Skip to main content
Top

2019 | OriginalPaper | Chapter

5. Graphene: Properties, Synthesis, and Applications

Authors : Sarang Muley, Nuggehalli M. Ravindra

Published in: Semiconductors

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The electronic, optical, and thermoelectric properties of graphene and graphene nanoribbons as a function of number of layers, doping, chirality, temperature, and lattice defects are described. Some aspects related to the methods of synthesis of graphene and applications of graphene are presented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191CrossRef Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191CrossRef
2.
go back to reference Tsang ACH, Kwok HYH, Leung DYC (2017) The use of graphene based materials for fuel cell, photovoltaics, and supercapacitor electrode materials. Solid State Sci 67:A1–A14CrossRef Tsang ACH, Kwok HYH, Leung DYC (2017) The use of graphene based materials for fuel cell, photovoltaics, and supercapacitor electrode materials. Solid State Sci 67:A1–A14CrossRef
3.
go back to reference Talbot C (1999) Fullerene and nanotube chemistry: an update. Sch Sci Rev 81:37–48 Talbot C (1999) Fullerene and nanotube chemistry: an update. Sch Sci Rev 81:37–48
4.
go back to reference Birkett PR et al (1995) Holey fullerenes! a bis-lactone derivative of fullerene with an eleven-atom orifice. J Chem Soc, Chem Commun 18:1869–1870CrossRef Birkett PR et al (1995) Holey fullerenes! a bis-lactone derivative of fullerene with an eleven-atom orifice. J Chem Soc, Chem Commun 18:1869–1870CrossRef
5.
go back to reference Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Chapter 2—Carbon materials. In: Eklund MS, Dresselhaus G, Dresselhaus PC (eds) Science of fullerenes and carbon nanotubes. Academic Press, San Diego, pp 15–59CrossRef Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Chapter 2—Carbon materials. In: Eklund MS, Dresselhaus G, Dresselhaus PC (eds) Science of fullerenes and carbon nanotubes. Academic Press, San Diego, pp 15–59CrossRef
6.
go back to reference Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRef Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRef
7.
go back to reference Luo H et al (2014) Preparation of three-dimensional braided carbon fiber-reinforced PEEK composites for potential load-bearing bone fixations. Part I. Mechanical properties and cytocompatibility. J Mech Behav Biomed Mater 29:103–113CrossRef Luo H et al (2014) Preparation of three-dimensional braided carbon fiber-reinforced PEEK composites for potential load-bearing bone fixations. Part I. Mechanical properties and cytocompatibility. J Mech Behav Biomed Mater 29:103–113CrossRef
8.
go back to reference Chung DDL (2000) Thermal analysis of carbon fiber polymer-matrix composites by electrical resistance measurement. Thermochim Acta 364(1–2):121–132CrossRef Chung DDL (2000) Thermal analysis of carbon fiber polymer-matrix composites by electrical resistance measurement. Thermochim Acta 364(1–2):121–132CrossRef
9.
go back to reference Yakobson B, Avouris P (2001) Mechanical properties of carbon nanotubes. In: Dresselhaus M, Dresselhaus G, Avouris P (eds) Carbon nanotubes. Springer, Berlin, pp 287–327 Yakobson B, Avouris P (2001) Mechanical properties of carbon nanotubes. In: Dresselhaus M, Dresselhaus G, Avouris P (eds) Carbon nanotubes. Springer, Berlin, pp 287–327
10.
go back to reference Ranjbartoreh AR et al (2011) Advanced mechanical properties of graphene paper. J Appl Phys 109(1):014306 (6 p)CrossRef Ranjbartoreh AR et al (2011) Advanced mechanical properties of graphene paper. J Appl Phys 109(1):014306 (6 p)CrossRef
11.
12.
go back to reference Novoselov KS et al (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102(30):10451–10453CrossRef Novoselov KS et al (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102(30):10451–10453CrossRef
13.
go back to reference Gerstner E (2010) Nobel Prize 2010: Andre Geim & Konstantin Novoselov. Nat Phys 6(11):836CrossRef Gerstner E (2010) Nobel Prize 2010: Andre Geim & Konstantin Novoselov. Nat Phys 6(11):836CrossRef
14.
go back to reference Landau LD (1937) Zur Theorie der phasenumwandlungen II. Phys Z Sowjetunion 11:26–35 Landau LD (1937) Zur Theorie der phasenumwandlungen II. Phys Z Sowjetunion 11:26–35
15.
go back to reference Cahn RW, Harris B (1969) Newer forms of carbon and their uses. Nature 221(5176):132–141CrossRef Cahn RW, Harris B (1969) Newer forms of carbon and their uses. Nature 221(5176):132–141CrossRef
17.
go back to reference Partoens B, Peeters FM (2006) From graphene to graphite: electronic structure around the K point. Phys Rev B 74(7):075404CrossRef Partoens B, Peeters FM (2006) From graphene to graphite: electronic structure around the K point. Phys Rev B 74(7):075404CrossRef
18.
go back to reference Nair RR et al (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881):1308CrossRef Nair RR et al (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881):1308CrossRef
19.
go back to reference Georgakilas V et al (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112(11):6156–6214CrossRef Georgakilas V et al (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112(11):6156–6214CrossRef
20.
go back to reference Muley SV, Ravindra NM (2014) Graphene–environmental and sensor applications. In: Hu A, Apblett A (eds) Nanotechnology for water treatment and purification. Springer International Publishing, pp 159–224 Muley SV, Ravindra NM (2014) Graphene–environmental and sensor applications. In: Hu A, Apblett A (eds) Nanotechnology for water treatment and purification. Springer International Publishing, pp 159–224
21.
go back to reference Yin PT et al (2013) Prospects for graphene-nanoparticle-based hybrid sensors. Phys Chem Chem Phys 15(31):12785–12799CrossRef Yin PT et al (2013) Prospects for graphene-nanoparticle-based hybrid sensors. Phys Chem Chem Phys 15(31):12785–12799CrossRef
22.
go back to reference Wang JT-W et al (2013) Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett 14(2):724–730CrossRef Wang JT-W et al (2013) Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett 14(2):724–730CrossRef
23.
go back to reference El-Kady MF et al (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074):1326–1330CrossRef El-Kady MF et al (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074):1326–1330CrossRef
24.
go back to reference Stankovich S et al (2006) Graphene-based composite materials. Nature 442(7100):282–286CrossRef Stankovich S et al (2006) Graphene-based composite materials. Nature 442(7100):282–286CrossRef
25.
go back to reference Kim KS et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230):706–710CrossRef Kim KS et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230):706–710CrossRef
26.
go back to reference Liu Q et al (2009) Polymer photovoltaic cells based on solution-processable graphene and P3HT. Adv Funct Mater 19(6):894–904CrossRef Liu Q et al (2009) Polymer photovoltaic cells based on solution-processable graphene and P3HT. Adv Funct Mater 19(6):894–904CrossRef
27.
go back to reference Bae S et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nano 5(8):574–578CrossRef Bae S et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nano 5(8):574–578CrossRef
28.
go back to reference Tzalenchuk A et al (2010) Towards a quantum resistance standard based on epitaxial graphene. Nat Nano 5(3):186–189CrossRef Tzalenchuk A et al (2010) Towards a quantum resistance standard based on epitaxial graphene. Nat Nano 5(3):186–189CrossRef
29.
go back to reference Li X et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932):1312–1314CrossRef Li X et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932):1312–1314CrossRef
30.
go back to reference Katsnelson MI, Novoselov KS (2007) Graphene: new bridge between condensed matter physics and quantum electrodynamics. Solid State Commun 143(1–2):3–13CrossRef Katsnelson MI, Novoselov KS (2007) Graphene: new bridge between condensed matter physics and quantum electrodynamics. Solid State Commun 143(1–2):3–13CrossRef
31.
