Skip to main content
Top

2019 | OriginalPaper | Chapter

Graphene Functionalization and Nanopolymers

Authors : Martin Kássio Leme Silva, Ivana Cesarino

Published in: Graphene Functionalization Strategies

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter focuses on the functionalization of graphene, mainly in graphene oxide (GO) and reduced graphene oxide (rGO). In this sense the main syntheses for obtaining GO and rGO, as well as their characterizations and applications, were described. To evaluate the electrochemical, spectrophotometric and morphological properties of functionalized graphene, the GO obtained commercially and the rGO synthesized by the chemical method using sodium borohydride were characterized by scanning electron microscopy, Raman, UV-vis, cyclic voltammetry and electrochemical impedance spectroscopy. Through these characterizations it is possible to comprehend the differences between GO and rGO. After that, the importance of the graphene functionalized in the development of electrochemical biosensors and sensors are presented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Fitzer, E., Kochling, K.-H., Boehm, H.-P., Marsh, H.: Recommended terminology for the description of carbon as a solid (IUPAC Recommendations 1995). Pure Appl. Chem. 67, 473–506 (1995)CrossRef Fitzer, E., Kochling, K.-H., Boehm, H.-P., Marsh, H.: Recommended terminology for the description of carbon as a solid (IUPAC Recommendations 1995). Pure Appl. Chem. 67, 473–506 (1995)CrossRef
2.
go back to reference Dreyer, D.R., Park, S., Bielawski, C.W., Ruoff, R.S.: The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010)CrossRef Dreyer, D.R., Park, S., Bielawski, C.W., Ruoff, R.S.: The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010)CrossRef
3.
go back to reference Rowley-Neale, S.J., Randviir, E.P., Dena, A.S.A., Banks, C.E.: An overview of recent applications of reduced graphene oxide as a basis of electroanalytical sensing platforms. Appl. Mater. Today 10, 218–226 (2018)CrossRef Rowley-Neale, S.J., Randviir, E.P., Dena, A.S.A., Banks, C.E.: An overview of recent applications of reduced graphene oxide as a basis of electroanalytical sensing platforms. Appl. Mater. Today 10, 218–226 (2018)CrossRef
4.
go back to reference Pei, S., Cheng, H.-M.: The reduction of graphene oxide. Carbon 50, 3210–3228 (2011)CrossRef Pei, S., Cheng, H.-M.: The reduction of graphene oxide. Carbon 50, 3210–3228 (2011)CrossRef
5.
go back to reference Brownson, D.A.C., Varey, S.A., Hussain, F., Haigh, S.J., Banks, C.E.: Electrochemical properties of CVD grown pristine graphene: monolayer- versus quasi-graphene. Nanoscale 6, 1607–1621 (2014)CrossRef Brownson, D.A.C., Varey, S.A., Hussain, F., Haigh, S.J., Banks, C.E.: Electrochemical properties of CVD grown pristine graphene: monolayer- versus quasi-graphene. Nanoscale 6, 1607–1621 (2014)CrossRef
6.
go back to reference Randviir, E.P., Brownson, D.A.C., Banks, C.E.: A decade of graphene research: production, applications and outlook. Mater. Today 17, 426–432 (2014)CrossRef Randviir, E.P., Brownson, D.A.C., Banks, C.E.: A decade of graphene research: production, applications and outlook. Mater. Today 17, 426–432 (2014)CrossRef
7.
go back to reference Brownson, D.A.C., Banks, C.E.: The Handbook of Graphene Electrochemistry. Springer, London Ltd (2014)CrossRef Brownson, D.A.C., Banks, C.E.: The Handbook of Graphene Electrochemistry. Springer, London Ltd (2014)CrossRef
8.
go back to reference Kohori, N.A., da Silva, M.K.L., Cesarino, I.: Evaluation of graphene oxide and reduced graphene oxide in the immobilization of laccase enzyme and its application in the determination of dopamine. J. Solid State Electrochem. 22, 141–148 (2018)CrossRef Kohori, N.A., da Silva, M.K.L., Cesarino, I.: Evaluation of graphene oxide and reduced graphene oxide in the immobilization of laccase enzyme and its application in the determination of dopamine. J. Solid State Electrochem. 22, 141–148 (2018)CrossRef
9.
go back to reference da Silva, M.K.L., Vanzela, H.C., Defavari, L.M., Cesarino, I.: Determination of carbamate pesticide in food using a biosensor based on reduced graphene oxide and acetylcholinesterase enzyme. Sens. Actuators B 277, 555–561 (2018)CrossRef da Silva, M.K.L., Vanzela, H.C., Defavari, L.M., Cesarino, I.: Determination of carbamate pesticide in food using a biosensor based on reduced graphene oxide and acetylcholinesterase enzyme. Sens. Actuators B 277, 555–561 (2018)CrossRef
10.
