Skip to main content
Top
Published in: Journal of Materials Science 19/2018

25-06-2018 | Chemical routes to materials

Graphene/ZnO nanocomposite with seamless interface renders photoluminescence quenching and photocatalytic activity enhancement

Authors: Huihui Liu, Miaomiao Xiang, Xiang Shao

Published in: Journal of Materials Science | Issue 19/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The interface of graphene (G) and oxide can significantly influence the properties and/or applications of the binary system. However, it is usually beyond controllability during the conventional physical intermixing and/or solvothermal preparations. In this article, by directly growing nanocrystalline graphene films on the ZnO nanocrystals through a medium-temperature chemical vapor deposition method utilizing C2H2 as the carbon source, we successfully achieved a G/ZnO binary structure with a uniform and contamination-free G/oxide interface. The fabricated G/ZnO powders not only demonstrated a clear charge transfer between graphene and ZnO that leads to photoluminescence quenching, but also manifested an enhanced activity in the photocatalytic degradation of methylene blue when the graphene thickness is optimized. This work has demonstrated the essential significance of the interface control for the functionality of the graphene/semiconductor binary systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Arnold MS, Avouris P, Pan ZW, Wang ZL (2003) Field-effect transistors based on single semiconducting oxide nanobelts. J Phys Chem B 107:659–663CrossRef Arnold MS, Avouris P, Pan ZW, Wang ZL (2003) Field-effect transistors based on single semiconducting oxide nanobelts. J Phys Chem B 107:659–663CrossRef
2.
go back to reference Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichibu SF, Fuke S, Segawa Y, Ohno H, Koinuma H, Kawasaki M (2005) Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat Mater 4:42–46CrossRef Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichibu SF, Fuke S, Segawa Y, Ohno H, Koinuma H, Kawasaki M (2005) Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat Mater 4:42–46CrossRef
3.
go back to reference Koida T, Chichibu SF, Uedono A (2003) Correlation between the photoluminescence lifetime and defect density in bulk and epitaxial ZnO. Appl Phys Lett 82:532–534CrossRef Koida T, Chichibu SF, Uedono A (2003) Correlation between the photoluminescence lifetime and defect density in bulk and epitaxial ZnO. Appl Phys Lett 82:532–534CrossRef
4.
go back to reference Kargar A, Jing Y, Kim SJ, Riley CT, Pan X, Wang D (2013) ZnO/CuO heterojunction branched nanowires for photoelectrochemical hydrogen generation. ACS Nano 7:11112–11120CrossRef Kargar A, Jing Y, Kim SJ, Riley CT, Pan X, Wang D (2013) ZnO/CuO heterojunction branched nanowires for photoelectrochemical hydrogen generation. ACS Nano 7:11112–11120CrossRef
5.
go back to reference Fujitani T, Nakamura J (1998) The effect of ZnO in methanol synthesis catalysts on Cu dispersion and the specific activity. Catal Lett 56:119–124CrossRef Fujitani T, Nakamura J (1998) The effect of ZnO in methanol synthesis catalysts on Cu dispersion and the specific activity. Catal Lett 56:119–124CrossRef
6.
go back to reference Ong CB, Ng LY, Mohammad AW (2018) A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew Sust Energ Rev 81:536–551CrossRef Ong CB, Ng LY, Mohammad AW (2018) A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew Sust Energ Rev 81:536–551CrossRef
7.
go back to reference Zhai BG, Huang YM (2016) A review on recent progress in ZnO based photocatalysts. Optoelectron Mater 1:22–36 Zhai BG, Huang YM (2016) A review on recent progress in ZnO based photocatalysts. Optoelectron Mater 1:22–36
8.
go back to reference Qi K, Cheng B, Yu J, Ho W (2017) Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J Alloys Compd 727:792–820CrossRef Qi K, Cheng B, Yu J, Ho W (2017) Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J Alloys Compd 727:792–820CrossRef
9.
go back to reference Li B, Cao H (2011) ZnO@graphene composite with enhanced performance for the removal of dye from water. J Mater Chem 21:3346–3349CrossRef Li B, Cao H (2011) ZnO@graphene composite with enhanced performance for the removal of dye from water. J Mater Chem 21:3346–3349CrossRef
10.