go back to reference Simon J, Greiner M (2012) Condensed-matter physics: a duo of graphene mimics. Nature 483(7389):282–284CrossRef Simon J, Greiner M (2012) Condensed-matter physics: a duo of graphene mimics. Nature 483(7389):282–284CrossRef
32.
go back to reference Chahardeh JB (2012) A review on graphene transistors. Int J Adv Res Comput Commun Eng 1(4) Chahardeh JB (2012) A review on graphene transistors. Int J Adv Res Comput Commun Eng 1(4)
33.
go back to reference Novoselov KS et al (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197–200CrossRef Novoselov KS et al (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197–200CrossRef
34.
go back to reference Pisana S et al (2007) Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nat Mater 6(3):198–201CrossRef Pisana S et al (2007) Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nat Mater 6(3):198–201CrossRef
35.
go back to reference Zhang D et al (2012) Preparation, characterization, and application of electrochemically functional graphene nanocomposites by one-step liquid-phase exfoliation of natural flake graphite with methylene blue. Nano Res 5(12):875–887CrossRef Zhang D et al (2012) Preparation, characterization, and application of electrochemically functional graphene nanocomposites by one-step liquid-phase exfoliation of natural flake graphite with methylene blue. Nano Res 5(12):875–887CrossRef
36.
go back to reference Yoon TL et al (2013) Epitaxial growth of graphene on 6H-silicon carbide substrate by simulated annealing method. J Chem Phys 139(20):204702CrossRef Yoon TL et al (2013) Epitaxial growth of graphene on 6H-silicon carbide substrate by simulated annealing method. J Chem Phys 139(20):204702CrossRef
37.
go back to reference Yao Y et al (2011) Controlled growth of multilayer, few-layer, and single-layer graphene on metal substrates. J Phys Chem C 115(13):5232–5238CrossRef Yao Y et al (2011) Controlled growth of multilayer, few-layer, and single-layer graphene on metal substrates. J Phys Chem C 115(13):5232–5238CrossRef
38.
go back to reference Lizzit S et al (2012) Transfer-free electrical insulation of epitaxial graphene from its metal substrate. Nano Lett 12(9):4503–4507CrossRef Lizzit S et al (2012) Transfer-free electrical insulation of epitaxial graphene from its metal substrate. Nano Lett 12(9):4503–4507CrossRef
39.
go back to reference Voloshina E, Dedkov Y (2012) Graphene on metallic surfaces: problems and perspectives. Phys Chem Chem Phys 14(39):13502–13514CrossRef Voloshina E, Dedkov Y (2012) Graphene on metallic surfaces: problems and perspectives. Phys Chem Chem Phys 14(39):13502–13514CrossRef
40.
go back to reference Zhang Y, Zhang L, Zhou C (2013) Review of chemical vapor deposition of graphene and related applications. Acc Chem Res 46(10):2329–2339CrossRef Zhang Y, Zhang L, Zhou C (2013) Review of chemical vapor deposition of graphene and related applications. Acc Chem Res 46(10):2329–2339CrossRef
41.
go back to reference Dato A et al (2008) Substrate-free gas-phase synthesis of graphene sheets. Nano Lett 8(7):2012–2016CrossRef Dato A et al (2008) Substrate-free gas-phase synthesis of graphene sheets. Nano Lett 8(7):2012–2016CrossRef
42.
go back to reference Koo Y et al (1972) Photocatalyst nanomaterials for environmental challenges and opportunities. Nature 238:37–38CrossRef Koo Y et al (1972) Photocatalyst nanomaterials for environmental challenges and opportunities. Nature 238:37–38CrossRef
43.
go back to reference Hawthorne MF, Owen DA (1971) Chelated biscarborane transition metal derivatives formed through carbon-metal sigma bonds. J Am Chem Soc 93(4):873–880CrossRef Hawthorne MF, Owen DA (1971) Chelated biscarborane transition metal derivatives formed through carbon-metal sigma bonds. J Am Chem Soc 93(4):873–880CrossRef
44.
go back to reference Blakely JM, Kim JS, Potter HC (1970) Segregation of carbon to the (100) surface of nickel. J Appl Phys 41(6):2693–2697CrossRef Blakely JM, Kim JS, Potter HC (1970) Segregation of carbon to the (100) surface of nickel. J Appl Phys 41(6):2693–2697CrossRef
45.
go back to reference Ebert LB (1976) Intercalation compounds of graphite. Annu Rev Mater Sci 6(1):181–211CrossRef Ebert LB (1976) Intercalation compounds of graphite. Annu Rev Mater Sci 6(1):181–211CrossRef
46.
go back to reference Kovtyukhova NI et al (2014) Non-oxidative intercalation and exfoliation of graphite by Brønsted acids. Nat Chem (advance online publication) Kovtyukhova NI et al (2014) Non-oxidative intercalation and exfoliation of graphite by Brønsted acids. Nat Chem (advance online publication)
47.
go back to reference Boehm HP, Setton R, Stumpp E (1994) Nomenclature and terminology of graphite intercalation compounds (IUPAC Recommendations 1994). Pure Appl Chem 66:1893CrossRef Boehm HP, Setton R, Stumpp E (1994) Nomenclature and terminology of graphite intercalation compounds (IUPAC Recommendations 1994). Pure Appl Chem 66:1893CrossRef
48.
go back to reference Morozov SV et al (2008) Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett 100(1):016602CrossRef Morozov SV et al (2008) Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett 100(1):016602CrossRef
49.
go back to reference Nair RR et al (2011) Spin-half paramagnetism in graphene induced by point defects. Nat Phys 8:199–202CrossRef Nair RR et al (2011) Spin-half paramagnetism in graphene induced by point defects. Nat Phys 8:199–202CrossRef
50.
go back to reference Nair RR et al (2013) Dual origin of defect magnetism in graphene and its reversible switching by molecular doping. Nat Commun 4:1–6 Nair RR et al (2013) Dual origin of defect magnetism in graphene and its reversible switching by molecular doping. Nat Commun 4:1–6
51.
go back to reference Berger C et al (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312(5777):1191–1196CrossRef Berger C et al (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312(5777):1191–1196CrossRef
52.
go back to reference Tan X et al (2012) Optimizing the thermoelectric performance of zigzag and chiral carbon nanotubes. Nanoscale Res Lett 7:116CrossRef Tan X et al (2012) Optimizing the thermoelectric performance of zigzag and chiral carbon nanotubes. Nanoscale Res Lett 7:116CrossRef
53.
go back to reference Lee C et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388CrossRef Lee C et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388CrossRef
54.
go back to reference Chen J-H et al (2008) Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nano 3(4):206–209CrossRef Chen J-H et al (2008) Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nano 3(4):206–209CrossRef
55.
go back to reference Ghosh S et al (2010) Dimensional crossover of thermal transport in few-layer graphene. Nat Mater 9(7):555–558CrossRef Ghosh S et al (2010) Dimensional crossover of thermal transport in few-layer graphene. Nat Mater 9(7):555–558CrossRef
56.
go back to reference Murali R et al (2009) Breakdown current density of graphene nanoribbons. Appl Phys Lett 94(24):243114CrossRef Murali R et al (2009) Breakdown current density of graphene nanoribbons. Appl Phys Lett 94(24):243114CrossRef
57.
go back to reference Xu G et al (2010) Enhanced conductance fluctuation by quantum confinement effect in graphene nanoribbons. Nano Lett 10(11):4590–4594CrossRef Xu G et al (2010) Enhanced conductance fluctuation by quantum confinement effect in graphene nanoribbons. Nano Lett 10(11):4590–4594CrossRef
58.
go back to reference Son Y-W, Cohen ML, Louie SG (2006) Energy gaps in graphene nanoribbons. Phys Rev Lett 97(21):216803CrossRef Son Y-W, Cohen ML, Louie SG (2006) Energy gaps in graphene nanoribbons. Phys Rev Lett 97(21):216803CrossRef
59.