go back to reference da Silva, M.K.L., Plana Simões, R., Cesarino, I.: Evaluation of reduced graphene oxide modified with antimony and copper nanoparticles for levofloxacin oxidation. Electroanalysis 30, 2066–2076 (2018)CrossRef da Silva, M.K.L., Plana Simões, R., Cesarino, I.: Evaluation of reduced graphene oxide modified with antimony and copper nanoparticles for levofloxacin oxidation. Electroanalysis 30, 2066–2076 (2018)CrossRef
11.
go back to reference Zheng, D., Hu, H., Liu, X., Hu, S.: Application of graphene in electrochemical sensing. Curr. Opin. Colloid Interface Sci. 20, 383–405 (2015)CrossRef Zheng, D., Hu, H., Liu, X., Hu, S.: Application of graphene in electrochemical sensing. Curr. Opin. Colloid Interface Sci. 20, 383–405 (2015)CrossRef
12.
go back to reference Song, Y., Luo, Y., Zhu, C., Li, H., Du, D., Lin, Y.: Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials. Biosens. Bioelectron. 76, 195–212 (2016)CrossRef Song, Y., Luo, Y., Zhu, C., Li, H., Du, D., Lin, Y.: Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials. Biosens. Bioelectron. 76, 195–212 (2016)CrossRef
13.
go back to reference Wang, J.: Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens. Bioelectron. 21, 1887–1892 (2006)CrossRef Wang, J.: Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens. Bioelectron. 21, 1887–1892 (2006)CrossRef
14.
go back to reference Brownson, D.A.C., Banks, C.E.: Graphene electrochemistry: an overview of potential applications. Analyst 135, 2768–2778 (2010)CrossRef Brownson, D.A.C., Banks, C.E.: Graphene electrochemistry: an overview of potential applications. Analyst 135, 2768–2778 (2010)CrossRef
15.
go back to reference Park, S., Ruoff, R.S.: Chemical methods for the production of graphenes. Nat. Nanotechnol. 4, 217–224 (2009)CrossRef Park, S., Ruoff, R.S.: Chemical methods for the production of graphenes. Nat. Nanotechnol. 4, 217–224 (2009)CrossRef
16.
go back to reference Brodie, B.C.: Hydration behavior and dynamics of water molecules in graphite oxide. Annales Chimie et de Physique 59, 466–472 (1860) Brodie, B.C.: Hydration behavior and dynamics of water molecules in graphite oxide. Annales Chimie et de Physique 59, 466–472 (1860)
17.
go back to reference De Silva, K.K.H., Huang, H.-H., Joshi, R.K., Yoshimura, M.: Chemical reduction of graphene oxide using green reductants. Carbon 119, 190–199 (2017)CrossRef De Silva, K.K.H., Huang, H.-H., Joshi, R.K., Yoshimura, M.: Chemical reduction of graphene oxide using green reductants. Carbon 119, 190–199 (2017)CrossRef
18.
go back to reference Poh, H.L., Sanek, F., Ambrosi, A., Zhao, G., Sofer, Z., Pumera, M.: Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties. Nanoscale 4, 3515–3522 (2012)CrossRef Poh, H.L., Sanek, F., Ambrosi, A., Zhao, G., Sofer, Z., Pumera, M.: Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties. Nanoscale 4, 3515–3522 (2012)CrossRef
19.
go back to reference Hummers, W.S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)CrossRef Hummers, W.S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)CrossRef
20.
go back to reference Zhu, C., Guo, S., Fang, Y., Dong, S.: Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4, 2429–2437 (2010)CrossRef Zhu, C., Guo, S., Fang, Y., Dong, S.: Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4, 2429–2437 (2010)CrossRef
21.
go back to reference Zhu, Y., Murali, S., Stoller, M.D., Velamakanni, A., Piner, R.D., Ruoff, R.S.: Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon N. Y. 48, 2118–2122 (2010)CrossRef Zhu, Y., Murali, S., Stoller, M.D., Velamakanni, A., Piner, R.D., Ruoff, R.S.: Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon N. Y. 48, 2118–2122 (2010)CrossRef
22.
go back to reference Unnikrishnan, B., Palanisamy, S., Chen, S.-M.: A simple electrochemical approach to fabricate a glucose biosensor based on graphene–glucose oxidase biocomposite. Biosens. Bioelectron. 39, 70–75 (2013)CrossRef Unnikrishnan, B., Palanisamy, S., Chen, S.-M.: A simple electrochemical approach to fabricate a glucose biosensor based on graphene–glucose oxidase biocomposite. Biosens. Bioelectron. 39, 70–75 (2013)CrossRef
23.
go back to reference Meng, L.-Y., Wang, B., Ma, M.-G., Lin, K.-L.: The progress of microwave-assisted hydrothermal method in the synthesis of functional nanomaterials. Mater. Today Chem. 1–2, 63–83 (2016)CrossRef Meng, L.-Y., Wang, B., Ma, M.-G., Lin, K.-L.: The progress of microwave-assisted hydrothermal method in the synthesis of functional nanomaterials. Mater. Today Chem. 1–2, 63–83 (2016)CrossRef
24.
