reference Fang M, Wang K, Lu H, Yang Y, Nutt S (2009) Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J Mater Chem 19:7098–7105 Fang M, Wang K, Lu H, Yang Y, Nutt S (2009) Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J Mater Chem 19:7098–7105
36.
go back to reference Faramarzi MA, Forootanfar H (2011) Biosynthesis and characterization of gold nanoparticles produced by laccase from Paraconiothyrium variabile. Colloids Surf 87:23–27 Faramarzi MA, Forootanfar H (2011) Biosynthesis and characterization of gold nanoparticles produced by laccase from Paraconiothyrium variabile. Colloids Surf 87:23–27
37.
go back to reference Faramarzi MA, Sadighi A (2013) Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures. Adv Colloid Interface Sci 189:1–20 Faramarzi MA, Sadighi A (2013) Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures. Adv Colloid Interface Sci 189:1–20
38.
go back to reference Feliciano FJ, Monteiro OC (2014) New nanocomposite materials by incorporation of nanocrystalline TiO2 particles into polyaniline conductive films. J Mater Sci Technol 30:449–454 Feliciano FJ, Monteiro OC (2014) New nanocomposite materials by incorporation of nanocrystalline TiO2 particles into polyaniline conductive films. J Mater Sci Technol 30:449–454
39.
go back to reference Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8:235–246 Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8:235–246
40.
go back to reference Fujii S, Enoki T (2012) Nanographene and graphene edges: electronic structure and nanofabrication. Acc Chem Res 46:2202–2210 Fujii S, Enoki T (2012) Nanographene and graphene edges: electronic structure and nanofabrication. Acc Chem Res 46:2202–2210
41.
go back to reference Gao W, Alemany LB, Ci L, Ajayan PM (2009) New insights into the structure and reduction of graphite oxide. Nat Chem 1:403–408 Gao W, Alemany LB, Ci L, Ajayan PM (2009) New insights into the structure and reduction of graphite oxide. Nat Chem 1:403–408
42.
go back to reference Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112:6156–6214 Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112:6156–6214
43.
go back to reference Guardia L, Fernández-Merino MJ, Paredes JI, Solís-Fernández P, Villar-Rodil S, Martínez-Alonso A, Tascón JMD (2011) High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants. Carbon 49:1653–1662 Guardia L, Fernández-Merino MJ, Paredes JI, Solís-Fernández P, Villar-Rodil S, Martínez-Alonso A, Tascón JMD (2011) High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants. Carbon 49:1653–1662
44.
go back to reference Guo X, Mei N (2014) Assessment of the toxic potential of graphene family nanomaterials. J Food Drug Anal 22:105–115 Guo X, Mei N (2014) Assessment of the toxic potential of graphene family nanomaterials. J Food Drug Anal 22:105–115
45.
go back to reference Han P, Fan J, Jing M, Zhu L, Shen X, Pan T (2014) Effects of reduced graphene on crystallization behavior, thermal conductivity and tribological properties of poly(vinylidene fluoride). J Compos Mater 48:659–666 Han P, Fan J, Jing M, Zhu L, Shen X, Pan T (2014) Effects of reduced graphene on crystallization behavior, thermal conductivity and tribological properties of poly(vinylidene fluoride). J Compos Mater 48:659–666
46.
go back to reference Han Y, Wu Y, Shen M, Huang X, Zhu J, Zhang X (2013) Preparation and properties of polystyrene nanocomposites with graphite oxide and graphene as flame retardants. J Mater Sci 48:4214–4222 Han Y, Wu Y, Shen M, Huang X, Zhu J, Zhang X (2013) Preparation and properties of polystyrene nanocomposites with graphite oxide and graphene as flame retardants. J Mater Sci 48:4214–4222
47.
go back to reference Hauser AW, Schwerdtfeger P (2012) Nanoporous Graphene Membranes for Efficient 3He/4He Separation. J Phys Chem Lett 3:209–213 Hauser AW, Schwerdtfeger P (2012) Nanoporous Graphene Membranes for Efficient 3He/4He Separation. J Phys Chem Lett 3:209–213
48.
go back to reference He F, Lam K, Ma D, Fan J, Chan LH, Zhang L (2013) Fabrication of graphene nanosheet (GNS)-Fe3O4 hybrids and GNS–Fe3O4/syndiotactic polystyrene composites with high dielectric permittivity. Carbon 58:175–184 He F, Lam K, Ma D, Fan J, Chan LH, Zhang L (2013) Fabrication of graphene nanosheet (GNS)-Fe3O4 hybrids and GNS–Fe3O4/syndiotactic polystyrene composites with high dielectric permittivity. Carbon 58:175–184
50.
go back to reference Hu W, Peng C, Luo W, Lv W, Li X, Li D, Huang Q, Fan C (2010) Graphene-based antibacterial paper. ACS Nano 4:4317–4323 Hu W, Peng C, Luo W, Lv W, Li X, Li D, Huang Q, Fan C (2010) Graphene-based antibacterial paper. ACS Nano 4:4317–4323
51.
go back to reference Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339 Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339
52.
go back to reference Imran SM, Kim YN, Shao GN, Hussain M, Choa Y-H, Kim HT (2014) Enhancement of electroconductivity of polyaniline/graphene oxide nanocomposites through in situ emulsion polymerization. J Mater Sci 49:1328–1335 Imran SM, Kim YN, Shao GN, Hussain M, Choa Y-H, Kim HT (2014) Enhancement of electroconductivity of polyaniline/graphene oxide nanocomposites through in situ emulsion polymerization. J Mater Sci 49:1328–1335
53.
go back to reference Janas D, Koziol KK (2014) A review of production methods of carbon nanotube and graphene thin films for electrothermal applications. Nanoscale 6:3037–3045 Janas D, Koziol KK (2014) A review of production methods of carbon nanotube and graphene thin films for electrothermal applications. Nanoscale 6:3037–3045
54.
go back to reference Jang JY, Kim MS, Jeong HM, Shin CM (2009) Graphite oxide/poly(methyl methacrylate) nanocomposites prepared by a novel method utilizing macroazoinitiator. Compos Sci Technol 69:186–191 Jang JY, Kim MS, Jeong HM, Shin CM (2009) Graphite oxide/poly(methyl methacrylate) nanocomposites prepared by a novel method utilizing macroazoinitiator. Compos Sci Technol 69:186–191
55.