go back to reference Panthi G, Park M, Kim HY, Lee SY, Park SJ (2015) Electrospun ZnO hybrid nanofibers for photodegradation of wastewater containing organic dyes: a review. J Ind Eng Chem 21:26–35CrossRef Panthi G, Park M, Kim HY, Lee SY, Park SJ (2015) Electrospun ZnO hybrid nanofibers for photodegradation of wastewater containing organic dyes: a review. J Ind Eng Chem 21:26–35CrossRef
11.
go back to reference Fu D, Han G, Chang Y, Dong J (2012) The synthesis and properties of ZnO–graphene nano hybrid for photodegradation of organic pollutant in water. Mater Chem Phys 132:673–681CrossRef Fu D, Han G, Chang Y, Dong J (2012) The synthesis and properties of ZnO–graphene nano hybrid for photodegradation of organic pollutant in water. Mater Chem Phys 132:673–681CrossRef
12.
go back to reference Luo X, Lou Z, Wang L, Zheng X, Zhang T (2014) Fabrication of flower-like ZnO nanosheet and nanorod-assembled hierarchical structures and their enhanced performance in gas sensors. N J Chem 38:84–89CrossRef Luo X, Lou Z, Wang L, Zheng X, Zhang T (2014) Fabrication of flower-like ZnO nanosheet and nanorod-assembled hierarchical structures and their enhanced performance in gas sensors. N J Chem 38:84–89CrossRef
13.
go back to reference Kim HW, Kwon YJ, Mirzaei A, Kang SY, Choi MS, Bang JH, Kim SS (2017) Synthesis of zinc oxide semiconductors-graphene nanocomposites by microwave irradiation for application to gas sensors. Sens Actuat B 249:590–601CrossRef Kim HW, Kwon YJ, Mirzaei A, Kang SY, Choi MS, Bang JH, Kim SS (2017) Synthesis of zinc oxide semiconductors-graphene nanocomposites by microwave irradiation for application to gas sensors. Sens Actuat B 249:590–601CrossRef
14.
go back to reference Zhu L, Zeng W (2017) Room-temperature gas sensing of ZnO-based gas sensor: a review. Sens Actuat A 267:242–261CrossRef Zhu L, Zeng W (2017) Room-temperature gas sensing of ZnO-based gas sensor: a review. Sens Actuat A 267:242–261CrossRef
15.
go back to reference Zhu J, Yang D, Yin Z, Yan Q, Zhang H (2014) Graphene and graphene-based materials for energy storage applications. Small 10:3480–3498CrossRef Zhu J, Yang D, Yin Z, Yan Q, Zhang H (2014) Graphene and graphene-based materials for energy storage applications. Small 10:3480–3498CrossRef
16.
go back to reference Soci C, Zhang A, Xiang B, Dayeh SA, Aplin DPR, Park J, Bao XY, Lo YH, Wang D (2007) ZnO nanowire UV photodetectors with high internal gain. Nano Lett 7:1003–1009CrossRef Soci C, Zhang A, Xiang B, Dayeh SA, Aplin DPR, Park J, Bao XY, Lo YH, Wang D (2007) ZnO nanowire UV photodetectors with high internal gain. Nano Lett 7:1003–1009CrossRef
17.
go back to reference Han C, Yang MQ, Weng B, Xu YJ (2014) Improving the photocatalytic activity and anti-photocorrosion of semiconductor ZnO by coupling with versatile carbon. Phys Chem Chem Phys 16:16891–16903CrossRef Han C, Yang MQ, Weng B, Xu YJ (2014) Improving the photocatalytic activity and anti-photocorrosion of semiconductor ZnO by coupling with versatile carbon. Phys Chem Chem Phys 16:16891–16903CrossRef
18.
go back to reference Chen D, Wang D, Ge Q, Ping G, Fan M, Qin L, Bai L, Lv C, Shu K (2015) Graphene-wrapped ZnO nanospheres as a photocatalyst for high performance photocatalysis. Thin Solid Films 574:1–9CrossRef Chen D, Wang D, Ge Q, Ping G, Fan M, Qin L, Bai L, Lv C, Shu K (2015) Graphene-wrapped ZnO nanospheres as a photocatalyst for high performance photocatalysis. Thin Solid Films 574:1–9CrossRef
19.