go back to reference Cesarino, I., Simões, R.P., Lavarda, F.C., Batagin-Neto, A.: Electrochemical oxidation of sulfamethazine on a glassy carbon electrode modified with graphene and gold nanoparticles. Electrochim. Acta 192, 8–14 (2016)CrossRef Cesarino, I., Simões, R.P., Lavarda, F.C., Batagin-Neto, A.: Electrochemical oxidation of sulfamethazine on a glassy carbon electrode modified with graphene and gold nanoparticles. Electrochim. Acta 192, 8–14 (2016)CrossRef
25.
go back to reference Zhou, W., Zhang, F., Liu, S., Wang, J., Du, X., Yin, D., Wang, L.: Microwave-assisted hydrothermal synthesis of graphene-wrapped CuO hybrids for lithium ion batteries. RSC Adv. 4, 51362–51365 (2014)CrossRef Zhou, W., Zhang, F., Liu, S., Wang, J., Du, X., Yin, D., Wang, L.: Microwave-assisted hydrothermal synthesis of graphene-wrapped CuO hybrids for lithium ion batteries. RSC Adv. 4, 51362–51365 (2014)CrossRef
26.
go back to reference Cesarino, I., Cincotto, F.H., Machado, S.A.S.: A synergistic combination of reduced graphene oxide and antimony nanoparticles for estriol hormone detection. Sens. Actuators B Chem. 210, 453–459 (2015)CrossRef Cesarino, I., Cincotto, F.H., Machado, S.A.S.: A synergistic combination of reduced graphene oxide and antimony nanoparticles for estriol hormone detection. Sens. Actuators B Chem. 210, 453–459 (2015)CrossRef
27.
go back to reference Aldosari, M.A., Othman, A.A., Alsharaeh, E.H.: Synthesis and characterization of the in situ bulk polymerization of PMMA containing graphene sheets using microwave irradiation. Molecules 18, 3152–3167 (2013)CrossRef Aldosari, M.A., Othman, A.A., Alsharaeh, E.H.: Synthesis and characterization of the in situ bulk polymerization of PMMA containing graphene sheets using microwave irradiation. Molecules 18, 3152–3167 (2013)CrossRef
28.
go back to reference Eluyemi, M.S., Eleruja, M.A., Adedeji, A.V., Olofinjana, B., Fasakin, O., Akinwunmi, O.O., Ilori, O.O., Famojuro, A.T., Ayinde, S.A., Ajayi, E.O.B.: Synthesis and characterization of graphene oxide and reduced graphene oxide thin films deposited by spray pyrolysis method. Graphene 5, 143–154 (2016)CrossRef Eluyemi, M.S., Eleruja, M.A., Adedeji, A.V., Olofinjana, B., Fasakin, O., Akinwunmi, O.O., Ilori, O.O., Famojuro, A.T., Ayinde, S.A., Ajayi, E.O.B.: Synthesis and characterization of graphene oxide and reduced graphene oxide thin films deposited by spray pyrolysis method. Graphene 5, 143–154 (2016)CrossRef
29.
go back to reference He, D., Shen, L., Zhang, X., Wang, Y., Bao, N., Kung, H.H.: An efficient and eco-friendly solution-chemical route for preparation of ultrastable reduced graphene oxide suspensions. Am. Inst. Chem. Eng. J. 60, 2757–2764 (2014)CrossRef He, D., Shen, L., Zhang, X., Wang, Y., Bao, N., Kung, H.H.: An efficient and eco-friendly solution-chemical route for preparation of ultrastable reduced graphene oxide suspensions. Am. Inst. Chem. Eng. J. 60, 2757–2764 (2014)CrossRef
30.
go back to reference Gurunathan, S., Han, J.W., Dayem, A.A., Eppakayala, V., Kim, J.H.: Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int. J. Nanomed. 7, 5901–5914 (2012)CrossRef Gurunathan, S., Han, J.W., Dayem, A.A., Eppakayala, V., Kim, J.H.: Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int. J. Nanomed. 7, 5901–5914 (2012)CrossRef
32.
go back to reference Khan, Q.A., Shaur, A., Khan, T.A., Joya, Y.F., Awan, M.S.: Characterization of reduced graphene oxide produced through a modified Hoffman method. Cogent Chem. 3, 1298980 (2017)CrossRef Khan, Q.A., Shaur, A., Khan, T.A., Joya, Y.F., Awan, M.S.: Characterization of reduced graphene oxide produced through a modified Hoffman method. Cogent Chem. 3, 1298980 (2017)CrossRef
33.
go back to reference Xu, C., Shi, L., Ji, A., Shi, X., Wang, X., Wang, X.: Synthesis and characterization of reduced graphene oxide with D-fructose and D-galactose as reductants. J. Nanosci. Nanotechnol. 16, 9914–9918 (2016)CrossRef Xu, C., Shi, L., Ji, A., Shi, X., Wang, X., Wang, X.: Synthesis and characterization of reduced graphene oxide with D-fructose and D-galactose as reductants. J. Nanosci. Nanotechnol. 16, 9914–9918 (2016)CrossRef
34.