go back to reference Jin L, Yang K, Yao K, Zhang S, Tao H, Lee S-T, Liu Z, Peng R (2012) Functionalized Graphene Oxide in Enzyme Engineering: A selective modulator for enzyme activity and thermostability. ACS Nano 6:4864–4875 Jin L, Yang K, Yao K, Zhang S, Tao H, Lee S-T, Liu Z, Peng R (2012) Functionalized Graphene Oxide in Enzyme Engineering: A selective modulator for enzyme activity and thermostability. ACS Nano 6:4864–4875
56.
go back to reference Kai W, Hirota Y, Hua L, Inoue Y (2008) Thermal and mechanical properties of a poly(ε-caprolactone)/graphite oxide composite. J Appl Polym Sci 107:1395–1400 Kai W, Hirota Y, Hua L, Inoue Y (2008) Thermal and mechanical properties of a poly(ε-caprolactone)/graphite oxide composite. J Appl Polym Sci 107:1395–1400
57.
go back to reference Kim H, Macosko CW (2009) Morphology and properties of polyester/exfoliated graphite nanocomposites. Macromolecules 41:3317–3327 Kim H, Macosko CW (2009) Morphology and properties of polyester/exfoliated graphite nanocomposites. Macromolecules 41:3317–3327
58.
go back to reference Kim H, Macosko CW (2009) Processing-property relationships of polycarbonate/graphene composites. Polymer 50:3797–3809 Kim H, Macosko CW (2009) Processing-property relationships of polycarbonate/graphene composites. Polymer 50:3797–3809
59.
go back to reference Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn J-H, Kim P, Choi J-Y, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710 Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn J-H, Kim P, Choi J-Y, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710
60.
go back to reference Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530 Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530
61.
go back to reference Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22:3441–3450 Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22:3441–3450
62.
go back to reference Kim M, Safron NS, Huang C, Arnold MS, Gopalan P (2012) Light-driven reversible modulation of doping in graphene. Nano Lett 12:182–187 Kim M, Safron NS, Huang C, Arnold MS, Gopalan P (2012) Light-driven reversible modulation of doping in graphene. Nano Lett 12:182–187
63.
go back to reference Konwer S, Guha AK, Dolui SK (2013) Graphene oxide-filled conducting polyaniline composites as methanol-sensing materials. J Mater Sci 48:1729–1739 Konwer S, Guha AK, Dolui SK (2013) Graphene oxide-filled conducting polyaniline composites as methanol-sensing materials. J Mater Sci 48:1729–1739
64.
go back to reference Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872–877 Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872–877
65.
go back to reference Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375 Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375
66.
go back to reference Kuila T, Bose B, Mishra AK, Khanra P, Kim NH, Lee JH (2012) Chemical functionalization of graphene and its applications. Prog Mater Sci 57:1061–1105 Kuila T, Bose B, Mishra AK, Khanra P, Kim NH, Lee JH (2012) Chemical functionalization of graphene and its applications. Prog Mater Sci 57:1061–1105
67.
go back to reference Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102:4477–4482 Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102:4477–4482
68.
go back to reference Leszczynski P, Han Z, Nicolet AA, Piot BA, Kossacki P, Orlita M, Bouchiat V, Basko DM, Potemski M, Faugeras C (2014) Electrical switch to the resonant magneto-phonon effect in graphene. Nano Lett 14:1460–1466 Leszczynski P, Han Z, Nicolet AA, Piot BA, Kossacki P, Orlita M, Bouchiat V, Basko DM, Potemski M, Faugeras C (2014) Electrical switch to the resonant magneto-phonon effect in graphene. Nano Lett 14:1460–1466
69.
go back to reference Lia J, Guo S, Zhai Y, Wang E (2009) High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film. Anal Chim Acta 649:196–201 Lia J, Guo S, Zhai Y, Wang E (2009) High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film. Anal Chim Acta 649:196–201
70.
go back to reference Li Y, Pan D, Chen S, Wang Q, Pan G, Wang T (2013) In situ polymerization and mechanical, thermal properties of polyurethane/graphene oxide/epoxy nanocomposites. Mater Des 47:850–856 Li Y, Pan D, Chen S, Wang Q, Pan G, Wang T (2013) In situ polymerization and mechanical, thermal properties of polyurethane/graphene oxide/epoxy nanocomposites. Mater Des 47:850–856
71.
go back to reference Li P, Jing G, Zhang B, Sando S, Cui T (2014) Single-crystalline monolayer and multilayer graphene nano switches. Appl Phys Lett 104:113110 Li P, Jing G, Zhang B, Sando S, Cui T (2014) Single-crystalline monolayer and multilayer graphene nano switches. Appl Phys Lett 104:113110
72.
go back to reference Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y (2009) Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater 19:2297–2302 Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y (2009) Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater 19:2297–2302
73.
go back to reference Liang L-J, Wu T, Kang Y, Wang Q (2013) Dispersion of graphene sheets in aqueous solution by oligodeoxynucleotides. Chem Phys Chem 14:1626–1632 Liang L-J, Wu T, Kang Y, Wang Q (2013) Dispersion of graphene sheets in aqueous solution by oligodeoxynucleotides. Chem Phys Chem 14:1626–1632
74.
go back to reference Liao K-H, Park YT, Abdala A, Macosko C (2013) Aqueous reduced graphene/thermoplastic polyurethane nanocomposites. Polymer 54:4555–4559 Liao K-H, Park YT, Abdala A, Macosko C (2013) Aqueous reduced graphene/thermoplastic polyurethane nanocomposites. Polymer 54:4555–4559
75.
go back to reference Liu P, Zhong W, Wu X, Qiu J (2013) Facile synergetic dispersion approach for magnetic Fe3O4@graphene oxide/polystyrene tri-component nanocomposite via radical bulk polymerization. Chem Eng J 219:10–18 Liu P, Zhong W, Wu X, Qiu J (2013) Facile synergetic dispersion approach for magnetic Fe3O4@graphene oxide/polystyrene tri-component nanocomposite via radical bulk polymerization. Chem Eng J 219:10–18
76.
go back to reference Lin M-F, Thakur VK, Tan EJ, Lee PS (2011) Dopant induced hollow BaTiO3 nanostructures for application in high performance capacitors. J Mater Chem 21:16500–16504 Lin M-F, Thakur VK, Tan EJ, Lee PS (2011) Dopant induced hollow BaTiO3 nanostructures for application in high performance capacitors. J Mater Chem 21:16500–16504
77.