go back to reference Shin DM, Tsege EL, Kang SH, Seung W, Kim SW, Kim HK, Hong SW, Hwang YH (2015) Freestanding ZnO nanorod/graphene/ZnO nanorod epitaxial double heterostructure for improved piezoelectric nanogenerators. Nano Energy 12:268–277CrossRef Shin DM, Tsege EL, Kang SH, Seung W, Kim SW, Kim HK, Hong SW, Hwang YH (2015) Freestanding ZnO nanorod/graphene/ZnO nanorod epitaxial double heterostructure for improved piezoelectric nanogenerators. Nano Energy 12:268–277CrossRef
20.
go back to reference Cai R, Wu J, Sun L, Liu Y, Fang T, Zhou S, Li S, Wang Y, Guo L, Zhao C, Wei A (2016) 3D graphene/ZnO composite with enhanced photocatalytic activity. Mater Des 90:839–844CrossRef Cai R, Wu J, Sun L, Liu Y, Fang T, Zhou S, Li S, Wang Y, Guo L, Zhao C, Wei A (2016) 3D graphene/ZnO composite with enhanced photocatalytic activity. Mater Des 90:839–844CrossRef
21.
go back to reference Wei A, Xiong L, Sun L, Liu Y, Li W, Lai W, Liu X, Wang L, Huang W, Dong X (2013) One-step electrochemical synthesis of a graphene–ZnO hybrid for improved photocatalytic activity. Mater Res Bull 48:2855–2860CrossRef Wei A, Xiong L, Sun L, Liu Y, Li W, Lai W, Liu X, Wang L, Huang W, Dong X (2013) One-step electrochemical synthesis of a graphene–ZnO hybrid for improved photocatalytic activity. Mater Res Bull 48:2855–2860CrossRef
22.
go back to reference Herring NP, Almahoudi SH, Olson CR, El-Shall MS (2012) Enhanced photocatalytic activity of ZnO–graphene nanocomposites prepared by microwave synthesis. J Nanopart Res 14:1277CrossRef Herring NP, Almahoudi SH, Olson CR, El-Shall MS (2012) Enhanced photocatalytic activity of ZnO–graphene nanocomposites prepared by microwave synthesis. J Nanopart Res 14:1277CrossRef
23.
go back to reference Luo QP, Yu XY, Lei BX, Chen HY, Kuang DB, Su CY (2012) Reduced graphene oxide-hierarchical ZnO hollow sphere composites with enhanced photocurrent and photocatalytic activity. J Phys Chem C 16:8111–8117CrossRef Luo QP, Yu XY, Lei BX, Chen HY, Kuang DB, Su CY (2012) Reduced graphene oxide-hierarchical ZnO hollow sphere composites with enhanced photocurrent and photocatalytic activity. J Phys Chem C 16:8111–8117CrossRef
24.
go back to reference Chen TT, Chang IC, Yang MH, Chiu HT, Lee CY (2013) The exceptional photo-catalytic activity of ZnO/RGO composite via metal and oxygen vacancies. Appl Catal B Environ 142:442–449CrossRef Chen TT, Chang IC, Yang MH, Chiu HT, Lee CY (2013) The exceptional photo-catalytic activity of ZnO/RGO composite via metal and oxygen vacancies. Appl Catal B Environ 142:442–449CrossRef
25.
go back to reference Wu X, Wen L, Lv K, Deng K, Tang D, Ye H, Du D, Liu S, Li M (2015) Fabrication of ZnO/graphene flake-like photocatalyst with enhanced photoreactivity. Appl Surf Sci 358:130–136CrossRef Wu X, Wen L, Lv K, Deng K, Tang D, Ye H, Du D, Liu S, Li M (2015) Fabrication of ZnO/graphene flake-like photocatalyst with enhanced photoreactivity. Appl Surf Sci 358:130–136CrossRef
26.
go back to reference Rokhsat E, Akhavan O (2016) Improving the photocatalytic activity of graphene oxide/ZnO nanorod films by UV irradiation. Appl Surf Sci 371:590–595CrossRef Rokhsat E, Akhavan O (2016) Improving the photocatalytic activity of graphene oxide/ZnO nanorod films by UV irradiation. Appl Surf Sci 371:590–595CrossRef
27.