go back to reference Emiru, T.F., Ayele, D.W.: Controlled synthesis, characterization and reduction of graphene oxide: a convenient method for large scale production. Egypt. J. Basic Appl. Sci. 4, 74–79 (2017)CrossRef Emiru, T.F., Ayele, D.W.: Controlled synthesis, characterization and reduction of graphene oxide: a convenient method for large scale production. Egypt. J. Basic Appl. Sci. 4, 74–79 (2017)CrossRef
36.
go back to reference Casero, E., Parra-Alfambra, A.M., Petit-Domínguez, M.D., Pariente, F., Lorenzo, E., Alonso, C.: Differentiation between graphene oxide and reduced graphene by electrochemical impedance spectroscopy (EIS). Electrochem. Commun. 20, 63–66 (2012)CrossRef Casero, E., Parra-Alfambra, A.M., Petit-Domínguez, M.D., Pariente, F., Lorenzo, E., Alonso, C.: Differentiation between graphene oxide and reduced graphene by electrochemical impedance spectroscopy (EIS). Electrochem. Commun. 20, 63–66 (2012)CrossRef
37.
go back to reference Gong, Y., Li, D., Fu, Q., Pan, C.: Influence of graphene microstructures on electrochemical performance for supercapacitors. Prog. Nat. Sci. 25, 379–385 (2015)CrossRef Gong, Y., Li, D., Fu, Q., Pan, C.: Influence of graphene microstructures on electrochemical performance for supercapacitors. Prog. Nat. Sci. 25, 379–385 (2015)CrossRef
38.
go back to reference Barton, S.C., Gallaway, J., Atanassov, P.: Enzymatic biofuel cells for implantable and microscale devices. Chem. Rev. 104, 4867–4886 (2004)CrossRef Barton, S.C., Gallaway, J., Atanassov, P.: Enzymatic biofuel cells for implantable and microscale devices. Chem. Rev. 104, 4867–4886 (2004)CrossRef
39.
go back to reference Takahashi, H., Li, B., Sasaki, T., Miyazaki, C., Kajino, T., Inagaki, S.: Catalytic activity in organic solvents and stability of immobilized enzymes depend on the pore size and surface characteristics of mesoporous silica. Chem. Mater. 12, 3301–3305 (2000)CrossRef Takahashi, H., Li, B., Sasaki, T., Miyazaki, C., Kajino, T., Inagaki, S.: Catalytic activity in organic solvents and stability of immobilized enzymes depend on the pore size and surface characteristics of mesoporous silica. Chem. Mater. 12, 3301–3305 (2000)CrossRef
40.
go back to reference Zhang, Y., Guo, L., Wei, S., He, Y., Xia, H., Chen, Q., Sun, H.-B., Xiao, F.-S.: Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nanotoday 5, 15–20 (2010)CrossRef Zhang, Y., Guo, L., Wei, S., He, Y., Xia, H., Chen, Q., Sun, H.-B., Xiao, F.-S.: Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nanotoday 5, 15–20 (2010)CrossRef
41.
go back to reference Zhang, J., Zhang, F., Yang, H., Huang, X., Liu, H., Zhang, J., Guo, S.: Graphene oxide as a matrix for enzyme immobilization. Langmuir 26, 6083–6085 (2010)CrossRef Zhang, J., Zhang, F., Yang, H., Huang, X., Liu, H., Zhang, J., Guo, S.: Graphene oxide as a matrix for enzyme immobilization. Langmuir 26, 6083–6085 (2010)CrossRef
42.
go back to reference Yoon, J., Shin, J.-W., Lim, J., Mohammadniaei, M., Bharate Bapurao, G., Lee, T., Choi, J.-W.: Electrochemical nitric oxide biosensor based on amine-modified MoS2/graphene oxide/myoglobin hybrid. Colloids Surf. B Biointerfaces 159, 729–736 (2017)CrossRef Yoon, J., Shin, J.-W., Lim, J., Mohammadniaei, M., Bharate Bapurao, G., Lee, T., Choi, J.-W.: Electrochemical nitric oxide biosensor based on amine-modified MoS2/graphene oxide/myoglobin hybrid. Colloids Surf. B Biointerfaces 159, 729–736 (2017)CrossRef
43.
go back to reference Ting, S.W., Periasamy, A.P., Chen, S.M., Saraswathi, R.: Direct electrochemistry of catalase immobilized at electrochemically reduced graphene oxide modified electrode for amperometric H2O2 biosensor. Int. J. Electrochem. Sci. 6, 4438–4453 (2011) Ting, S.W., Periasamy, A.P., Chen, S.M., Saraswathi, R.: Direct electrochemistry of catalase immobilized at electrochemically reduced graphene oxide modified electrode for amperometric H2O2 biosensor. Int. J. Electrochem. Sci. 6, 4438–4453 (2011)
44.