go back to reference Lin M-F, Thakur VK, Tan EJ, Lee PS (2011) Surface functionalization of BaTiO3 nanoparticles and improved electrical properties of BaTiO3/polyvinylidene fluoride composite. RSC Adv 1:576–578 Lin M-F, Thakur VK, Tan EJ, Lee PS (2011) Surface functionalization of BaTiO3 nanoparticles and improved electrical properties of BaTiO3/polyvinylidene fluoride composite. RSC Adv 1:576–578
78.
go back to reference Loh KP, Bao Q, Ang PK, Yang J (2010) The chemistry of graphene. J Mater Chem 20:2277–2289 Loh KP, Bao Q, Ang PK, Yang J (2010) The chemistry of graphene. J Mater Chem 20:2277–2289
79.
go back to reference Lu X, Huang H, Nemchuk N, Ruoff RS (1999) Patterning of highly oriented pyrolytic graphite by oxygen plasma etching. Appl Phys Lett 75:193–195 Lu X, Huang H, Nemchuk N, Ruoff RS (1999) Patterning of highly oriented pyrolytic graphite by oxygen plasma etching. Appl Phys Lett 75:193–195
80.
go back to reference Lu C-H, Yang H-H, Zhu C-L, Chen X, Chen G-N (2009) A graphene platform for sensing biomolecules. Angew Chem Int Ed 48:4785–4787 Lu C-H, Yang H-H, Zhu C-L, Chen X, Chen G-N (2009) A graphene platform for sensing biomolecules. Angew Chem Int Ed 48:4785–4787
81.
go back to reference Lu X, Yu M, Huang H, Ruoff RS (1999) Tailoring graphite with the goal of achieving single sheets. Nanotechnology 10:269–272 Lu X, Yu M, Huang H, Ruoff RS (1999) Tailoring graphite with the goal of achieving single sheets. Nanotechnology 10:269–272
82.
go back to reference Lu CH, Zhu CL, Li J, Liu JJ, Chen X, Yang HH (2010) Using graphene to protect DNA from cleavage during cellular delivery. Chem Commun Cambridge U. K. 46:3116–3118 Lu CH, Zhu CL, Li J, Liu JJ, Chen X, Yang HH (2010) Using graphene to protect DNA from cleavage during cellular delivery. Chem Commun Cambridge U. K. 46:3116–3118
83.
go back to reference Lü K, Zhao G, Wang X (2012) A brief review of graphene-based material synthesis and its application in environmental pollution management. Chin Sci Bull 57:1223–1234 Lü K, Zhao G, Wang X (2012) A brief review of graphene-based material synthesis and its application in environmental pollution management. Chin Sci Bull 57:1223–1234
84.
go back to reference Luechinger NA, Booth N, Heness G, Bandyopadhyay S, Grass RN, Stark WJ (2012) Surfactant-free, melt-processable metal-polymer hybrid materials: use of graphene as a dispersing agent. Adv Mater 20:3044–3049 Luechinger NA, Booth N, Heness G, Bandyopadhyay S, Grass RN, Stark WJ (2012) Surfactant-free, melt-processable metal-polymer hybrid materials: use of graphene as a dispersing agent. Adv Mater 20:3044–3049
85.
go back to reference Luong ND, Hippi U, Korhonen JT, Soininen AJ, Ruokolainen J, Johansson L-S, Nam J-D, Sinh LH, Seppälä J (2011) Enhanced mechanical and electrical properties of polyimide film by graphene sheets via in situ polymerization. Polymer 52:5237–5242 Luong ND, Hippi U, Korhonen JT, Soininen AJ, Ruokolainen J, Johansson L-S, Nam J-D, Sinh LH, Seppälä J (2011) Enhanced mechanical and electrical properties of polyimide film by graphene sheets via in situ polymerization. Polymer 52:5237–5242
86.
go back to reference Martin-Gallego M, Verdejo R, Lopez-Manchado MA, Sangermano M (2011) Epoxy-graphene UV-cured nanocomposites. Polymer 52:4664–4669 Martin-Gallego M, Verdejo R, Lopez-Manchado MA, Sangermano M (2011) Epoxy-graphene UV-cured nanocomposites. Polymer 52:4664–4669
87.
go back to reference Martin-Gallego M, Bernal MM, Hernandez M, Verdejo R, Lopez-Manchado MA (2013) Comparison of filler percolation and mechanical properties in graphene and carbon nanotubes filled epoxy nanocomposites. Eur Polym J 49:1347–1353 Martin-Gallego M, Bernal MM, Hernandez M, Verdejo R, Lopez-Manchado MA (2013) Comparison of filler percolation and mechanical properties in graphene and carbon nanotubes filled epoxy nanocomposites. Eur Polym J 49:1347–1353
90.
go back to reference Mogharabi M, Abdollahi M, Faramarzi MA (2014) Safety concerns to application of graphene compounds in pharmacy and medicine. Daru J Pharm Sci 22:23 Mogharabi M, Abdollahi M, Faramarzi MA (2014) Safety concerns to application of graphene compounds in pharmacy and medicine. Daru J Pharm Sci 22:23
91.
go back to reference Mohanty N, Berry V (2008) Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett 8:4469–4476 Mohanty N, Berry V (2008) Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett 8:4469–4476
92.
go back to reference Morimune S, Kotera M, Nishino T, Goto T (2014) Uniaxial drawing of poly(vinyl alcohol)/graphene oxide nanocomposites. Carbon 70:38–45 Morimune S, Kotera M, Nishino T, Goto T (2014) Uniaxial drawing of poly(vinyl alcohol)/graphene oxide nanocomposites. Carbon 70:38–45
93.
go back to reference Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS (1996) Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys Rev B 54:17954–17961 Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS (1996) Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys Rev B 54:17954–17961
94.
go back to reference Nguyen DA, Lee YR, Raghu AV, Jeong HM, Shin CM, Kim BK (2009) Morphological and physical properties of a thermoplastic polyurethane reinforced with functionalized graphene sheet. Polym Int 58:412–417 Nguyen DA, Lee YR, Raghu AV, Jeong HM, Shin CM, Kim BK (2009) Morphological and physical properties of a thermoplastic polyurethane reinforced with functionalized graphene sheet. Polym Int 58:412–417
95.
go back to reference Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666−669 Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666−669
96.