go back to reference Jia X et al (2011) Graphene edges: a review of their fabrication and characterization. Nanoscale 3(1):86–95CrossRef Jia X et al (2011) Graphene edges: a review of their fabrication and characterization. Nanoscale 3(1):86–95CrossRef
60.
go back to reference Giavaras G, Nori F (2010) Graphene quantum dots formed by a spatial modulation of the Dirac gap. Appl Phys Lett 97(24):243106CrossRef Giavaras G, Nori F (2010) Graphene quantum dots formed by a spatial modulation of the Dirac gap. Appl Phys Lett 97(24):243106CrossRef
61.
go back to reference Guinea F, Katsnelson MI, Geim AK (2010) Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat Phys 6(1):30–33CrossRef Guinea F, Katsnelson MI, Geim AK (2010) Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat Phys 6(1):30–33CrossRef
62.
go back to reference Allen MT, Martin J, Yacoby A (2012) Gate-defined quantum confinement in suspended bilayer graphene. Nat Commun 3:934CrossRef Allen MT, Martin J, Yacoby A (2012) Gate-defined quantum confinement in suspended bilayer graphene. Nat Commun 3:934CrossRef
63.
go back to reference Żebrowski DP, Wach E, Szafran B (2013) Confined states in quantum dots defined within finite flakes of bilayer graphene: coupling to the edge, ionization threshold, and valley degeneracy. Phys Rev B 88(16):165405CrossRef Żebrowski DP, Wach E, Szafran B (2013) Confined states in quantum dots defined within finite flakes of bilayer graphene: coupling to the edge, ionization threshold, and valley degeneracy. Phys Rev B 88(16):165405CrossRef
64.
go back to reference Jin JE et al (2016) Surface modulation of graphene field effect transistors on periodic trench structure. ACS Appl Mater Interfaces 8(28):18513–18518CrossRef Jin JE et al (2016) Surface modulation of graphene field effect transistors on periodic trench structure. ACS Appl Mater Interfaces 8(28):18513–18518CrossRef
65.
go back to reference Chen Y-C et al (2013) Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nano 7(7):6123–6128CrossRef Chen Y-C et al (2013) Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nano 7(7):6123–6128CrossRef
66.
go back to reference Chang SL et al (2014) Geometric and electronic properties of edge-decorated graphene nanoribbons. Sci Rep 4:6038CrossRef Chang SL et al (2014) Geometric and electronic properties of edge-decorated graphene nanoribbons. Sci Rep 4:6038CrossRef
67.
go back to reference Cano-Márquez AG et al (2009) Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett 9(4):1527–1533CrossRef Cano-Márquez AG et al (2009) Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett 9(4):1527–1533CrossRef
68.
go back to reference Mak KF et al (2009) Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. Phys Rev Lett 102(25):256405CrossRef Mak KF et al (2009) Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. Phys Rev Lett 102(25):256405CrossRef
69.
go back to reference Xu X et al (2014) Spin and pseudospins in layered transition metal dichalcogenides. Nat Phys 10(5):343–350CrossRef Xu X et al (2014) Spin and pseudospins in layered transition metal dichalcogenides. Nat Phys 10(5):343–350CrossRef
71.
go back to reference Bao W et al (2009) Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nat Nano 4(9):562–566CrossRef Bao W et al (2009) Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nat Nano 4(9):562–566CrossRef
72.
go back to reference Cho D-H et al (2013) Effect of surface morphology on friction of graphene on various substrates. Nanoscale 5(7):3063–3069CrossRef Cho D-H et al (2013) Effect of surface morphology on friction of graphene on various substrates. Nanoscale 5(7):3063–3069CrossRef
73.
go back to reference Chattopadhyaya M, Alam MM, Chakrabarti S (2012) On the microscopic origin of bending of graphene nanoribbons in the presence of a perpendicular electric field. Phys Chem Chem Phys 14(26):9439–9443CrossRef Chattopadhyaya M, Alam MM, Chakrabarti S (2012) On the microscopic origin of bending of graphene nanoribbons in the presence of a perpendicular electric field. Phys Chem Chem Phys 14(26):9439–9443CrossRef
74.
go back to reference Castro Neto AH et al (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109–162CrossRef Castro Neto AH et al (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109–162CrossRef
75.
go back to reference Ando T (2009) The electronic properties of graphene and carbon nanotubes. NPG Asia Mater 1:17–21CrossRef Ando T (2009) The electronic properties of graphene and carbon nanotubes. NPG Asia Mater 1:17–21CrossRef
76.
go back to reference Rani P, Jindal VK (2013) Designing band gap of graphene by B and N dopant atoms. RSC Adv 3(3):802–812CrossRef Rani P, Jindal VK (2013) Designing band gap of graphene by B and N dopant atoms. RSC Adv 3(3):802–812CrossRef
78.
go back to reference Li HJ et al (2005) Multichannel ballistic transport in multiwall carbon nanotubes. Phys Rev Lett 95(8):086601CrossRef Li HJ et al (2005) Multichannel ballistic transport in multiwall carbon nanotubes. Phys Rev Lett 95(8):086601CrossRef
80.
go back to reference Richter N et al (2017) Robust two-dimensional electronic properties in three-dimensional microstructures of rotationally stacked turbostratic graphene. Phys Rev Appl 7(2):024022CrossRef Richter N et al (2017) Robust two-dimensional electronic properties in three-dimensional microstructures of rotationally stacked turbostratic graphene. Phys Rev Appl 7(2):024022CrossRef
81.
go back to reference Li X et al (2009) Simultaneous nitrogen-doping and reduction of graphene oxide. Science 324:768–771CrossRef Li X et al (2009) Simultaneous nitrogen-doping and reduction of graphene oxide. Science 324:768–771CrossRef
82.
go back to reference Martins TB et al (2007) Electronic and transport properties of boron-doped graphene nanoribbons. Phys Rev Lett 98(19):196803CrossRef Martins TB et al (2007) Electronic and transport properties of boron-doped graphene nanoribbons. Phys Rev Lett 98(19):196803CrossRef
83.
go back to reference Sharma R et al (2017) Investigation on effect of boron and nitrogen substitution on electronic structure of graphene. FlatChem 1:20–33CrossRef Sharma R et al (2017) Investigation on effect of boron and nitrogen substitution on electronic structure of graphene. FlatChem 1:20–33CrossRef
84.
go back to reference Ci L et al (2010) Atomic layers of hybridized boron nitride and graphene domains. Nat Mater 9(5):430–435CrossRef Ci L et al (2010) Atomic layers of hybridized boron nitride and graphene domains. Nat Mater 9(5):430–435CrossRef
85.
go back to reference Panchakarla LS et al (2009) Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv Mater 21(46):4726–4730 Panchakarla LS et al (2009) Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv Mater 21(46):4726–4730
86.
go back to reference Yu SS et al (2006) Nature of substitutional impurity atom B/N in zigzag single-wall carbon nanotubes revealed by first-principle calculations. IEEE Trans Nanotechnol 5(5):595–598CrossRef Yu SS et al (2006) Nature of substitutional impurity atom B/N in zigzag single-wall carbon nanotubes revealed by first-principle calculations. IEEE Trans Nanotechnol 5(5):595–598CrossRef
87.
go back to reference Cao C et al (2017) Superiority of boron, nitrogen and iron ternary doped carbonized graphene oxide-based catalysts for oxygen reduction in microbial fuel cells. Nanoscale 9(10):3537–3546CrossRef Cao C et al (2017) Superiority of boron, nitrogen and iron ternary doped carbonized graphene oxide-based catalysts for oxygen reduction in microbial fuel cells. Nanoscale 9(10):3537–3546CrossRef
88.
go back to reference Chen F et al (2017) Nitrogen-doped graphene oxide for effectively removing boron ions from seawater. Nanoscale 9(1):326–333CrossRef Chen F et al (2017) Nitrogen-doped graphene oxide for effectively removing boron ions from seawater. Nanoscale 9(1):326–333CrossRef
89.
