Skip to main content
Top
Published in:
Cover of the book

2021 | OriginalPaper | Chapter

1. Green Composites: Introductory Overview

Authors : M. Roy Choudhury, K. Debnath

Published in: Green Composites

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The gowning environmental concerns lead to the development of sustainable and eco-friendly products made of natural resources called green composites. This chapter gives an introductory overview of green composites. Different types of matrix and natural fiber used for the development of green composites have been discussed thoroughly by investigating their properties and fabrication methods. The applications of green composites in different fields have been reviewed. The machining and joining behavior of green composites has also been discussed in the present chapter.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71(3):343–364CrossRef John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71(3):343–364CrossRef
2.
go back to reference Netravali AN, Chabba S (2003) Composites get greener. Mater Today 4(6):22–29CrossRef Netravali AN, Chabba S (2003) Composites get greener. Mater Today 4(6):22–29CrossRef
3.
go back to reference Zini E, Scandola M (2011) Green composites: an overview. Polym Compos 32(12):1905–1915CrossRef Zini E, Scandola M (2011) Green composites: an overview. Polym Compos 32(12):1905–1915CrossRef
4.
go back to reference Nurul Fazita MR, Jayaraman K, Bhattacharyya D, Mohamad Haafiz MK, Saurabh CK, Hussin MH, Abdul Khalil HPS (2016) Green composites made of bamboo fabric and poly (lactic) acid for packaging applications—a review. Materials 9(6):435CrossRef Nurul Fazita MR, Jayaraman K, Bhattacharyya D, Mohamad Haafiz MK, Saurabh CK, Hussin MH, Abdul Khalil HPS (2016) Green composites made of bamboo fabric and poly (lactic) acid for packaging applications—a review. Materials 9(6):435CrossRef
6.
go back to reference Koronis G, Silva A, Fontul M (2013) Green composites: a review of adequate materials for automotive applications. Compos B 44(1):120–127CrossRef Koronis G, Silva A, Fontul M (2013) Green composites: a review of adequate materials for automotive applications. Compos B 44(1):120–127CrossRef
7.
go back to reference Ashori A (2008) Wood–plastic composites as promising green-composites for automotive industries! Bioresour Technol 99(11):4661–4667CrossRef Ashori A (2008) Wood–plastic composites as promising green-composites for automotive industries! Bioresour Technol 99(11):4661–4667CrossRef
8.
go back to reference Georgios K, Silva A, Furtado S (2016) Applications of green composite materials. Biodegrad Green Compos 16:312CrossRef Georgios K, Silva A, Furtado S (2016) Applications of green composite materials. Biodegrad Green Compos 16:312CrossRef
9.
go back to reference Dicker MP, Duckworth PF, Baker AB, Francois G, Hazzard MK, Weaver PM (2014) Green composites: a review of material attributes and complementary applications. Compos A 56:280–289CrossRef Dicker MP, Duckworth PF, Baker AB, Francois G, Hazzard MK, Weaver PM (2014) Green composites: a review of material attributes and complementary applications. Compos A 56:280–289CrossRef
10.
go back to reference La Mantia FP, Morreale M (2011) Green composites: a brief review. Compos A 42(6):579–588CrossRef La Mantia FP, Morreale M (2011) Green composites: a brief review. Compos A 42(6):579–588CrossRef
11.
go back to reference Khalil HA, Bhat AH, Yusra AI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963–979CrossRef Khalil HA, Bhat AH, Yusra AI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963–979CrossRef
12.
go back to reference Gholampour A, Ozbakkaloglu T (2020) A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. J Mater Sci 55:829–892CrossRef Gholampour A, Ozbakkaloglu T (2020) A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. J Mater Sci 55:829–892CrossRef
13.
go back to reference Potluri R (2019) Natural fiber-based hybrid bio-composites: processing, characterization, and applications. Green composites. Springer, Singapore, pp 1–46 Potluri R (2019) Natural fiber-based hybrid bio-composites: processing, characterization, and applications. Green composites. Springer, Singapore, pp 1–46
14.