go back to reference Patole AS, Patole SP, Jung S-Y, Yoo J-B, An J-H, Kim T-H (2012) Self assembled graphene/carbon nanotube/polystyrene hybrid nanocomposite by in situ microemulsion polymerization. Eur Polym J 48:252–259 Patole AS, Patole SP, Jung S-Y, Yoo J-B, An J-H, Kim T-H (2012) Self assembled graphene/carbon nanotube/polystyrene hybrid nanocomposite by in situ microemulsion polymerization. Eur Polym J 48:252–259
97.
go back to reference Paredes JI, Villar-Rodil S, Martínez-Alonso A, Tascón JMD (2008) Graphene oxide dispersions in organic solvents. Langmuir 24:10560–10564 Paredes JI, Villar-Rodil S, Martínez-Alonso A, Tascón JMD (2008) Graphene oxide dispersions in organic solvents. Langmuir 24:10560–10564
98.
go back to reference Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224 Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224
99.
go back to reference Peng C, Xiong Y, Liu Z, Zhang F, Ou E, Qian J, Xiong Y, Xu W (2013) Bulk functionalization of graphene using diazonium compounds and amide reaction. Appl Surf Sci 280:914–919 Peng C, Xiong Y, Liu Z, Zhang F, Ou E, Qian J, Xiong Y, Xu W (2013) Bulk functionalization of graphene using diazonium compounds and amide reaction. Appl Surf Sci 280:914–919
100.
go back to reference Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25 Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25
101.
go back to reference Pumera M (2010) Graphene-based nanomaterials and their electrochemistry. Chem Soc Rev 39:4146–4157 Pumera M (2010) Graphene-based nanomaterials and their electrochemistry. Chem Soc Rev 39:4146–4157
102.
go back to reference Pumera M (2011) Graphene-based nanomaterials for energy storage energy. Environ Sci 4:668–674 Pumera M (2011) Graphene-based nanomaterials for energy storage energy. Environ Sci 4:668–674
103.
go back to reference Qiu J-D, Shi L, Liang R-P, Wang G-C, Xia X-H (2012) Controllable deposition of a platinum nanoparticle ensemble on a polyaniline/graphene hybrid as a novel electrode material for electrochemical sensing. Chem Eur J 18:7950–7959 Qiu J-D, Shi L, Liang R-P, Wang G-C, Xia X-H (2012) Controllable deposition of a platinum nanoparticle ensemble on a polyaniline/graphene hybrid as a novel electrode material for electrochemical sensing. Chem Eur J 18:7950–7959
104.
go back to reference Rafiee MA, Rafiee J, Wang Z, Song H, Yu ZZ, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3:3884–3890 Rafiee MA, Rafiee J, Wang Z, Song H, Yu ZZ, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3:3884–3890
105.
go back to reference Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’Homme RK, Brinson LC (2008) Nat Nanotechnol 3:327–331 Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’Homme RK, Brinson LC (2008) Nat Nanotechnol 3:327–331
106.
go back to reference Ren H, Wang C, Zhang J, Zhou X, Xu D, Zheng J, Guo S (2010) DNA cleavage system of nanosized graphene oxide sheets and copper ions. ACS Nano 4:7169–7174 Ren H, Wang C, Zhang J, Zhou X, Xu D, Zheng J, Guo S (2010) DNA cleavage system of nanosized graphene oxide sheets and copper ions. ACS Nano 4:7169–7174
107.
go back to reference Ren G, Zhang Z, Zhu X, Ge B, Guo F, Men X, Liu W (2013) Influence of functional graphene as filler on the tribological behaviors of Nomex fabric/phenolic composite. Compos A 49:157–164 Ren G, Zhang Z, Zhu X, Ge B, Guo F, Men X, Liu W (2013) Influence of functional graphene as filler on the tribological behaviors of Nomex fabric/phenolic composite. Compos A 49:157–164
108.
go back to reference Ryu S, Han MY, Maultzsch J, Heinz TF, Kim P, Steigerwald ML, Brus LE (2008) Reversible basal plane hydrogenation of graphene. Nano Lett 8:4597–4602 Ryu S, Han MY, Maultzsch J, Heinz TF, Kim P, Steigerwald ML, Brus LE (2008) Reversible basal plane hydrogenation of graphene. Nano Lett 8:4597–4602
109.
go back to reference Sadighi A, Faramarzi MA (2013) Congo red decolorization by immobilized laccase through chitosan nanoparticles on the glass beads. J Taiwan Inst Chem Eng 44:156–162 Sadighi A, Faramarzi MA (2013) Congo red decolorization by immobilized laccase through chitosan nanoparticles on the glass beads. J Taiwan Inst Chem Eng 44:156–162
110.
go back to reference Sanchez VC, Jachak A, Hurt RH, Kane AB (2012) Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol 25:15–34 Sanchez VC, Jachak A, Hurt RH, Kane AB (2012) Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol 25:15–34
111.
go back to reference Saravanan N, Rajasekar R, Mahalakshmi S, Sathishkumar TP, Sasikumar KSK, Sahoo S (2014) Graphene and modified graphene-based polymer nanocomposites–A review. J Reinf Plast Compos. doi:10.1177/0731684414524847 Saravanan N, Rajasekar R, Mahalakshmi S, Sathishkumar TP, Sasikumar KSK, Sahoo S (2014) Graphene and modified graphene-based polymer nanocomposites–A review. J Reinf Plast Compos. doi:10.​1177/​0731684414524847​
112.
go back to reference Sarkar S, Bekyarova E, Niyogi S, Haddon RC (2011) Diels-alder chemistry of graphite and graphene: graphene as diene and dienophile. J Am Chem Soc 133:3324–3327 Sarkar S, Bekyarova E, Niyogi S, Haddon RC (2011) Diels-alder chemistry of graphite and graphene: graphene as diene and dienophile. J Am Chem Soc 133:3324–3327
113.
go back to reference Sarkar S, Bekyarova E, Haddon RC (2012) Chemistry at the dirac point: diels–alder reactivity of graphene. Acc Chem Res 45:673–682 Sarkar S, Bekyarova E, Haddon RC (2012) Chemistry at the dirac point: diels–alder reactivity of graphene. Acc Chem Res 45:673–682
114.