go back to reference Vijayaraj, K., Hong, S.W., Jin, S.H., Chang, S.C., Park, D.S.: Fabrication of a novel disposable glucose biosensor using an electrochemically reduced graphene oxide–glucose oxidase biocomposite. Anal. Methods 8, 6974–6981 (2016)CrossRef Vijayaraj, K., Hong, S.W., Jin, S.H., Chang, S.C., Park, D.S.: Fabrication of a novel disposable glucose biosensor using an electrochemically reduced graphene oxide–glucose oxidase biocomposite. Anal. Methods 8, 6974–6981 (2016)CrossRef
45.
go back to reference Umar, M.F., Nasar, A.: Reduced graphene oxide/polypyrrole/nitrate reductase deposited glassy carbon electrode (GCE/RGO/PPy/NR): biosensor for the detection of nitrate in wastewater. Appl. Water Sci. 8, 211 (2018)CrossRef Umar, M.F., Nasar, A.: Reduced graphene oxide/polypyrrole/nitrate reductase deposited glassy carbon electrode (GCE/RGO/PPy/NR): biosensor for the detection of nitrate in wastewater. Appl. Water Sci. 8, 211 (2018)CrossRef
46.
go back to reference Wu, Q., Hou, Y., Zhang, M., Hou, X., Xu, L., Wang, N., Wang, J., Huang, W.: Amperometric cholesterol biosensor based on zinc oxide films on a silver nanowire–graphene oxide modified electrode. Anal. Methods 8, 1806–1812 (2016)CrossRef Wu, Q., Hou, Y., Zhang, M., Hou, X., Xu, L., Wang, N., Wang, J., Huang, W.: Amperometric cholesterol biosensor based on zinc oxide films on a silver nanowire–graphene oxide modified electrode. Anal. Methods 8, 1806–1812 (2016)CrossRef
47.
go back to reference Wu, S., Wang, Y., Mao, H., Wang, C., Xia, L., Zhang, Y., Ge, H., Song, X.-M.: Direct electrochemistry of cholesterol oxidase and biosensing of cholesterol based on PSS/polymeric ionic liquid–graphene nanocomposite. RSC Adv. 6, 59487–59496 (2016)CrossRef Wu, S., Wang, Y., Mao, H., Wang, C., Xia, L., Zhang, Y., Ge, H., Song, X.-M.: Direct electrochemistry of cholesterol oxidase and biosensing of cholesterol based on PSS/polymeric ionic liquid–graphene nanocomposite. RSC Adv. 6, 59487–59496 (2016)CrossRef
48.
go back to reference Cincotto, F.H., Canevari, T.C., Machado, S.A.S., Sánchez, A., Barrio, M.A.R., Villalonga, R., Pingarrón, J.M.: Reduced graphene oxide-Sb2O5 hybrid nanomaterial for the design of a laccase-based amperometric biosensor for estriol. Electrochim. Acta 174, 332–339 (2015)CrossRef Cincotto, F.H., Canevari, T.C., Machado, S.A.S., Sánchez, A., Barrio, M.A.R., Villalonga, R., Pingarrón, J.M.: Reduced graphene oxide-Sb2O5 hybrid nanomaterial for the design of a laccase-based amperometric biosensor for estriol. Electrochim. Acta 174, 332–339 (2015)CrossRef
49.
go back to reference Guler, M., Turkoglu, V., Basi, Z.: Determination of malation, methidathion, and chlorpyrifos ethyl pesticides using acetylcholinesterase biosensor based on Nafion/Ag@rGO-NH2 nanocomposites. Electrochim. Acta 240, 129–135 (2017)CrossRef Guler, M., Turkoglu, V., Basi, Z.: Determination of malation, methidathion, and chlorpyrifos ethyl pesticides using acetylcholinesterase biosensor based on Nafion/Ag@rGO-NH2 nanocomposites. Electrochim. Acta 240, 129–135 (2017)CrossRef
50.
go back to reference Povedano, E., Cincotto, F.H., Parrado, C., Díez, P., Sánchez, A., Canevari, T.C., Machado, S.A.S., Pingarrón, J.M., Villalonga, R.: Decoration of reduced graphene oxide with rhodium nanoparticles for the design of a sensitive electrochemical enzyme biosensor for 17β-estradiol. Biosens. Bioelectron. 89, 343–351 (2017)CrossRef Povedano, E., Cincotto, F.H., Parrado, C., Díez, P., Sánchez, A., Canevari, T.C., Machado, S.A.S., Pingarrón, J.M., Villalonga, R.: Decoration of reduced graphene oxide with rhodium nanoparticles for the design of a sensitive electrochemical enzyme biosensor for 17β-estradiol. Biosens. Bioelectron. 89, 343–351 (2017)CrossRef
51.
go back to reference Radhakrishnan, S., Kim, S.J.: An enzymatic biosensor for hydrogen peroxide based on one-pot preparation of CeO2 -reduced graphene oxide nanocomposite. RSC Adv. 5, 12937–12943 (2015)CrossRef Radhakrishnan, S., Kim, S.J.: An enzymatic biosensor for hydrogen peroxide based on one-pot preparation of CeO2 -reduced graphene oxide nanocomposite. RSC Adv. 5, 12937–12943 (2015)CrossRef
52.