go back to reference Kaloni TP et al (2011) Oxidation of monovacancies in graphene by oxygen molecules. J Mater Chem 21(45):18284–18288CrossRef Kaloni TP et al (2011) Oxidation of monovacancies in graphene by oxygen molecules. J Mater Chem 21(45):18284–18288CrossRef
90.
go back to reference Fan Y et al (2011) Tunable electronic structures of graphene/boron nitride heterobilayers. Appl Phys Lett 98(8):083103CrossRef Fan Y et al (2011) Tunable electronic structures of graphene/boron nitride heterobilayers. Appl Phys Lett 98(8):083103CrossRef
91.
go back to reference Kaloni TP, Cheng YC, Schwingenschlogl U (2012) Electronic structure of superlattices of graphene and hexagonal boron nitride. J Mater Chem 22(3):919–922CrossRef Kaloni TP, Cheng YC, Schwingenschlogl U (2012) Electronic structure of superlattices of graphene and hexagonal boron nitride. J Mater Chem 22(3):919–922CrossRef
92.
go back to reference Cheng YC et al (2011) Origin of the high p-doping in F intercalated graphene on SiC. Appl Phys Lett 99(5):053117CrossRef Cheng YC et al (2011) Origin of the high p-doping in F intercalated graphene on SiC. Appl Phys Lett 99(5):053117CrossRef
93.
go back to reference Ramasubramaniam A, Naveh D, Towe E (2011) Tunable band gaps in bilayer graphene–BN heterostructures. Nano Lett 11(3):1070–1075CrossRef Ramasubramaniam A, Naveh D, Towe E (2011) Tunable band gaps in bilayer graphene–BN heterostructures. Nano Lett 11(3):1070–1075CrossRef
94.
go back to reference Wei X et al (2011) Electron-beam-induced substitutional carbon doping of boron nitride nanosheets, nanoribbons, and nanotubes. ACS Nano 5(4):2916–2922CrossRef Wei X et al (2011) Electron-beam-induced substitutional carbon doping of boron nitride nanosheets, nanoribbons, and nanotubes. ACS Nano 5(4):2916–2922CrossRef
95.
go back to reference McCann E, Abergel DS, Fal’ko VI (2007) The low energy electronic band structure of bilayer graphene. Eur Phys J Spec Top 148(1):91–103CrossRef McCann E, Abergel DS, Fal’ko VI (2007) The low energy electronic band structure of bilayer graphene. Eur Phys J Spec Top 148(1):91–103CrossRef
96.
go back to reference Fujii S et al (2014) Role of edge geometry and chemistry in the electronic properties of graphene nanostructures. Faraday Discuss Fujii S et al (2014) Role of edge geometry and chemistry in the electronic properties of graphene nanostructures. Faraday Discuss
97.
go back to reference Huang PY et al (2011) Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469(7330):389–392CrossRef Huang PY et al (2011) Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469(7330):389–392CrossRef
98.
go back to reference Ayuela A et al (2014) Electronic properties of graphene grain boundaries. New J Phys 16:083018CrossRef Ayuela A et al (2014) Electronic properties of graphene grain boundaries. New J Phys 16:083018CrossRef
99.
go back to reference Denis PA, Ullah S, Sato F (2017) Triple doped monolayer graphene with boron, nitrogen, aluminum, silicon, phosphorus and sulfur. ChemPhysChem 18:1864–1873CrossRef Denis PA, Ullah S, Sato F (2017) Triple doped monolayer graphene with boron, nitrogen, aluminum, silicon, phosphorus and sulfur. ChemPhysChem 18:1864–1873CrossRef
100.
go back to reference Pacheco Sanjuan AA et al (2014) Graphene’s morphology and electronic properties from discrete differential geometry. Phys Rev B 89(12):121403CrossRef Pacheco Sanjuan AA et al (2014) Graphene’s morphology and electronic properties from discrete differential geometry. Phys Rev B 89(12):121403CrossRef
101.
go back to reference Chen K et al (2012) Electronic properties of graphene altered by substrate surface chemistry and externally applied electric field. J Phys Chem C 116(10):6259–6267CrossRef Chen K et al (2012) Electronic properties of graphene altered by substrate surface chemistry and externally applied electric field. J Phys Chem C 116(10):6259–6267CrossRef
102.
go back to reference Kretinin AV et al (2014) Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. Nano Lett 14(6):3270–3276CrossRef Kretinin AV et al (2014) Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. Nano Lett 14(6):3270–3276CrossRef
103.
go back to reference Majidi R (2016) Electronic properties of porous graphene, α-graphyne, graphene-like, and graphyne-like BN sheets. Can J Phys 94(3):305–309CrossRef Majidi R (2016) Electronic properties of porous graphene, α-graphyne, graphene-like, and graphyne-like BN sheets. Can J Phys 94(3):305–309CrossRef
104.
go back to reference Bonaccorso F et al (2010) Graphene photonics and optoelectronics. Nat Photon 4(9):611–622CrossRef Bonaccorso F et al (2010) Graphene photonics and optoelectronics. Nat Photon 4(9):611–622CrossRef
105.
go back to reference Xia F et al (2009) Ultrafast graphene photodetector. Nat Nano 4(12):839–843CrossRef Xia F et al (2009) Ultrafast graphene photodetector. Nat Nano 4(12):839–843CrossRef
106.
go back to reference Wang F et al (2008) Gate-variable optical transitions in graphene. Science 320(5873):206–209CrossRef Wang F et al (2008) Gate-variable optical transitions in graphene. Science 320(5873):206–209CrossRef
107.
go back to reference Rani P, Dubey GS, Jindal VK (2014) DFT study of optical properties of pure and doped graphene. Physica E 62:28–35CrossRef Rani P, Dubey GS, Jindal VK (2014) DFT study of optical properties of pure and doped graphene. Physica E 62:28–35CrossRef
108.
go back to reference Falkovsky LA (2008) Optical properties of graphene. J Phys Conf Ser 129(1):012004CrossRef Falkovsky LA (2008) Optical properties of graphene. J Phys Conf Ser 129(1):012004CrossRef
109.
go back to reference Cheng JL, Salazar C, Sipe JE (2013) Optical properties of functionalized graphene. Phys Rev B 88(4):045438CrossRef Cheng JL, Salazar C, Sipe JE (2013) Optical properties of functionalized graphene. Phys Rev B 88(4):045438CrossRef
110.
go back to reference Eberlein T et al (2008) Plasmon spectroscopy of free-standing graphene films. Phys Rev B 77(23):233406CrossRef Eberlein T et al (2008) Plasmon spectroscopy of free-standing graphene films. Phys Rev B 77(23):233406CrossRef
111.
go back to reference Marini A et al (2009) Yambo: an ab initio tool for excited state calculations. Comput Phys Commun 180(8):1392–1403CrossRef Marini A et al (2009) Yambo: an ab initio tool for excited state calculations. Comput Phys Commun 180(8):1392–1403CrossRef
112.
go back to reference Sedelnikova OV, Bulusheva LG, Okotrub AV (2011) Ab initio study of dielectric response of rippled graphene. J Chem Phys 134(24):244707CrossRef Sedelnikova OV, Bulusheva LG, Okotrub AV (2011) Ab initio study of dielectric response of rippled graphene. J Chem Phys 134(24):244707CrossRef
113.
go back to reference Marinopoulos AG et al (2004) Ab initio study of the optical absorption and wave-vector-dependent dielectric response of graphite. Phys Rev B 69(24):245419CrossRef Marinopoulos AG et al (2004) Ab initio study of the optical absorption and wave-vector-dependent dielectric response of graphite. Phys Rev B 69(24):245419CrossRef
114.
go back to reference Marinopoulos AG et al (2004) Optical absorption and electron energy loss spectra of carbon and boron nitride nanotubes: a first-principles approach. Appl Phys A 78(8):1157–1167CrossRef Marinopoulos AG et al (2004) Optical absorption and electron energy loss spectra of carbon and boron nitride nanotubes: a first-principles approach. Appl Phys A 78(8):1157–1167CrossRef
115.