go back to reference Bai X, Sun C, Liu D, Luo X, Li D, Wang J, Wang N, Chang X, Zong R, Zhu Y (2017) Photocatalytic degradation of deoxynivalenol using graphene/ZnO hybrids in aqueous suspension. Appl Catal B Environ 204:11–20CrossRef Bai X, Sun C, Liu D, Luo X, Li D, Wang J, Wang N, Chang X, Zong R, Zhu Y (2017) Photocatalytic degradation of deoxynivalenol using graphene/ZnO hybrids in aqueous suspension. Appl Catal B Environ 204:11–20CrossRef
28.
go back to reference Marlinda AR, Huang NM, Muhamad MR, An’amt MN, Chang BYS, Yusoff N, Harrison I, Lim HN, Chia CH, Vijay Kumar S (2012) Highly efficient preparation of ZnO nanorods decorated reduced graphene oxide nanocomposites. Mater Lett 80:9–12CrossRef Marlinda AR, Huang NM, Muhamad MR, An’amt MN, Chang BYS, Yusoff N, Harrison I, Lim HN, Chia CH, Vijay Kumar S (2012) Highly efficient preparation of ZnO nanorods decorated reduced graphene oxide nanocomposites. Mater Lett 80:9–12CrossRef
29.
go back to reference Park KW, Jung JH (2012) Spectroscopic and electrochemical characteristics of a carboxylated graphene–ZnO composites. J Power Sour 199:379–385CrossRef Park KW, Jung JH (2012) Spectroscopic and electrochemical characteristics of a carboxylated graphene–ZnO composites. J Power Sour 199:379–385CrossRef
30.
go back to reference Zheng WT, Ho YM, Tian HW, Wen M, Qi JL, Li YA (2010) Field emission from a composite of graphene sheets and ZnO nanowires. J Phys Chem C 113:9164–9168CrossRef Zheng WT, Ho YM, Tian HW, Wen M, Qi JL, Li YA (2010) Field emission from a composite of graphene sheets and ZnO nanowires. J Phys Chem C 113:9164–9168CrossRef
31.
go back to reference Chung K, Lee CH, Yi GC (2010) Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices. Science 330:655–657CrossRef Chung K, Lee CH, Yi GC (2010) Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices. Science 330:655–657CrossRef
32.
go back to reference Kumar B, Lee KY, Park HK, Chae SJ, Lee YH, Kim SW (2011) Controlled growth of semiconducting nanowire, nanowall, and hybrid nanostructures on graphene for piezoelectric nanogenerators. ACS Nano 5:4197–4204CrossRef Kumar B, Lee KY, Park HK, Chae SJ, Lee YH, Kim SW (2011) Controlled growth of semiconducting nanowire, nanowall, and hybrid nanostructures on graphene for piezoelectric nanogenerators. ACS Nano 5:4197–4204CrossRef
33.
go back to reference Biroju RK, Giri PK, Dhara S, Imakita K, Fujii M (2013) Graphene-assisted controlled growth of highly aligned ZnO nanorods and nanoribbons: growth mechanism and photoluminescence properties. ACS Appl Mater Int 6:377–387CrossRef Biroju RK, Giri PK, Dhara S, Imakita K, Fujii M (2013) Graphene-assisted controlled growth of highly aligned ZnO nanorods and nanoribbons: growth mechanism and photoluminescence properties. ACS Appl Mater Int 6:377–387CrossRef
34.
go back to reference Biroju RK, Tilak N, Rajender G, Dhara S, Giri PK (2015) Catalyst free growth of ZnO nanowires on graphene and graphene oxide and its enhanced photoluminescence and photoresponse. Nanotechnology 26:145601CrossRef Biroju RK, Tilak N, Rajender G, Dhara S, Giri PK (2015) Catalyst free growth of ZnO nanowires on graphene and graphene oxide and its enhanced photoluminescence and photoresponse. Nanotechnology 26:145601CrossRef
35.
go back to reference Hong HK, Jo J, Hwang D, Lee J, Kim NY, Son S, Kim JH, Jin MJ, Jun YC, Erni R, Kwak SK, Yoo JW, Lee Z (2017) Atomic scale study on growth and heteroepitaxy of ZnO monolayer on graphene. Nano Lett 17:120–127CrossRef Hong HK, Jo J, Hwang D, Lee J, Kim NY, Son S, Kim JH, Jin MJ, Jun YC, Erni R, Kwak SK, Yoo JW, Lee Z (2017) Atomic scale study on growth and heteroepitaxy of ZnO monolayer on graphene. Nano Lett 17:120–127CrossRef
36.