go back to reference Schafhaeutl C (1840) Ueber die verbindungen des kohlenstoffes mit silicium, eisen und anderen metallen, welche die verschiedenen gallungen von roheisen, stahl und schmiedeeisen bilden. J Prakt Chem 21:129–157 Schafhaeutl C (1840) Ueber die verbindungen des kohlenstoffes mit silicium, eisen und anderen metallen, welche die verschiedenen gallungen von roheisen, stahl und schmiedeeisen bilden. J Prakt Chem 21:129–157
115.
go back to reference Schafhaeutl C (1840) LXXXVI. On the combinations of carbon with silicon and iron, and other metals, forming the different species of cast iron, steel, and malleable iron. Philos Mag 16:570–590 Schafhaeutl C (1840) LXXXVI. On the combinations of carbon with silicon and iron, and other metals, forming the different species of cast iron, steel, and malleable iron. Philos Mag 16:570–590
116.
go back to reference Seah C-M, Chai S-P, Mohamed AR (2014) Mechanisms of graphene growth by chemical vapour deposition on transition metals. Carbon 70:1–21 Seah C-M, Chai S-P, Mohamed AR (2014) Mechanisms of graphene growth by chemical vapour deposition on transition metals. Carbon 70:1–21
117.
go back to reference Sharma R, Baik JH, Perera CJ, Strano MS (2010) Anomalously large reactivity of single graphene layers and edges toward electron transfer chemistries. Nano Lett 10:398–405 Sharma R, Baik JH, Perera CJ, Strano MS (2010) Anomalously large reactivity of single graphene layers and edges toward electron transfer chemistries. Nano Lett 10:398–405
118.
go back to reference Shen J, Yan B, Li T, Long Y, Li N, Ye M (2012) Study on graphene-oxide-based polyacrylamide composite hydrogels. Compos A 43:1476–1481 Shen J, Yan B, Li T, Long Y, Li N, Ye M (2012) Study on graphene-oxide-based polyacrylamide composite hydrogels. Compos A 43:1476–1481
119.
go back to reference Shinde DB, Debgupta J, Kushwaha A, Aslam M, Pillai VK (2011) Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons. JACS 133:4168–4171 Shinde DB, Debgupta J, Kushwaha A, Aslam M, Pillai VK (2011) Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons. JACS 133:4168–4171
120.
go back to reference Shokrieh MM, Ghoreishi SM, Esmkhani M, Zhao Z (2014) Effects of graphene nanoplatelets and graphene nanosheets on fracture toughness of epoxy nanocomposites. Fatigue Fract Eng Mater Struct. doi:10.1111/ffe.12191 Shokrieh MM, Ghoreishi SM, Esmkhani M, Zhao Z (2014) Effects of graphene nanoplatelets and graphene nanosheets on fracture toughness of epoxy nanocomposites. Fatigue Fract Eng Mater Struct. doi:10.​1111/​ffe.​12191
121.
go back to reference Shvedova AA, Pietroiustic A, Fadeeld B, Kagan VE (2012) Mechanisms of carbon nanotube-induced toxicity: focus on oxidative stress. Toxicol Appl Pharmacol 261:121–133 Shvedova AA, Pietroiustic A, Fadeeld B, Kagan VE (2012) Mechanisms of carbon nanotube-induced toxicity: focus on oxidative stress. Toxicol Appl Pharmacol 261:121–133
122.
go back to reference Singha AS, Thakur VK (2008) Saccaharum cilliare fiber reinforced polymer composites. E-J Chem 5:782–791 Singha AS, Thakur VK (2008) Saccaharum cilliare fiber reinforced polymer composites. E-J Chem 5:782–791
123.
go back to reference Singha AS, Thakur VK (2008) Synthesis and characterization of pine needles reinforced RF matrix based biocomposites. J Chem 5:1055–1062 Singha AS, Thakur VK (2008) Synthesis and characterization of pine needles reinforced RF matrix based biocomposites. J Chem 5:1055–1062
124.
go back to reference Singha AS, Thakur VK (2009) Physical, chemical and mechanical properties of Hibiscus sabdariffa fiber/polymer composite. 58:217–228 Singha AS, Thakur VK (2009) Physical, chemical and mechanical properties of Hibiscus sabdariffa fiber/polymer composite. 58:217–228
125.
go back to reference Singha AS, Thakur VK (2009) Grewia optiva fiber reinforced novel, low cost polymer composites. J Chem 6:71–76 Singha AS, Thakur VK (2009) Grewia optiva fiber reinforced novel, low cost polymer composites. J Chem 6:71–76
126.
go back to reference Singha AS, Thakur VK (2009) Synthesis, characterization and analysis of hibiscus sabdariffa fibre reinforced polymer matrix based composites. Polym Polym Compos 17:189–194 Singha AS, Thakur VK (2009) Synthesis, characterization and analysis of hibiscus sabdariffa fibre reinforced polymer matrix based composites. Polym Polym Compos 17:189–194
127.
go back to reference Singha AS, Thakur VK (2010) Mechanical, morphological, and thermal characterization of compression-molded polymer biocomposites. Int J Polym Anal Charact 15:87–97 Singha AS, Thakur VK (2010) Mechanical, morphological, and thermal characterization of compression-molded polymer biocomposites. Int J Polym Anal Charact 15:87–97
128.
go back to reference Singha AS, Thakur VK (2010) Synthesis, characterization and study of pine needles reinforced polymer matrix based composites. J Reinf Plast Compos 29:700–709 Singha AS, Thakur VK (2010) Synthesis, characterization and study of pine needles reinforced polymer matrix based composites. J Reinf Plast Compos 29:700–709
129.
go back to reference Sinitskii A, Dimiev A, Corley DA, Fursina AA, Kosynkin DV, Tour JM (2010) Kinetics of diazonium functionalization of chemically converted graphene nanoribbons. ACS Nano 4:1949–1954 Sinitskii A, Dimiev A, Corley DA, Fursina AA, Kosynkin DV, Tour JM (2010) Kinetics of diazonium functionalization of chemically converted graphene nanoribbons. ACS Nano 4:1949–1954
130.
go back to reference Soldano C, Mahmood A, Dujardin E (2010) Production, properties and potential of graphene. Carbon 48:2127–2150 Soldano C, Mahmood A, Dujardin E (2010) Production, properties and potential of graphene. Carbon 48:2127–2150
131.
go back to reference Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286 Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286
132.
go back to reference Staudenmaier L (1898) Verfahren zur darstellung der graphitsäure. Ber Dtsch Chem Ges 31:1481–1487 Staudenmaier L (1898) Verfahren zur darstellung der graphitsäure. Ber Dtsch Chem Ges 31:1481–1487
133.