go back to reference De Corato M et al (2014) Optical properties of bilayer graphene nanoflakes. J Phys Chem C De Corato M et al (2014) Optical properties of bilayer graphene nanoflakes. J Phys Chem C
116.
go back to reference Chernov AI et al (2013) Optical properties of graphene nanoribbons encapsulated in single-walled carbon nanotubes. ACS Nano 7(7):6346–6353CrossRef Chernov AI et al (2013) Optical properties of graphene nanoribbons encapsulated in single-walled carbon nanotubes. ACS Nano 7(7):6346–6353CrossRef
117.
go back to reference Hong T et al (2014) Thermal and optical properties of freestanding flat and stacked single-layer graphene in aqueous media. Appl Phys Lett 104(22):223102CrossRef Hong T et al (2014) Thermal and optical properties of freestanding flat and stacked single-layer graphene in aqueous media. Appl Phys Lett 104(22):223102CrossRef
118.
go back to reference Yang K, Arezoomandan S, Sensale-Rodriguez B (2013) The linear and non-linear THz properties of graphene. Int J Terahertz Sci Technol 6(4):223–233 Yang K, Arezoomandan S, Sensale-Rodriguez B (2013) The linear and non-linear THz properties of graphene. Int J Terahertz Sci Technol 6(4):223–233
119.
go back to reference Bernardi M et al (2016) Optical and electronic properties of two-dimensional layered materials Bernardi M et al (2016) Optical and electronic properties of two-dimensional layered materials
120.
go back to reference Wolf S, Tauber RN (1986) Crystalline defects, thermal processing, and gettering. In: Wolf S, Tauber RN (eds) Silicon processing for the VLSI era, Volume 1—Process technology. Lattice Press, Sunset Beach, CA, pp 36–72 Wolf S, Tauber RN (1986) Crystalline defects, thermal processing, and gettering. In: Wolf S, Tauber RN (eds) Silicon processing for the VLSI era, Volume 1—Process technology. Lattice Press, Sunset Beach, CA, pp 36–72
121.
go back to reference Borca-Tascuic T, Achimov DA, Chen G (1998) Difference between wafer temperature and thermocouple reading during rapid thermal processing. Mater Res Soc Symp Proc 525:103–108CrossRef Borca-Tascuic T, Achimov DA, Chen G (1998) Difference between wafer temperature and thermocouple reading during rapid thermal processing. Mater Res Soc Symp Proc 525:103–108CrossRef
122.
go back to reference Wagner J, Boebel FG (1996) Temperature measurement at RTP facilities—an overview. Mater Res Soc Symp Proc 429:303–308CrossRef Wagner J, Boebel FG (1996) Temperature measurement at RTP facilities—an overview. Mater Res Soc Symp Proc 429:303–308CrossRef
123.
go back to reference Muley SV, Ravindra NM (2014) Emissivity of electronic materials, coatings, and structures. JOM 66:616–636CrossRef Muley SV, Ravindra NM (2014) Emissivity of electronic materials, coatings, and structures. JOM 66:616–636CrossRef
124.
go back to reference Ravindra NM et al (2001) Emissivity measurements and modeling of silicon-related materials: an overview. Int J Thermophys 22(5):1593–1611CrossRef Ravindra NM et al (2001) Emissivity measurements and modeling of silicon-related materials: an overview. Int J Thermophys 22(5):1593–1611CrossRef
125.
go back to reference Kosonocky WF et al (1994) Multiwavelength imaging pyrometer. In: Infrared detectors and focal plane arrays III, Proceedings SPIE, 1994, vol 2225, pp 26–43 Kosonocky WF et al (1994) Multiwavelength imaging pyrometer. In: Infrared detectors and focal plane arrays III, Proceedings SPIE, 1994, vol 2225, pp 26–43
126.
go back to reference Kaplinsky MB et al (1997) Recent advances in the development of a multiwavelength imaging pyrometer. Opt Eng 36(11):3176–3187CrossRef Kaplinsky MB et al (1997) Recent advances in the development of a multiwavelength imaging pyrometer. Opt Eng 36(11):3176–3187CrossRef
127.
go back to reference Han Q et al (2013) Highly sensitive hot electron bolometer based on disordered graphene. Sci Rep 3(3533):6 Han Q et al (2013) Highly sensitive hot electron bolometer based on disordered graphene. Sci Rep 3(3533):6
128.
go back to reference Gu D (2007) Terahertz imaging system using hot electron bolometer technology. In: Electrical Engineering. University of Massachusetts Amherst, Ann Arbor, p 174 Gu D (2007) Terahertz imaging system using hot electron bolometer technology. In: Electrical Engineering. University of Massachusetts Amherst, Ann Arbor, p 174
129.
go back to reference Kubakaddi SS (2009) Interaction of massless Dirac electrons with acoustic phonons in graphene at low temperatures. Phys Rev B 79(7):075417CrossRef Kubakaddi SS (2009) Interaction of massless Dirac electrons with acoustic phonons in graphene at low temperatures. Phys Rev B 79(7):075417CrossRef
130.
go back to reference Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19(01):3–20CrossRef Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19(01):3–20CrossRef
131.
go back to reference Doerner MF, Nix WD (1986) A method for interpreting the data from depth-sensing indentation instruments. J Mater Res 1(04):601–609CrossRef Doerner MF, Nix WD (1986) A method for interpreting the data from depth-sensing indentation instruments. J Mater Res 1(04):601–609CrossRef
132.
go back to reference Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(06):1564–1583CrossRef Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(06):1564–1583CrossRef
133.
go back to reference Cao G (2014) Atomistic studies of mechanical properties of graphene. Polymers 6(9):2404–2432CrossRef Cao G (2014) Atomistic studies of mechanical properties of graphene. Polymers 6(9):2404–2432CrossRef
134.
go back to reference Frank IW et al (2007) Mechanical properties of suspended graphene sheets. J Vac Sci Technol B 25(6):2558–2561CrossRef Frank IW et al (2007) Mechanical properties of suspended graphene sheets. J Vac Sci Technol B 25(6):2558–2561CrossRef
135.
go back to reference Zhang Y, Pan C (2012) Measurements of mechanical properties and number of layers of graphene from nano-indentation. Diam Relat Mater 24:1–5CrossRef Zhang Y, Pan C (2012) Measurements of mechanical properties and number of layers of graphene from nano-indentation. Diam Relat Mater 24:1–5CrossRef
136.
go back to reference Lee J-U, Yoon D, Cheong H (2012) Estimation of Young’s modulus of graphene by Raman spectroscopy. Nano Lett 12(9):4444–4448CrossRef Lee J-U, Yoon D, Cheong H (2012) Estimation of Young’s modulus of graphene by Raman spectroscopy. Nano Lett 12(9):4444–4448CrossRef
137.
go back to reference Lee C et al (2009) Elastic and frictional properties of graphene. Physica Status Solidi (b) 246(11–12):2562–2567CrossRef Lee C et al (2009) Elastic and frictional properties of graphene. Physica Status Solidi (b) 246(11–12):2562–2567CrossRef
138.
go back to reference Lee H et al (2009) Comparison of frictional forces on graphene and graphite. Nanotechnology 20(32):325701 (6 p)CrossRef Lee H et al (2009) Comparison of frictional forces on graphene and graphite. Nanotechnology 20(32):325701 (6 p)CrossRef
139.
go back to reference Lee C et al (2010) Frictional characteristics of atomically thin sheets. Science 328(5974):76–80CrossRef Lee C et al (2010) Frictional characteristics of atomically thin sheets. Science 328(5974):76–80CrossRef
140.
go back to reference Scharfenberg S et al (2011) Probing the mechanical properties of graphene using a corrugated elastic substrate. Appl Phys Lett 98(9):091908CrossRef Scharfenberg S et al (2011) Probing the mechanical properties of graphene using a corrugated elastic substrate. Appl Phys Lett 98(9):091908CrossRef
141.