go back to reference Cao HL, Qian XF, Gong Q, Du WM, Ma XD, Zhu ZK (2006) Shape-and size-controlled synthesis of nanometre ZnO from a simple solution route at room temperature. Nanotechnology 17:3632–3636CrossRef Cao HL, Qian XF, Gong Q, Du WM, Ma XD, Zhu ZK (2006) Shape-and size-controlled synthesis of nanometre ZnO from a simple solution route at room temperature. Nanotechnology 17:3632–3636CrossRef
37.
go back to reference Thein MT, Pung SY, Aziz A, Itoh M (2015) Stacked ZnO nanorods synthesized by solution precipitation method and their photocatalytic activity study. J Sol-Gel Sci Technol 74:260–271CrossRef Thein MT, Pung SY, Aziz A, Itoh M (2015) Stacked ZnO nanorods synthesized by solution precipitation method and their photocatalytic activity study. J Sol-Gel Sci Technol 74:260–271CrossRef
38.
go back to reference Chen Z, Zhang N, Xu YJ (2013) Synthesis of graphene–ZnO nanorod nanocomposites with improved photoactivity and anti-photocorrosion. CrystEngComm 15:3022–3030CrossRef Chen Z, Zhang N, Xu YJ (2013) Synthesis of graphene–ZnO nanorod nanocomposites with improved photoactivity and anti-photocorrosion. CrystEngComm 15:3022–3030CrossRef
39.
go back to reference Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solide State Commun 143:47–57CrossRef Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solide State Commun 143:47–57CrossRef
40.
go back to reference Ramesha GK, Sampath S (2009) Electrochemical reduction of oriented graphene oxide films: an in situ Raman spectroelectrochemical study. J Phys Chem C 113:7985–7989CrossRef Ramesha GK, Sampath S (2009) Electrochemical reduction of oriented graphene oxide films: an in situ Raman spectroelectrochemical study. J Phys Chem C 113:7985–7989CrossRef
41.
go back to reference Liu H, Chen Z, Zhang L, Zhu D, Zhang Q, Luo Y, Shao X (2018) Graphene grown on anatase-TiO2 nanosheets: enhanced photocatalytic activity on basis of a well-controlled interface. J Phys Chem C 122:6388–6396CrossRef Liu H, Chen Z, Zhang L, Zhu D, Zhang Q, Luo Y, Shao X (2018) Graphene grown on anatase-TiO2 nanosheets: enhanced photocatalytic activity on basis of a well-controlled interface. J Phys Chem C 122:6388–6396CrossRef
42.
go back to reference Wang J, Chen Z, Chen B (2014) Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets. Environ Sci Technol 48:4817–4825CrossRef Wang J, Chen Z, Chen B (2014) Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets. Environ Sci Technol 48:4817–4825CrossRef
43.
go back to reference Zhou Y, Bao Q, Tang LAL, Zhong Y, Loh KP (2009) Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem Mater 21:2950–2956CrossRef Zhou Y, Bao Q, Tang LAL, Zhong Y, Loh KP (2009) Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem Mater 21:2950–2956CrossRef
44.
go back to reference Jawhari T, Roid A, Casado J (1995) Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 33:1561–1565CrossRef Jawhari T, Roid A, Casado J (1995) Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 33:1561–1565CrossRef
45.
go back to reference Cancado LG, Takai K, Enoki T, Endo M, Kim YA, Mizusaki H, Jorio A, Coelho LN, Magalhães-Paniago R, Pimenta MA (2006) General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl Phys Lett 88:163106CrossRef Cancado LG, Takai K, Enoki T, Endo M, Kim YA, Mizusaki H, Jorio A, Coelho LN, Magalhães-Paniago R, Pimenta MA (2006) General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl Phys Lett 88:163106CrossRef
46.
go back to reference Williams G, Kamat PV (2009) Graphene − semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir 25:13869–13873CrossRef Williams G, Kamat PV (2009) Graphene − semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir 25:13869–13873CrossRef
47.
go back to reference Kubelka P, Munk F (1931) An article on optics of paint layers. Z Tech Phys 12:593–601 Kubelka P, Munk F (1931) An article on optics of paint layers. Z Tech Phys 12:593–601
48.