go back to reference Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502 Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502
134.
go back to reference Terasawa T, Saiki K (2012) Growth of graphene on Cu by plasma enhanced chemical vapor deposition. Carbon 50:869–874 Terasawa T, Saiki K (2012) Growth of graphene on Cu by plasma enhanced chemical vapor deposition. Carbon 50:869–874
135.
go back to reference Thakur VK, Singha AS, Misra BN (2011) Graft copolymerization of methyl methacrylate onto cellulosic biofibers. J Appl Polym Sci 122:532–544 Thakur VK, Singha AS, Misra BN (2011) Graft copolymerization of methyl methacrylate onto cellulosic biofibers. J Appl Polym Sci 122:532–544
136.
go back to reference Thakur VK, Tan EJ, Lin M-F, Lee PS (2011) Polystyrene grafted polyvinylidenefluoride copolymers with high capacitive performance. Polym Chem 2:2000–2009 Thakur VK, Tan EJ, Lin M-F, Lee PS (2011) Polystyrene grafted polyvinylidenefluoride copolymers with high capacitive performance. Polym Chem 2:2000–2009
137.
go back to reference Thakur VK, Tan EJ, Lin M-F, Lee PS (2011) Poly (vinylidene fluoride)-graft-poly (2-hydroxyethyl methacrylate): a novel material for high energy density capacitors. J Mater Chem 21:3751–3759 Thakur VK, Tan EJ, Lin M-F, Lee PS (2011) Poly (vinylidene fluoride)-graft-poly (2-hydroxyethyl methacrylate): a novel material for high energy density capacitors. J Mater Chem 21:3751–3759
138.
go back to reference Thakur VK, Ding G, Ma J et al (2012) Hybrid materials and polymer electrolytes for electrochromic device applications. Adv Mater 24:4071–4096. D Thakur VK, Ding G, Ma J et al (2012) Hybrid materials and polymer electrolytes for electrochromic device applications. Adv Mater 24:4071–4096. D
139.
go back to reference Thakur VK, Singha AS, Thakur MK (2012) Biopolymers based green composites: mechanical, thermal and physico-chemical characterization. J Polym Environ 20:412–421 Thakur VK, Singha AS, Thakur MK (2012) Biopolymers based green composites: mechanical, thermal and physico-chemical characterization. J Polym Environ 20:412–421
140.
go back to reference Thakur VK, Yan J, Lin M-F et al (2012) Novel polymer nanocomposites from bioinspired green aqueous functionalization of BNNTs. Polym Chem 3:962–969 Thakur VK, Yan J, Lin M-F et al (2012) Novel polymer nanocomposites from bioinspired green aqueous functionalization of BNNTs. Polym Chem 3:962–969
141.
go back to reference Thakur VK, Lin M-F, Tan EJ, Lee PS (2012) Green aqueous modification of fluoropolymers for energy storage applications. J Mater Chem 22:5951–5959 Thakur VK, Lin M-F, Tan EJ, Lee PS (2012) Green aqueous modification of fluoropolymers for energy storage applications. J Mater Chem 22:5951–5959
142.
go back to reference Thakur VK, Singha AS, Misra BN (2012) Modification of natural biomass by graft copolymerization. Int J Polym Anal Charact 17:547–555 Thakur VK, Singha AS, Misra BN (2012) Modification of natural biomass by graft copolymerization. Int J Polym Anal Charact 17:547–555
143.
go back to reference Thakur VK, Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117 Thakur VK, Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117
144.
go back to reference Thakur VK, Thakur MK (2014) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Cleaner Prod 82:1–15 Thakur VK, Thakur MK (2014) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Cleaner Prod 82:1–15
145.
go back to reference Thakur VK, Thakur MK (2014) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2:2637–2652 Thakur VK, Thakur MK (2014) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2:2637–2652
146.
go back to reference Thakur VK, Thakur MK, Gupta RK (2014) Review: raw natural fiber-based polymer composites. Int J Polym Anal Charact 19:256–271 Thakur VK, Thakur MK, Gupta RK (2014) Review: raw natural fiber-based polymer composites. Int J Polym Anal Charact 19:256–271
147.
go back to reference Thakur VK, Thunga M, Madbouly SA, Kessler MR (2014) PMMA-g-SOY as a sustainable novel dielectric material. RSC Adv 4:18240–18249 Thakur VK, Thunga M, Madbouly SA, Kessler MR (2014) PMMA-g-SOY as a sustainable novel dielectric material. RSC Adv 4:18240–18249
148.
go back to reference Thakur VK, Grewell D, Thunga M, Kessler MR (2014) Novel Composites from eco-friendly soy flour/SBS triblock copolymer. Macromol Mater Eng 299:953–958 Thakur VK, Grewell D, Thunga M, Kessler MR (2014) Novel Composites from eco-friendly soy flour/SBS triblock copolymer. Macromol Mater Eng 299:953–958
149.
go back to reference Thakur VK, Vennerberg D, Madbouly SA, Kessler MR (2014) Bio-inspired green surface functionalization of PMMA for multifunctional capacitors. RSC Adv 4:6677–6684 Thakur VK, Vennerberg D, Madbouly SA, Kessler MR (2014) Bio-inspired green surface functionalization of PMMA for multifunctional capacitors. RSC Adv 4:6677–6684
150.
go back to reference Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustainable Chem Eng 2:1072–1092 Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustainable Chem Eng 2:1072–1092
151.
go back to reference Tseng I-H, Liao Y-F, Chiang J-C, Tsai M-H (2012) Transparent polyimide/graphene oxide nanocomposite with improved moisture barrier property. Mater Chem Phys 136:247–253 Tseng I-H, Liao Y-F, Chiang J-C, Tsai M-H (2012) Transparent polyimide/graphene oxide nanocomposite with improved moisture barrier property. Mater Chem Phys 136:247–253
152.
go back to reference Tung VC, Allen MJ, Yang Y, Kaner RB (2009) High-throughput solution processing of large-scale graphene. Nat Nanotechnol 4:25–29 Tung VC, Allen MJ, Yang Y, Kaner RB (2009) High-throughput solution processing of large-scale graphene. Nat Nanotechnol 4:25–29
153.