go back to reference Sansoz F, Gang T (2010) A force-matching method for quantitative hardness measurements by atomic force microscopy with diamond-tipped sapphire cantilevers. Ultramicroscopy 111(1):11–19CrossRef Sansoz F, Gang T (2010) A force-matching method for quantitative hardness measurements by atomic force microscopy with diamond-tipped sapphire cantilevers. Ultramicroscopy 111(1):11–19CrossRef
142.
go back to reference Liu F, Ming P, Li J (2007) Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys Rev B 76(6):064120CrossRef Liu F, Ming P, Li J (2007) Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys Rev B 76(6):064120CrossRef
143.
go back to reference Wei X et al (2009) Nonlinear elastic behavior of graphene: ab initio calculations to continuum description. Physical Review B 80(20):205407CrossRef Wei X et al (2009) Nonlinear elastic behavior of graphene: ab initio calculations to continuum description. Physical Review B 80(20):205407CrossRef
144.
go back to reference Morgan III J (2006) Thomas-Fermi and other density-functional theories. In: Drake G (ed) Springer handbook of atomic, molecular, and optical physics. Springer New York, pp 295–306 Morgan III J (2006) Thomas-Fermi and other density-functional theories. In: Drake G (ed) Springer handbook of atomic, molecular, and optical physics. Springer New York, pp 295–306
145.
go back to reference Adachi H, Mukoyama T, Kawai J (2006) Hartree-Fock-Slater method for materials science: the DV-X Alpha method for design and characterization of materials. Springer, Berlin Adachi H, Mukoyama T, Kawai J (2006) Hartree-Fock-Slater method for materials science: the DV-X Alpha method for design and characterization of materials. Springer, Berlin
146.
go back to reference Dinh PM (2005) Condensed matter theories. Nova Science Publishers, New York Dinh PM (2005) Condensed matter theories. Nova Science Publishers, New York
147.
go back to reference Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):B864–B871CrossRef Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):B864–B871CrossRef
148.
go back to reference Kotochigova S et al (2014) Atomic reference data for electronic structure calculations. NIST: Physical Measurement Laboratory, NIST Kotochigova S et al (2014) Atomic reference data for electronic structure calculations. NIST: Physical Measurement Laboratory, NIST
149.
go back to reference Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133–A1138CrossRef Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133–A1138CrossRef
150.
go back to reference Narasimhan S (2011) The Self Consistent Field ”(SCF) loop and some relevant parameters for quantum—ESPRESSO 2221(5) Narasimhan S (2011) The Self Consistent Field ”(SCF) loop and some relevant parameters for quantum—ESPRESSO 2221(5)
151.
go back to reference Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23(10):5048–5079CrossRef Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23(10):5048–5079CrossRef
152.
go back to reference Bachelet GB, Hamann DR, Schlüter M (1982) Pseudopotentials that work: from H to Pu. Phys Rev B 26(8):4199–4228CrossRef Bachelet GB, Hamann DR, Schlüter M (1982) Pseudopotentials that work: from H to Pu. Phys Rev B 26(8):4199–4228CrossRef
153.
go back to reference Ravindra NM et al (2003) Modeling and simulation of emissivity of silicon-related materials and structures. J Electron Mater 32(10):1052–1058CrossRef Ravindra NM et al (2003) Modeling and simulation of emissivity of silicon-related materials and structures. J Electron Mater 32(10):1052–1058CrossRef
154.
go back to reference Palik ED (1998) Handbook of optical constants of solids. In: Palik ED (ed). Academic Press, Waltham MA, pp 275–798 Palik ED (1998) Handbook of optical constants of solids. In: Palik ED (ed). Academic Press, Waltham MA, pp 275–798
155.
go back to reference Zaitsev AM (2001) Refraction. In: Zaitsev AM (ed) Optical properties of diamond: a data handbook. Springer, Berlin, pp 1–9CrossRef Zaitsev AM (2001) Refraction. In: Zaitsev AM (ed) Optical properties of diamond: a data handbook. Springer, Berlin, pp 1–9CrossRef
156.
go back to reference Weber JW, Calado VE, van de Sanden MCM (2010) Optical constants of graphene measured by spectroscopic ellipsometry. Appl Phys Lett 97(9):091904 (4 p)CrossRef Weber JW, Calado VE, van de Sanden MCM (2010) Optical constants of graphene measured by spectroscopic ellipsometry. Appl Phys Lett 97(9):091904 (4 p)CrossRef
157.
158.
go back to reference Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Clarendon Press, Oxford Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Clarendon Press, Oxford
159.
go back to reference Haile JM (1992) Molecular dynamics simulation: elementary methods. Wiley, Clemson, USA, p 489 Haile JM (1992) Molecular dynamics simulation: elementary methods. Wiley, Clemson, USA, p 489
160.
go back to reference Greiner W, Neise L, Stöcker H (1995) Thermodynamics and statistical mechanics. Classical theoretical physics. Springer, New York Greiner W, Neise L, Stöcker H (1995) Thermodynamics and statistical mechanics. Classical theoretical physics. Springer, New York
161.
go back to reference Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19CrossRef Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19CrossRef
162.
go back to reference Swope WC et al (1982) A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J Chem Phys 76(1):637–649CrossRef Swope WC et al (1982) A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J Chem Phys 76(1):637–649CrossRef
163.
go back to reference Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys 72(4):2384–2393CrossRef Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys 72(4):2384–2393CrossRef
164.
go back to reference Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10(8):569–581CrossRef Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10(8):569–581CrossRef
165.
go back to reference Nika DL et al (2009) Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering. Phys Rev B 79(15):155413CrossRef Nika DL et al (2009) Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering. Phys Rev B 79(15):155413CrossRef
166.
go back to reference Lan J et al (2009) Edge effects on quantum thermal transport in graphene nanoribbons: tight-binding calculations. Phys Rev B 79(11):115401CrossRef Lan J et al (2009) Edge effects on quantum thermal transport in graphene nanoribbons: tight-binding calculations. Phys Rev B 79(11):115401CrossRef
167.
go back to reference Balandin AA et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907CrossRef Balandin AA et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907CrossRef
168.
go back to reference Müller-Plathe F (1997) A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J Chem Phys 106(14):6082–6085CrossRef Müller-Plathe F (1997) A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J Chem Phys 106(14):6082–6085CrossRef
169.
go back to reference Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14(1):33–38CrossRef Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14(1):33–38CrossRef
170.
go back to reference Kan Q et al (2013) Oliver-Pharr indentation method in determining elastic moduli of shape memory alloys—a phase transformable material. J Mech Phys Solids 61(10):2015–2033CrossRef Kan Q et al (2013) Oliver-Pharr indentation method in determining elastic moduli of shape memory alloys—a phase transformable material. J Mech Phys Solids 61(10):2015–2033CrossRef
171.
go back to reference King RB (1987) Elastic analysis of some punch problems for a layered medium. Int J Solid Structures 23(12):1657–1664CrossRef King RB (1987) Elastic analysis of some punch problems for a layered medium. Int J Solid Structures 23(12):1657–1664CrossRef
172.
go back to reference Wang W et al (2014) Nanoindentation experiments for single-layer rectangular graphene films: a molecular dynamics study. Nanoscale Res Lett 9(41):1–8 Wang W et al (2014) Nanoindentation experiments for single-layer rectangular graphene films: a molecular dynamics study. Nanoscale Res Lett 9(41):1–8
173.
go back to reference Kiselev SP, Zhirov EV (2013) Molecular dynamics simulation of deformation and fracture of graphene under uniaxial tension. Phys Mesomech 16(2):125–132CrossRef Kiselev SP, Zhirov EV (2013) Molecular dynamics simulation of deformation and fracture of graphene under uniaxial tension. Phys Mesomech 16(2):125–132CrossRef
174.
go back to reference Zhao H, Min K, Aluru NR (2009) Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett 9(8):3012–3015CrossRef Zhao H, Min K, Aluru NR (2009) Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett 9(8):3012–3015CrossRef
175.