go back to reference Hu, H., Pan, D., Xue, H., Zhang, M., Zhang, Y., Shen, Y.: A photoelectrochemical immunoassay for tumor necrosis factor-α using a GO-PTCNH2 nanohybrid as a probe. J. Electroanal. Chem. 824, 195–200 (2018)CrossRef Hu, H., Pan, D., Xue, H., Zhang, M., Zhang, Y., Shen, Y.: A photoelectrochemical immunoassay for tumor necrosis factor-α using a GO-PTCNH2 nanohybrid as a probe. J. Electroanal. Chem. 824, 195–200 (2018)CrossRef
53.
go back to reference Asav, E., Akyilmaz, E.: Preparation and optimization of a bienzymic biosensor based on self-assembled monolayer modified gold electrode for alcohol and glucose detection. Biosens. Bioelectron. 25, 1014–1018 (2010)CrossRef Asav, E., Akyilmaz, E.: Preparation and optimization of a bienzymic biosensor based on self-assembled monolayer modified gold electrode for alcohol and glucose detection. Biosens. Bioelectron. 25, 1014–1018 (2010)CrossRef
54.
go back to reference Afkhami, A., Hashemi, P., Bagheri, H., Salimian, J., Ahmadi, A., Madrakian, T.: Impedimetric immunosensor for the label-free and direct detection of botulinum neurotoxin serotype A using Au nanoparticles/graphene-chitosan composite. Biosens. Bioelectron. 93, 124–131 (2017)CrossRef Afkhami, A., Hashemi, P., Bagheri, H., Salimian, J., Ahmadi, A., Madrakian, T.: Impedimetric immunosensor for the label-free and direct detection of botulinum neurotoxin serotype A using Au nanoparticles/graphene-chitosan composite. Biosens. Bioelectron. 93, 124–131 (2017)CrossRef
55.
go back to reference Yang, T., Jia, H., Liu, Z., Qiu, X., Gao, Y., Xu, J., Lu, L., Yu, Y.: Label-free electrochemical immunoassay for α-fetoprotein based on a redox matrix of Prussian blue-reduced graphene oxide/gold nanoparticles-poly(3,4-ethylenedioxythiophene) composite. J. Electroanal. Chem. 799, 625–633 (2017)CrossRef Yang, T., Jia, H., Liu, Z., Qiu, X., Gao, Y., Xu, J., Lu, L., Yu, Y.: Label-free electrochemical immunoassay for α-fetoprotein based on a redox matrix of Prussian blue-reduced graphene oxide/gold nanoparticles-poly(3,4-ethylenedioxythiophene) composite. J. Electroanal. Chem. 799, 625–633 (2017)CrossRef
56.
go back to reference Bo, Y., Yang, H., Hu, Y., Yao, T., Huang, S.: A novel electrochemical DNA biosensor based on graphene and polyaniline nanowires. Electrochim. Acta 56, 2676–2681 (2011)CrossRef Bo, Y., Yang, H., Hu, Y., Yao, T., Huang, S.: A novel electrochemical DNA biosensor based on graphene and polyaniline nanowires. Electrochim. Acta 56, 2676–2681 (2011)CrossRef
57.
go back to reference Huang, H., Bai, W., Dong, C., Guo, R., Liu, Z.: An ultrasensitive electrochemical DNA biosensor based on graphene/Au nanorod/polythionine for human papillomavirus DNA detection. Biosens. Bioelectron. 68, 442–446 (2015)CrossRef Huang, H., Bai, W., Dong, C., Guo, R., Liu, Z.: An ultrasensitive electrochemical DNA biosensor based on graphene/Au nanorod/polythionine for human papillomavirus DNA detection. Biosens. Bioelectron. 68, 442–446 (2015)CrossRef
58.
go back to reference Iqbal, S., Ahmad, S.: Recent development in hybrid conducting polymers: synthesis, applications and future prospects. J. Ind. Eng. Chem. 60, 53–84 (2018)CrossRef Iqbal, S., Ahmad, S.: Recent development in hybrid conducting polymers: synthesis, applications and future prospects. J. Ind. Eng. Chem. 60, 53–84 (2018)CrossRef
59.
go back to reference Shi, H.-J., Kim, K.K., Yoon, S.M., Park, H.K., Jung, I.S., Jin, M.H., Jeong, H.K., Kim, J.M., Choi, J.Y., Lee, Y.H.: Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Func. Mater. 19, 1987–1992 (2009)CrossRef Shi, H.-J., Kim, K.K., Yoon, S.M., Park, H.K., Jung, I.S., Jin, M.H., Jeong, H.K., Kim, J.M., Choi, J.Y., Lee, Y.H.: Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Func. Mater. 19, 1987–1992 (2009)CrossRef
60.
go back to reference Stankovicha, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., Ruoff, R.S.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)CrossRef Stankovicha, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., Ruoff, R.S.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)CrossRef
61.