go back to reference Verdejo R, Saiz-Arroyo C, Carretero-Gonzalez J, Barroso-Bujans F, Rodriguez-Perez MA, Lopez-Manchado MA. (2008) Physical properties of silicone foams filled with carbon nanotubes and functionalized graphene sheets. Eur Polym J 44:2790−2797 Verdejo R, Saiz-Arroyo C, Carretero-Gonzalez J, Barroso-Bujans F, Rodriguez-Perez MA, Lopez-Manchado MA. (2008) Physical properties of silicone foams filled with carbon nanotubes and functionalized graphene sheets. Eur Polym J 44:2790−2797
154.
go back to reference Verdejo R, Bernal MM, Romasanta LJ, Lopez-Manchado MA (2011) Graphene filled polymer nanocomposites. J Mater Chem 21:3301–3310 Verdejo R, Bernal MM, Romasanta LJ, Lopez-Manchado MA (2011) Graphene filled polymer nanocomposites. J Mater Chem 21:3301–3310
155.
go back to reference Vlassiouk I, Regmi M, Fulvio P, Dai S, Datskos P, Eres G, Smirnov S (2011) Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 5:6069–6076 Vlassiouk I, Regmi M, Fulvio P, Dai S, Datskos P, Eres G, Smirnov S (2011) Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 5:6069–6076
156.
go back to reference Wang Y, Li Z, Wang J, Li J, Lin Y (2011) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol 29:205–212 Wang Y, Li Z, Wang J, Li J, Lin Y (2011) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol 29:205–212
157.
go back to reference Wang J, Wang X, Xu C, Zhang M, Shang X (2011) Preparation of graphene/poly(vinyl alcohol) nanocomposites with enhanced mechanical properties and water resistance. Polym Int 60:816–822 Wang J, Wang X, Xu C, Zhang M, Shang X (2011) Preparation of graphene/poly(vinyl alcohol) nanocomposites with enhanced mechanical properties and water resistance. Polym Int 60:816–822
158.
go back to reference Wang L, Yao Q, Bi H, Huang F, Wang Q, Chen L (2014) Large thermoelectric power factor in polyaniline/graphene nanocomposite films prepared by solution-assistant dispersing method. J Mater Chem. doi:10.1039/C4TA01541J Wang L, Yao Q, Bi H, Huang F, Wang Q, Chen L (2014) Large thermoelectric power factor in polyaniline/graphene nanocomposite films prepared by solution-assistant dispersing method. J Mater Chem. doi:10.​1039/​C4TA01541J
159.
go back to reference Wang X-M, Zhang W-H (2014) Application of graphene derivatives in cancer therapy: a review. Carbon 67:795–797 Wang X-M, Zhang W-H (2014) Application of graphene derivatives in cancer therapy: a review. Carbon 67:795–797
160.
go back to reference Wei D, Xie L, Lee KK, Hu Z, Tan S, Chen W, Sow CH, Chen K, Liu Y, Wee ATS (2013) Controllable unzipping for intramolecular junctions of graphene nanoribbons and single-walled carbon nanotubes. Nat Commun 4:1374 Wei D, Xie L, Lee KK, Hu Z, Tan S, Chen W, Sow CH, Chen K, Liu Y, Wee ATS (2013) Controllable unzipping for intramolecular junctions of graphene nanoribbons and single-walled carbon nanotubes. Nat Commun 4:1374
161.
go back to reference Wu Q, Xu Y, Yao Z, Liu A, Shi G (2010) Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4:1963–1970 Wu Q, Xu Y, Yao Z, Liu A, Shi G (2010) Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4:1963–1970
162.
go back to reference Wu S, He Q, Tan C, Wang Y, Zhang H (2013) Graphene-based electrochemical sensors. Small 9:1160–1172 Wu S, He Q, Tan C, Wang Y, Zhang H (2013) Graphene-based electrochemical sensors. Small 9:1160–1172
163.
go back to reference Wu J, Huang G, Li H, Wu S, Liu Y, Zheng J (2013) Enhanced mechanical and gas barrier properties of rubber nanocomposites with surface functionalized graphene oxide at low content. Polymer 54:1930–1937 Wu J, Huang G, Li H, Wu S, Liu Y, Zheng J (2013) Enhanced mechanical and gas barrier properties of rubber nanocomposites with surface functionalized graphene oxide at low content. Polymer 54:1930–1937
164.
go back to reference Wu L, Xue J, Itoi T, Hu N, Li Y, Yan C, Qiu J, Ning H, Yuan W, Gu B (2014) Improved energy harvesting capability of poly(vinylidene fluoride) films modified by reduced graphene oxide. J Intell Mater Syst Struct. doi:10.1177/1045389X14529609 Wu L, Xue J, Itoi T, Hu N, Li Y, Yan C, Qiu J, Ning H, Yuan W, Gu B (2014) Improved energy harvesting capability of poly(vinylidene fluoride) films modified by reduced graphene oxide. J Intell Mater Syst Struct. doi:10.​1177/​1045389X14529609​
165.
go back to reference Wu T, Xu X, Zhang L, Chen H, Gao J, Liu Y (2014) A polyaniline/graphene nanocomposite prepared by in situ polymerization of polyaniline onto polyanion grafted graphene and its electrochemical properties. RSC Adv 4:7673–7681 Wu T, Xu X, Zhang L, Chen H, Gao J, Liu Y (2014) A polyaniline/graphene nanocomposite prepared by in situ polymerization of polyaniline onto polyanion grafted graphene and its electrochemical properties. RSC Adv 4:7673–7681
166.
go back to reference Xing XJ, Liu XG, He Y, Lin Y, Zhang CL, Tang HW, Pang DW (2012) Amplified fluorescent sensing of DNA using graphene oxide and a conjugated cationic polymer. Biomacromolecules 14:117–123 Xing XJ, Liu XG, He Y, Lin Y, Zhang CL, Tang HW, Pang DW (2012) Amplified fluorescent sensing of DNA using graphene oxide and a conjugated cationic polymer. Biomacromolecules 14:117–123
167.
go back to reference Xu Y, Hong W, Bai H, Li C, Shi G (2009) Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon 47:3538–3543 Xu Y, Hong W, Bai H, Li C, Shi G (2009) Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon 47:3538–3543
168.
go back to reference Yadav SK, Cho JW (2013) Functionalized graphene nanoplatelets for enhanced mechanical and thermal properties of polyurethane nanocomposites. Appl Surf Sci 266:360–367 Yadav SK, Cho JW (2013) Functionalized graphene nanoplatelets for enhanced mechanical and thermal properties of polyurethane nanocomposites. Appl Surf Sci 266:360–367
169.