go back to reference Carpio A, Bonilla LL (2008) Periodized discrete elasticity models for defects in graphene. Phys Rev B 78(8):085406CrossRef Carpio A, Bonilla LL (2008) Periodized discrete elasticity models for defects in graphene. Phys Rev B 78(8):085406CrossRef
176.
go back to reference Ghosh S et al (2008) Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl Phys Lett 92(15):151911CrossRef Ghosh S et al (2008) Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl Phys Lett 92(15):151911CrossRef
177.
go back to reference Hu J et al (2009) Frontiers of characterization and metrology for nanoelectronics. In: AIP Conference Proceedings No. 1173. AIP, New York, p 135 Hu J et al (2009) Frontiers of characterization and metrology for nanoelectronics. In: AIP Conference Proceedings No. 1173. AIP, New York, p 135
178.
go back to reference Xu X et al (2014) Length-dependent thermal conductivity in suspended single-layer graphene. Nat Commun 5:3689CrossRef Xu X et al (2014) Length-dependent thermal conductivity in suspended single-layer graphene. Nat Commun 5:3689CrossRef
179.
go back to reference Yamamoto T, Watanabe K, Mii K (2004) Empirical-potential study of phonon transport in graphitic ribbons. Phys Rev B 70(24):245402CrossRef Yamamoto T, Watanabe K, Mii K (2004) Empirical-potential study of phonon transport in graphitic ribbons. Phys Rev B 70(24):245402CrossRef
180.
go back to reference Yang N, Zhang G, Li B (2009) Thermal rectification in asymmetric graphene ribbons. Appl Phys Lett 95(3):033107CrossRef Yang N, Zhang G, Li B (2009) Thermal rectification in asymmetric graphene ribbons. Appl Phys Lett 95(3):033107CrossRef
181.
go back to reference Mortazavi B et al (2012) Nitrogen doping and curvature effects on thermal conductivity of graphene: a non-equilibrium molecular dynamics study. Solid State Commun 152(4):261–264CrossRef Mortazavi B et al (2012) Nitrogen doping and curvature effects on thermal conductivity of graphene: a non-equilibrium molecular dynamics study. Solid State Commun 152(4):261–264CrossRef
182.
go back to reference Carrero-Sánchez JC et al (2006) Biocompatibility and toxicological studies of carbon nanotubes doped with nitrogen. Nano Lett 6(8):1609–1616CrossRef Carrero-Sánchez JC et al (2006) Biocompatibility and toxicological studies of carbon nanotubes doped with nitrogen. Nano Lett 6(8):1609–1616CrossRef
183.
go back to reference Zhang H, Lee G, Cho K (2011) Thermal transport in graphene and effects of vacancy defects. Phys Rev B 84(11):115460CrossRef Zhang H, Lee G, Cho K (2011) Thermal transport in graphene and effects of vacancy defects. Phys Rev B 84(11):115460CrossRef
184.
go back to reference Klemens PG, Pedraza DF (1994) Thermal conductivity of graphite in the basal plane. Carbon 32(4):735–741CrossRef Klemens PG, Pedraza DF (1994) Thermal conductivity of graphite in the basal plane. Carbon 32(4):735–741CrossRef
185.
go back to reference Subrina S, Kotchetkov D (2008) Simulation of heat conduction in suspended graphene flakes of variable shapes. J Nanoelectron Optoelectron 3:1–21CrossRef Subrina S, Kotchetkov D (2008) Simulation of heat conduction in suspended graphene flakes of variable shapes. J Nanoelectron Optoelectron 3:1–21CrossRef
186.
go back to reference Areshkin DA, Gunlycke D, White CT (2006) Ballistic transport in graphene nanostrips in the presence of disorder: importance of edge effects. Nano Lett 7(1):204–210CrossRef Areshkin DA, Gunlycke D, White CT (2006) Ballistic transport in graphene nanostrips in the presence of disorder: importance of edge effects. Nano Lett 7(1):204–210CrossRef
187.
go back to reference Ouyang Y, Guo J (2009) A theoretical study on thermoelectric properties of graphene nanoribbons. Appl Phys Lett 94(26):093104CrossRef Ouyang Y, Guo J (2009) A theoretical study on thermoelectric properties of graphene nanoribbons. Appl Phys Lett 94(26):093104CrossRef
188.
go back to reference Karamitaheri H et al (2012) Engineering enhanced thermoelectric properties in zigzag graphene nanoribbons. J Appl Phys 111(5):093104CrossRef Karamitaheri H et al (2012) Engineering enhanced thermoelectric properties in zigzag graphene nanoribbons. J Appl Phys 111(5):093104CrossRef
189.
go back to reference Mousavi H, Moradian R (2011) Nitrogen and boron doping effects on the electrical conductivity of graphene and nanotube. Solid State Sci 13(8):1459–1464CrossRef Mousavi H, Moradian R (2011) Nitrogen and boron doping effects on the electrical conductivity of graphene and nanotube. Solid State Sci 13(8):1459–1464CrossRef
190.
go back to reference Sankeshwar NS, Kubakaddi SS, Mulimani BG (2013) Thermoelectric power in graphene. In: Aliofkhazraei DM (ed) Advances in graphene science. InTech, pp 217–271 Sankeshwar NS, Kubakaddi SS, Mulimani BG (2013) Thermoelectric power in graphene. In: Aliofkhazraei DM (ed) Advances in graphene science. InTech, pp 217–271
191.
go back to reference Bahamon D, Pereira A, Schulz P (2011) Third edge for a graphene nanoribbon: a tight-binding model calculation. Phys Rev B 83(7) Bahamon D, Pereira A, Schulz P (2011) Third edge for a graphene nanoribbon: a tight-binding model calculation. Phys Rev B 83(7)
192.
go back to reference Carr LD, Lusk MT (2010) Defect engineering: graphene gets designer defects. Nat Nano 5(5):316–317CrossRef Carr LD, Lusk MT (2010) Defect engineering: graphene gets designer defects. Nat Nano 5(5):316–317CrossRef
193.
go back to reference Avouris P (2010) Graphene: electronic and photonic properties and devices. Nano Lett 10(11):4285–4294CrossRef Avouris P (2010) Graphene: electronic and photonic properties and devices. Nano Lett 10(11):4285–4294CrossRef
194.
go back to reference Jun Y et al (2012) Dual-gated bilayer graphene hot-electron bolometer. Nat Nanotechnol 7(7):472–478CrossRef Jun Y et al (2012) Dual-gated bilayer graphene hot-electron bolometer. Nat Nanotechnol 7(7):472–478CrossRef
196.
go back to reference Wang M et al (2013) A platform for large-scale graphene electronics—CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride. Adv Mater 25(19):2746–2752CrossRef Wang M et al (2013) A platform for large-scale graphene electronics—CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride. Adv Mater 25(19):2746–2752CrossRef
197.
go back to reference Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186CrossRef Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186CrossRef
198.
go back to reference Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868CrossRef Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868CrossRef
199.
go back to reference McCann E, Abergel DSL, Fal’ko VI (2007) Electrons in bilayer graphene. Solid State Commun 143(1–2):110–115CrossRef McCann E, Abergel DSL, Fal’ko VI (2007) Electrons in bilayer graphene. Solid State Commun 143(1–2):110–115CrossRef
200.
go back to reference Kravets VG et al (2010) Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption. Phys Rev B 81(15):155413CrossRef Kravets VG et al (2010) Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption. Phys Rev B 81(15):155413CrossRef
201.
go back to reference Yang L et al (2009) Excitonic effects on the optical response of graphene and bilayer graphene. Phys Rev Lett 103(18):186802CrossRef Yang L et al (2009) Excitonic effects on the optical response of graphene and bilayer graphene. Phys Rev Lett 103(18):186802CrossRef
202.
go back to reference Wu L et al (2010) Highly sensitive graphene biosensors based on surface plasmon resonance. Opt Express 18(14):14395–14400CrossRef Wu L et al (2010) Highly sensitive graphene biosensors based on surface plasmon resonance. Opt Express 18(14):14395–14400CrossRef
203.