go back to reference Xu, C., Shi, X., Ki, A., Zhou, C., Cui, Y.: Fabrication and characteristics of reduced graphene oxide produced with different green reductants. PLoS ONE 10, 1–15 (2015) Xu, C., Shi, X., Ki, A., Zhou, C., Cui, Y.: Fabrication and characteristics of reduced graphene oxide produced with different green reductants. PLoS ONE 10, 1–15 (2015)
62.
go back to reference Salas, E.C., Sun, Z., Lu, A., Tour, J.M.: Reduction of graphene oxide via bacterial respiration. ACS Nano 4, 4852–4856 (2010)CrossRef Salas, E.C., Sun, Z., Lu, A., Tour, J.M.: Reduction of graphene oxide via bacterial respiration. ACS Nano 4, 4852–4856 (2010)CrossRef
63.
go back to reference Khanra, P., Kuila, T., Kim, N.H., Bae, S.H., Yu, S.D., Lee, J.H.: Simultaneous bio-functionalization and reduction of graphene oxide by baker’s yeast. Chem. Eng. J. 183, 526–533 (2012)CrossRef Khanra, P., Kuila, T., Kim, N.H., Bae, S.H., Yu, S.D., Lee, J.H.: Simultaneous bio-functionalization and reduction of graphene oxide by baker’s yeast. Chem. Eng. J. 183, 526–533 (2012)CrossRef
64.
go back to reference Pei, S., Zhao, J., Du, J., Ren, W., Cheng, H.-M.: Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48, 4466–4474 (2010)CrossRef Pei, S., Zhao, J., Du, J., Ren, W., Cheng, H.-M.: Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48, 4466–4474 (2010)CrossRef
65.
go back to reference Wu, Z.-S., Ren, W., Gao, L., Zhao, J., Chen, Z., Liu, B., Tang, D., Yu, B., Jiang, C., Cheng, H.-M.: Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 3, 411–417 (2009)CrossRef Wu, Z.-S., Ren, W., Gao, L., Zhao, J., Chen, Z., Liu, B., Tang, D., Yu, B., Jiang, C., Cheng, H.-M.: Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 3, 411–417 (2009)CrossRef
66.
go back to reference Zhou, M., Wang, Y., Zhai, Y., Zhai, J., Ren, W., Wang, F., Dong, S.: Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem. Eur. J. 15, 6116–6120 (2009)CrossRef Zhou, M., Wang, Y., Zhai, Y., Zhai, J., Ren, W., Wang, F., Dong, S.: Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem. Eur. J. 15, 6116–6120 (2009)CrossRef
67.
go back to reference Šakinytė, I., Barkauskas, J., Gaidukevič, J., Razumienė, J.: Thermally reduced graphene oxide: the study and use for reagentless amperometric d-fructose biosensors. Talanta 144, 1096–1103 (2015)CrossRef Šakinytė, I., Barkauskas, J., Gaidukevič, J., Razumienė, J.: Thermally reduced graphene oxide: the study and use for reagentless amperometric d-fructose biosensors. Talanta 144, 1096–1103 (2015)CrossRef
68.
go back to reference Wang, Y., Wang, Y., Wu, D., Ma, H., Zhang, Y., Fan, D., Pang, X., Du, B., Wei, Q.: Label-free electrochemical immunosensor based on flower-like Ag/MoS2/rGO nanocomposites for ultrasensitive detection of carcinoembryonic antigen. Sens. Actuators B Chem. 255, 125–132 (2018)CrossRef Wang, Y., Wang, Y., Wu, D., Ma, H., Zhang, Y., Fan, D., Pang, X., Du, B., Wei, Q.: Label-free electrochemical immunosensor based on flower-like Ag/MoS2/rGO nanocomposites for ultrasensitive detection of carcinoembryonic antigen. Sens. Actuators B Chem. 255, 125–132 (2018)CrossRef
69.
go back to reference Singh, R., Hong, S., Jang, J.: Label-free detection of influenza viruses using a reduced graphene oxide-based electrochemical immunosensor integrated with a microfluidic platform. Sci. R. 7, 42771 (2017) Singh, R., Hong, S., Jang, J.: Label-free detection of influenza viruses using a reduced graphene oxide-based electrochemical immunosensor integrated with a microfluidic platform. Sci. R. 7, 42771 (2017)
70.
go back to reference Chen, Q., Yu, C., Gao, R., Gao, L., Li, Q., Yuan, G., He, J.: A novel electrochemical immunosensor based on the rGO-TEPA-PTC-NH2 and AuPt modified C60 bimetallic nanoclusters for the detection of Vangl1, a potential biomarker for dysontogenesis. Biosens. Bioelectron. 79, 364–370 (2016)CrossRef Chen, Q., Yu, C., Gao, R., Gao, L., Li, Q., Yuan, G., He, J.: A novel electrochemical immunosensor based on the rGO-TEPA-PTC-NH2 and AuPt modified C60 bimetallic nanoclusters for the detection of Vangl1, a potential biomarker for dysontogenesis. Biosens. Bioelectron. 79, 364–370 (2016)CrossRef
71.