go back to reference Ahmad M, Ahmed E, Hong ZL, Xu JF, Khalid NR, Elhissi A, Ahmed W (2013) A facile one-step approach to synthesizing ZnO/graphene composites for enhanced degradation of methylene blue under visible light. Appl Surf Sci 274:273–281CrossRef Ahmad M, Ahmed E, Hong ZL, Xu JF, Khalid NR, Elhissi A, Ahmed W (2013) A facile one-step approach to synthesizing ZnO/graphene composites for enhanced degradation of methylene blue under visible light. Appl Surf Sci 274:273–281CrossRef
49.
go back to reference Liu S, Wang Z, Zhang Y, Dong Z, Zhang T (2015) Preparation of zinc oxide nanoparticle–reduced graphene oxide–gold nanoparticle hybrids for detection of NO2. RSC Adv 5:91760–91765CrossRef Liu S, Wang Z, Zhang Y, Dong Z, Zhang T (2015) Preparation of zinc oxide nanoparticle–reduced graphene oxide–gold nanoparticle hybrids for detection of NO2. RSC Adv 5:91760–91765CrossRef
50.
go back to reference Jin JE, Lee JH, Choi JH, Jang HK, Na J, Whang D, Kim DH, Kim GT (2016) Catalytic etching of monolayer graphene at low temperature via carbon oxidation. Phys Chem Chem Phys 18:101–109CrossRef Jin JE, Lee JH, Choi JH, Jang HK, Na J, Whang D, Kim DH, Kim GT (2016) Catalytic etching of monolayer graphene at low temperature via carbon oxidation. Phys Chem Chem Phys 18:101–109CrossRef
51.
go back to reference Deng D, Martin ST, Ramanathan S (2010) Synthesis and characterization of one-dimensional flat ZnO nanotower arrays as high-efficiency adsorbents for the photocatalytic remediation of water pollutants Nanoscale 2:2685–2691 Deng D, Martin ST, Ramanathan S (2010) Synthesis and characterization of one-dimensional flat ZnO nanotower arrays as high-efficiency adsorbents for the photocatalytic remediation of water pollutants Nanoscale 2:2685–2691
52.
go back to reference Park SM, Ikegami T, Ebihara K (2006) Effects of substrate temperature on the properties of Ga-doped ZnO by pulsed laser deposition. Thin Solid Films 513:90–94CrossRef Park SM, Ikegami T, Ebihara K (2006) Effects of substrate temperature on the properties of Ga-doped ZnO by pulsed laser deposition. Thin Solid Films 513:90–94CrossRef
53.
go back to reference Zhang J, Gao D, Yang G, Zhang J, Shi Z, Zhang Z, Zhu Z, Xue D (2011) Synthesis and magnetic properties of Zr doped ZnO nanoparticles. Nanoscale Res Lett 6:587CrossRef Zhang J, Gao D, Yang G, Zhang J, Shi Z, Zhang Z, Zhu Z, Xue D (2011) Synthesis and magnetic properties of Zr doped ZnO nanoparticles. Nanoscale Res Lett 6:587CrossRef
54.
go back to reference Xue Y, Wu B, Jiang L, Guo Y, Huang L, Chen J, Tan J, Geng D, Luo B, Hu W, Yu G, Liu Y (2012) Low temperature growth of highly nitrogen-doped single crystal graphene arrays by chemical vapor deposition. J Am Chem Soc 134:11060–11063CrossRef Xue Y, Wu B, Jiang L, Guo Y, Huang L, Chen J, Tan J, Geng D, Luo B, Hu W, Yu G, Liu Y (2012) Low temperature growth of highly nitrogen-doped single crystal graphene arrays by chemical vapor deposition. J Am Chem Soc 134:11060–11063CrossRef
55.
go back to reference Liu H, Zhu D, Shi H, Shao X (2016) Fabrication of a contamination-free interface between graphene and TiO2 single crystals. ACS Omega 1:168–176CrossRef Liu H, Zhu D, Shi H, Shao X (2016) Fabrication of a contamination-free interface between graphene and TiO2 single crystals. ACS Omega 1:168–176CrossRef
56.
go back to reference Giovannetti G, Khomyakov PA, Brocks G, Karpan VM, Van den Brink J, Kelly PJ (2008) Doping graphene with metal contacts. Phys Rev Lett 101:026803CrossRef Giovannetti G, Khomyakov PA, Brocks G, Karpan VM, Van den Brink J, Kelly PJ (2008) Doping graphene with metal contacts. Phys Rev Lett 101:026803CrossRef
57.