go back to reference Neuer G (1992) Emissivity measurements on graphite and composite materials in visible and infrared spectral range. In: EETI (ed) Quantitative infrared thermography (QIRT) 92. QIRT Archives, Paris Neuer G (1992) Emissivity measurements on graphite and composite materials in visible and infrared spectral range. In: EETI (ed) Quantitative infrared thermography (QIRT) 92. QIRT Archives, Paris
204.
go back to reference Zandiatashbar A et al (2014) Effect of defects on the intrinsic strength and stiffness of graphene. Nat Commun 5:3186CrossRef Zandiatashbar A et al (2014) Effect of defects on the intrinsic strength and stiffness of graphene. Nat Commun 5:3186CrossRef
205.
go back to reference Chen J, Zhang G, Li B (2013) Substrate coupling suppresses size dependence of thermal conductivity in supported graphene. Nanoscale 5(2):532–536CrossRef Chen J, Zhang G, Li B (2013) Substrate coupling suppresses size dependence of thermal conductivity in supported graphene. Nanoscale 5(2):532–536CrossRef
206.
go back to reference Zhong W-R et al (2011) Chirality and thickness-dependent thermal conductivity of few-layer graphene: a molecular dynamics study. Appl Phys Lett 98(11):113107 (4 p)CrossRef Zhong W-R et al (2011) Chirality and thickness-dependent thermal conductivity of few-layer graphene: a molecular dynamics study. Appl Phys Lett 98(11):113107 (4 p)CrossRef
207.
go back to reference Guo Z, Zhang D, Gong X-G (2009) Thermal conductivity of graphene nanoribbons. Appl Phys Lett 95(16):163103CrossRef Guo Z, Zhang D, Gong X-G (2009) Thermal conductivity of graphene nanoribbons. Appl Phys Lett 95(16):163103CrossRef
208.
go back to reference Mortazavi B, Ahzi S (2012) Molecular dynamics study on the thermal conductivity and mechanical properties of boron doped graphene. Solid State Commun 152(15):1503–1507CrossRef Mortazavi B, Ahzi S (2012) Molecular dynamics study on the thermal conductivity and mechanical properties of boron doped graphene. Solid State Commun 152(15):1503–1507CrossRef
209.
go back to reference Cooper AJ et al (2014) Single stage electrochemical exfoliation method for the production of few-layer graphene via intercalation of tetraalkylammonium cations. Carbon 66:340–350CrossRef Cooper AJ et al (2014) Single stage electrochemical exfoliation method for the production of few-layer graphene via intercalation of tetraalkylammonium cations. Carbon 66:340–350CrossRef
210.
go back to reference Stankovich S et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565CrossRef Stankovich S et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565CrossRef
211.
go back to reference Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50(9):3210–3228CrossRef Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50(9):3210–3228CrossRef
212.
go back to reference Guermoune A et al (2011) Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon 49(13):4204–4210CrossRef Guermoune A et al (2011) Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon 49(13):4204–4210CrossRef
213.
go back to reference Liu W et al (2011) Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition. Carbon 49(13):4122–4130CrossRef Liu W et al (2011) Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition. Carbon 49(13):4122–4130CrossRef
214.
go back to reference Dong X et al (2011) Growth of large-sized graphene thin-films by liquid precursor-based chemical vapor deposition under atmospheric pressure. Carbon 49(11):3672–3678CrossRef Dong X et al (2011) Growth of large-sized graphene thin-films by liquid precursor-based chemical vapor deposition under atmospheric pressure. Carbon 49(11):3672–3678CrossRef
215.
go back to reference Wu W et al (2010) Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing. Sens Actuators B Chem 150(1):296–300CrossRef Wu W et al (2010) Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing. Sens Actuators B Chem 150(1):296–300CrossRef
216.
go back to reference Liao L, Duan X (2010) Graphene–dielectric integration for graphene transistors. Mater Sci Eng R Rep 70(3):354–370CrossRef Liao L, Duan X (2010) Graphene–dielectric integration for graphene transistors. Mater Sci Eng R Rep 70(3):354–370CrossRef
217.
go back to reference Kuilla T et al (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35(11):1350–1375CrossRef Kuilla T et al (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35(11):1350–1375CrossRef
218.
go back to reference Quan Q et al (2017) Graphene and its derivatives as versatile templates for materials synthesis and functional applications. Nanoscale 9(7):2398–2416CrossRef Quan Q et al (2017) Graphene and its derivatives as versatile templates for materials synthesis and functional applications. Nanoscale 9(7):2398–2416CrossRef
219.
go back to reference Palla P et al (2016) Bandgap engineered graphene and hexagonal boron nitride for resonant tunnelling diode. Bull Mater Sci 39(6):1441–1451CrossRef Palla P et al (2016) Bandgap engineered graphene and hexagonal boron nitride for resonant tunnelling diode. Bull Mater Sci 39(6):1441–1451CrossRef
220.
go back to reference Eftekhari A, Garcia H (2017) The necessity of structural irregularities for the chemical applications of graphene. Mater Today Chem 4:1–16CrossRef Eftekhari A, Garcia H (2017) The necessity of structural irregularities for the chemical applications of graphene. Mater Today Chem 4:1–16CrossRef
221.
go back to reference Tang L et al (2017) Functionalization of graphene by size and doping control and its optoelectronic applications Tang L et al (2017) Functionalization of graphene by size and doping control and its optoelectronic applications
222.
go back to reference Shi S et al (2014) Surface engineering of graphene-based nanomaterials for biomedical applications. Bioconjug Chem 25(9):1609–1619CrossRef Shi S et al (2014) Surface engineering of graphene-based nanomaterials for biomedical applications. Bioconjug Chem 25(9):1609–1619CrossRef
223.
go back to reference Qu L et al (2017) A versatile graphene foil. J Mater Chem A Qu L et al (2017) A versatile graphene foil. J Mater Chem A
224.
go back to reference Junqi X et al (2017) Large-area, high-quality monolayer graphene from polystyrene at atmospheric pressure. Nanotechnology 28(15):155605CrossRef Junqi X et al (2017) Large-area, high-quality monolayer graphene from polystyrene at atmospheric pressure. Nanotechnology 28(15):155605CrossRef
225.
go back to reference Kojima E et al (2017) Magnetic field sensor of graphene for automotive applications. SAE International Kojima E et al (2017) Magnetic field sensor of graphene for automotive applications. SAE International
226.
go back to reference Marini A, Cox JD, García de Abajo FJ (2017) Theory of graphene saturable absorption. Phys Rev B 95(12):125408CrossRef Marini A, Cox JD, García de Abajo FJ (2017) Theory of graphene saturable absorption. Phys Rev B 95(12):125408CrossRef
227.
go back to reference Bystrov VS et al (2017) Graphene/graphene oxide and polyvinylidene fluoride polymer ferroelectric composites for multifunctional applications. Ferroelectrics 509(1):124–142CrossRef Bystrov VS et al (2017) Graphene/graphene oxide and polyvinylidene fluoride polymer ferroelectric composites for multifunctional applications. Ferroelectrics 509(1):124–142CrossRef
228.
go back to reference Ruhl G et al (2017) The integration of graphene into microelectronic devices. Beilstein J Nanotechnol 8:1056–1064CrossRef Ruhl G et al (2017) The integration of graphene into microelectronic devices. Beilstein J Nanotechnol 8:1056–1064CrossRef
229.
go back to reference Dubey N et al (2015) Graphene: a versatile carbon-based material for bone tissue engineering. Stem Cells Int 2015:12CrossRef Dubey N et al (2015) Graphene: a versatile carbon-based material for bone tissue engineering. Stem Cells Int 2015:12CrossRef
Metadata
Title
Graphene: Properties, Synthesis, and Applications
Authors
Sarang Muley
Nuggehalli M. Ravindra
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-02171-9_5