go back to reference Liu, P., Li, C., Zhang, R., Tang, Q., Wei, J., Lu, Y., Shen, P., (2018). An ultrasensitive electrochemical immunosensor for procalcitonin detection based on the gold nanoparticles-enhanced tyramide signal amplification strategy. In: Biosensors and Bioelectronics, In press Liu, P., Li, C., Zhang, R., Tang, Q., Wei, J., Lu, Y., Shen, P., (2018). An ultrasensitive electrochemical immunosensor for procalcitonin detection based on the gold nanoparticles-enhanced tyramide signal amplification strategy. In: Biosensors and Bioelectronics, In press
72.
go back to reference Wang, D.-W., Li, F., Zhao, J., Ren, W., Chen, Z.-G., Tan, J., Wu, Z.-S., Gentle, I., Lu, G.Q., Cheng, H.-M.: Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 3, 1745–1752 (2009)CrossRef Wang, D.-W., Li, F., Zhao, J., Ren, W., Chen, Z.-G., Tan, J., Wu, Z.-S., Gentle, I., Lu, G.Q., Cheng, H.-M.: Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 3, 1745–1752 (2009)CrossRef
73.
go back to reference Zhang, Y., Wu, L., Lei, W., Xia, X., Xia, M., Hao, Q.: Electrochemical determination of 4-nitrophenol at polycarbazole/N-doped graphene modified glassy carbon electrode. Electrochim. Acta 146, 568–576 (2014)CrossRef Zhang, Y., Wu, L., Lei, W., Xia, X., Xia, M., Hao, Q.: Electrochemical determination of 4-nitrophenol at polycarbazole/N-doped graphene modified glassy carbon electrode. Electrochim. Acta 146, 568–576 (2014)CrossRef
74.
go back to reference Jacob, D., Mini, P.A., Balakrishnan, A., Nair, S.V., Subramanian, K.R.V.: Electrochemical behaviour of graphene–poly (3,4-ethylenedioxythiophene) (PEDOT) composite electrodes for supercapacitor applications. Bull. Mater. Sci. 37, 61–69 (2014)CrossRef Jacob, D., Mini, P.A., Balakrishnan, A., Nair, S.V., Subramanian, K.R.V.: Electrochemical behaviour of graphene–poly (3,4-ethylenedioxythiophene) (PEDOT) composite electrodes for supercapacitor applications. Bull. Mater. Sci. 37, 61–69 (2014)CrossRef
75.
go back to reference do Prado, T.M., Cincotto, F.H., Fatibello-Filho, O., de Moraes, F.C.: Bismuth vanadate/reduced graphene oxide nanocomposite electrode for photoelectrochemical determination of diclofenac in urine. Electroanalysis 30, 2704–2711 (2018)CrossRef do Prado, T.M., Cincotto, F.H., Fatibello-Filho, O., de Moraes, F.C.: Bismuth vanadate/reduced graphene oxide nanocomposite electrode for photoelectrochemical determination of diclofenac in urine. Electroanalysis 30, 2704–2711 (2018)CrossRef
76.
go back to reference Cincotto, F.H., Golinelli, D.L.C., Machado, S.A.S., Moraes, F.C.: Electrochemical sensor based on reduced graphene oxide modified with palladium nanoparticles for determination of desipramine in urine samples. Sens. Actuators B Chem. 239, 488–493 (2017)CrossRef Cincotto, F.H., Golinelli, D.L.C., Machado, S.A.S., Moraes, F.C.: Electrochemical sensor based on reduced graphene oxide modified with palladium nanoparticles for determination of desipramine in urine samples. Sens. Actuators B Chem. 239, 488–493 (2017)CrossRef
77.
go back to reference Tabrizi, M.A., Shamsipur, M., Saber, R., Sarkar, S., Zolfaghari, N.: An ultrasensitive sandwich-type electrochemical immunosensor for the determination of SKBR-3 breast cancer cell using rGO-TPA/FeHCFnano labeled Anti-HCT as a signal tag. Sens. Actuators B Chem. 243, 823–830 (2017) Tabrizi, M.A., Shamsipur, M., Saber, R., Sarkar, S., Zolfaghari, N.: An ultrasensitive sandwich-type electrochemical immunosensor for the determination of SKBR-3 breast cancer cell using rGO-TPA/FeHCFnano labeled Anti-HCT as a signal tag. Sens. Actuators B Chem. 243, 823–830 (2017)
78.
go back to reference Donini, C.A., da Silva, M.K.L., Simões, R.P., Cesarino, I.: Reduced graphene oxide modified with silver nanoparticles for the electrochemical detection of estriol. J. Electroanal. Chem. 809, 67–73 (2018)CrossRef Donini, C.A., da Silva, M.K.L., Simões, R.P., Cesarino, I.: Reduced graphene oxide modified with silver nanoparticles for the electrochemical detection of estriol. J. Electroanal. Chem. 809, 67–73 (2018)CrossRef
Metadata
Title
Graphene Functionalization and Nanopolymers
Authors
Martin Kássio Leme Silva
Ivana Cesarino
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-32-9057-0_6

Premium Partners