go back to reference Allen MW, Swartz CH, Myers TH, Veal TD, McConville CF, Durbin SM (2010) Bulk transport measurements in ZnO: the effect of surface electron layers. Phys Rev B 81:075211CrossRef Allen MW, Swartz CH, Myers TH, Veal TD, McConville CF, Durbin SM (2010) Bulk transport measurements in ZnO: the effect of surface electron layers. Phys Rev B 81:075211CrossRef
58.
go back to reference Repp S, Erdem E (2016) Controlling the exciton energy of zinc oxide (ZnO) quantum dots by changing the confinement conditions. Spectrochim Acta A 152:637–644CrossRef Repp S, Erdem E (2016) Controlling the exciton energy of zinc oxide (ZnO) quantum dots by changing the confinement conditions. Spectrochim Acta A 152:637–644CrossRef
59.
go back to reference Schneider JJ, Hoffmann RC, Engstler J, Dilfer S, Klyszcz A, Erdem E, Jakes P, Eichel RA (2009) Zinc oxide derived from single source precursor chemistry under chimie douce conditions: formation pathway, defect chemistry and possible applications in thin film printing. J Mater Chem 19:1449–1457CrossRef Schneider JJ, Hoffmann RC, Engstler J, Dilfer S, Klyszcz A, Erdem E, Jakes P, Eichel RA (2009) Zinc oxide derived from single source precursor chemistry under chimie douce conditions: formation pathway, defect chemistry and possible applications in thin film printing. J Mater Chem 19:1449–1457CrossRef
60.
go back to reference Pham CV, Repp S, Thomann R, Krueger M, Weber S, Erdem E (2016) Charge transfer and surface defect healing within ZnO nanoparticle decorated graphene hybrid materials. Nanoscale 8:9682–9687CrossRef Pham CV, Repp S, Thomann R, Krueger M, Weber S, Erdem E (2016) Charge transfer and surface defect healing within ZnO nanoparticle decorated graphene hybrid materials. Nanoscale 8:9682–9687CrossRef
61.
go back to reference Kaftelen H, Ocakoglu K, Thomann R, Tu S, Weber S, Erdem E (2012) EPR and photoluminescence spectroscopy studies on the defect structure of ZnO nanocrystals. Phys Rev B 86:014113CrossRef Kaftelen H, Ocakoglu K, Thomann R, Tu S, Weber S, Erdem E (2012) EPR and photoluminescence spectroscopy studies on the defect structure of ZnO nanocrystals. Phys Rev B 86:014113CrossRef
62.
go back to reference Drouilly C, Krafft JM, Averseng F, Casale S, Bazer-Bachi D, Chizallet C, Lecocq V, Vezin H, Lauron-Pernot H, Costentin G (2012) ZnO oxygen vacancies formation and filling followed by in situ photoluminescence and in situ EPR. J Phys Chem C 116:21297–21307CrossRef Drouilly C, Krafft JM, Averseng F, Casale S, Bazer-Bachi D, Chizallet C, Lecocq V, Vezin H, Lauron-Pernot H, Costentin G (2012) ZnO oxygen vacancies formation and filling followed by in situ photoluminescence and in situ EPR. J Phys Chem C 116:21297–21307CrossRef
63.
go back to reference Pan X, Yang MQ, Xu YJ (2014) Morphology control, defect engineering and photoactivity tuning of ZnO crystals by graphene oxide—a unique 2D macromolecular surfactant. Phys Chem Chem Phys 16:5589–5599CrossRef Pan X, Yang MQ, Xu YJ (2014) Morphology control, defect engineering and photoactivity tuning of ZnO crystals by graphene oxide—a unique 2D macromolecular surfactant. Phys Chem Chem Phys 16:5589–5599CrossRef
Metadata
Title
Graphene/ZnO nanocomposite with seamless interface renders photoluminescence quenching and photocatalytic activity enhancement
Authors
Huihui Liu
Miaomiao Xiang
Xiang Shao
Publication date
25-06-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 19/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2605-9

Other articles of this Issue 19/2018

Journal of Materials Science 19/2018 Go to the issue

Premium Partners