go back to reference Yang X, Li L, Shang S, Tao X-M (2010) Synthesis and characterization of layer-aligned poly(vinyl alcohol)/graphene nanocomposites. Polymer 51:3431–3435 Yang X, Li L, Shang S, Tao X-M (2010) Synthesis and characterization of layer-aligned poly(vinyl alcohol)/graphene nanocomposites. Polymer 51:3431–3435
170.
go back to reference Yang Y-H, Bolling L, Priolo MA, Grunlan JC (2013) Super gas barrier and selectivity of graphene oxide-polymer multilayer thin films. Adv Mater 25:503–508 Yang Y-H, Bolling L, Priolo MA, Grunlan JC (2013) Super gas barrier and selectivity of graphene oxide-polymer multilayer thin films. Adv Mater 25:503–508
171.
go back to reference Yousefi N, Gudarzi MM, Zheng Q, Aboutalebi SH, Sharif F, Kim J-K (2012) Self-alignment and high electrical conductivity of ultralarge graphene oxide–polyurethane nanocomposites. J Mater Chem 22:12709–12717 Yousefi N, Gudarzi MM, Zheng Q, Aboutalebi SH, Sharif F, Kim J-K (2012) Self-alignment and high electrical conductivity of ultralarge graphene oxide–polyurethane nanocomposites. J Mater Chem 22:12709–12717
172.
go back to reference Yousefi N, Sun X, Lin X, Shen X, Jia J, Zhang B, Tang B, Chan M, Kim J-K (2014) Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high performance electromagnetic interference shielding. Adv Mater. doi:10.1002/adma.201305293 Yousefi N, Sun X, Lin X, Shen X, Jia J, Zhang B, Tang B, Chan M, Kim J-K (2014) Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high performance electromagnetic interference shielding. Adv Mater. doi:10.​1002/​adma.​201305293
173.
go back to reference Yu J, Jiang P, Wu C, Wang L, Wu X (2011) Graphene nanocomposites based on poly(vinylidene fluoride): structure and properties. Polym Compos 32:1483–1491 Yu J, Jiang P, Wu C, Wang L, Wu X (2011) Graphene nanocomposites based on poly(vinylidene fluoride): structure and properties. Polym Compos 32:1483–1491
174.
go back to reference Yu Y-H, Lin Y-Y, Lin C-H, Chan C-C, Huang Y-C (2014) High-performance polystyrene/graphene-based nanocomposites with excellent anti-corrosion properties. Polym Chem 5:535–550 Yu Y-H, Lin Y-Y, Lin C-H, Chan C-C, Huang Y-C (2014) High-performance polystyrene/graphene-based nanocomposites with excellent anti-corrosion properties. Polym Chem 5:535–550
175.
go back to reference Yuan F-Y, Zhang H-B, Li X, Ma H-L, Li X-Z, Yu Z-Z (2014) In situ chemical reduction and functionalization of graphene oxide for electrically conductive phenol formaldehyde composites. Carbon 68:653–661 Yuan F-Y, Zhang H-B, Li X, Ma H-L, Li X-Z, Yu Z-Z (2014) In situ chemical reduction and functionalization of graphene oxide for electrically conductive phenol formaldehyde composites. Carbon 68:653–661
176.
go back to reference Zaman I, Phan TT, Kuan H-C, Meng Q, La LTB, Luong L, Youssf O, Ma J (2011) Epoxy/graphene platelets nanocomposites with two levels of interface strength. Polymer 52:1603–1611 Zaman I, Phan TT, Kuan H-C, Meng Q, La LTB, Luong L, Youssf O, Ma J (2011) Epoxy/graphene platelets nanocomposites with two levels of interface strength. Polymer 52:1603–1611
177.
go back to reference Zeng Z, Zhou Y, Kong L, Zhou T, Shi G (2013) A novel composite of SiO2-coated graphene oxide and molecularly imprinted polymers for electrochemical sensing dopamine. Biosens Bioelectron 45:25–33 Zeng Z, Zhou Y, Kong L, Zhou T, Shi G (2013) A novel composite of SiO2-coated graphene oxide and molecularly imprinted polymers for electrochemical sensing dopamine. Biosens Bioelectron 45:25–33
178.
go back to reference Zhang X, Hu W, Li J, Tao L, Wei Y (2012) A comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide, and nanodiamond. Toxicol Res 1:62–68 Zhang X, Hu W, Li J, Tao L, Wei Y (2012) A comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide, and nanodiamond. Toxicol Res 1:62–68
179.
go back to reference Zhang C, Lv W, Xie X, Tang D, Liu C, Yang Q-H (2013) Towards low temperature thermal exfoliation of graphite oxide for graphene production. Carbon 62:11–24 Zhang C, Lv W, Xie X, Tang D, Liu C, Yang Q-H (2013) Towards low temperature thermal exfoliation of graphite oxide for graphene production. Carbon 62:11–24
180.
go back to reference Zhang C, Lv W, Xie X, Tang D, Liu C, Yang Q-H (2013) Towards low temperature thermal exfoliation of graphite oxide for graphene production. Carbon 62:11–24 Zhang C, Lv W, Xie X, Tang D, Liu C, Yang Q-H (2013) Towards low temperature thermal exfoliation of graphite oxide for graphene production. Carbon 62:11–24
181.
go back to reference Zhang Y, Zhang L, Zhou C (2013) Review of chemical vapor deposition of graphene and related applications 46:2329–2339 Zhang Y, Zhang L, Zhou C (2013) Review of chemical vapor deposition of graphene and related applications 46:2329–2339
182.
go back to reference Zhao X, Zhang Q, Chen D (2010) Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43:2357–2363 Zhao X, Zhang Q, Chen D (2010) Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43:2357–2363
183.
go back to reference Zheng C, Zhou X, Cao H, Wang G, Liu Z (2014) Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material. J Power Sources 258:290–296 Zheng C, Zhou X, Cao H, Wang G, Liu Z (2014) Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material. J Power Sources 258:290–296
Metadata
Title
Graphene-Based Polymer Nanocomposites: Chemistry and Applications
Authors
Mehdi Mogharabi
Mohammad Ali Faramarzi
Copyright Year
2015
Publisher
Springer India
DOI
https://doi.org/10.1007/978-81-322-2473-0_7

Premium Partners