go back to reference Thames SF, Zhou L (1998) Effect of preparation and processing on mechanical properties and water absorption of soy protein based biocomposite. In: 5th international conference on composites engineering, ICCE, Las Vegas, Nevada, 5–11 July 1998 Thames SF, Zhou L (1998) Effect of preparation and processing on mechanical properties and water absorption of soy protein based biocomposite. In: 5th international conference on composites engineering, ICCE, Las Vegas, Nevada, 5–11 July 1998
15.
go back to reference Li K, Peshkova S, Geng X (2004) Investigation of soy protein-Kymene® adhesive systems for wood composites. J Am Oil Chem Soc 81(5):487–491CrossRef Li K, Peshkova S, Geng X (2004) Investigation of soy protein-Kymene® adhesive systems for wood composites. J Am Oil Chem Soc 81(5):487–491CrossRef
16.
go back to reference Drzal LT (2002) Environmentally friendly bio-composites from soy-based bio-plastic and natural fiber. Polym Mat Sci Eng 87:117 Drzal LT (2002) Environmentally friendly bio-composites from soy-based bio-plastic and natural fiber. Polym Mat Sci Eng 87:117
17.
go back to reference Lodha P, Netravali AN (2002) Characterization of interfacial and mechanical properties of “green” composites with soy protein isolate and ramie fiber. J Mater Sci 37(17):3657–3665CrossRef Lodha P, Netravali AN (2002) Characterization of interfacial and mechanical properties of “green” composites with soy protein isolate and ramie fiber. J Mater Sci 37(17):3657–3665CrossRef
18.
go back to reference Chabba S, Netravali AN (2004) ‘Green’ composites using modified soy protein concentrate resin and flax fabrics and yarns. JSME 47(4):556–560 Chabba S, Netravali AN (2004) ‘Green’ composites using modified soy protein concentrate resin and flax fabrics and yarns. JSME 47(4):556–560
19.
go back to reference Nam S, Netravali AN (2004) Characterization of ramie fiber/soy protein concentrate (SPC) resin interface. J Adhes Sci Technol 18(9):1063–1076CrossRef Nam S, Netravali AN (2004) Characterization of ramie fiber/soy protein concentrate (SPC) resin interface. J Adhes Sci Technol 18(9):1063–1076CrossRef
20.
go back to reference Takagi H et al (2002) International workshop on ‘Green’ Composites, 4 Takagi H et al (2002) International workshop on ‘Green’ Composites, 4
21.
go back to reference Ochi S et al (2002) International workshop on ‘Green’ Composites, 22 Ochi S et al (2002) International workshop on ‘Green’ Composites, 22
22.
go back to reference Ichihara Y, Takagi H (2002) International workshop on ‘Green’ Composites, 26 Ichihara Y, Takagi H (2002) International workshop on ‘Green’ Composites, 26
23.
go back to reference Goda K et al. (2002) International workshop on ‘Green’ Composites, 8 Goda K et al. (2002) International workshop on ‘Green’ Composites, 8
24.
go back to reference Murariu M, Dubois P (2016) PLA composites: from production to properties. Adv Drug Deliv Rev 107:17–46CrossRef Murariu M, Dubois P (2016) PLA composites: from production to properties. Adv Drug Deliv Rev 107:17–46CrossRef
25.
go back to reference Alberts AH, Rothenberg G (2017) Plantics-GX: a biodegradable and cost-effective thermoset plastic that is 100% plant-based. Faraday Discuss 202:111–120CrossRef Alberts AH, Rothenberg G (2017) Plantics-GX: a biodegradable and cost-effective thermoset plastic that is 100% plant-based. Faraday Discuss 202:111–120CrossRef
26.
go back to reference Cai M, Liu H, Jiang Y, Wang J, Zhang S (2019) A high-strength biodegradable thermoset polymer for internal fixation bone screws: Preparation, in vitro and in vivo evaluation. Colloid Surfaces B 183:110445CrossRef Cai M, Liu H, Jiang Y, Wang J, Zhang S (2019) A high-strength biodegradable thermoset polymer for internal fixation bone screws: Preparation, in vitro and in vivo evaluation. Colloid Surfaces B 183:110445CrossRef
28.
go back to reference Choudhury MR, Debnath K (2019) Experimental analysis of tensile and compressive failure load in single-lap bolted joint of green composites. Compos Struct 225:111180CrossRef Choudhury MR, Debnath K (2019) Experimental analysis of tensile and compressive failure load in single-lap bolted joint of green composites. Compos Struct 225:111180CrossRef
29.
go back to reference de Oca HM, Ward IM (2006) Structure and mechanical properties of PGA crystals and fibres. Polymer 47(20):7070–7077CrossRef de Oca HM, Ward IM (2006) Structure and mechanical properties of PGA crystals and fibres. Polymer 47(20):7070–7077CrossRef
30.
go back to reference Takayama T, Daigaku Y, Ito H, Takamori H (2014) Mechanical properties of bio-absorbable PLA/PGA fiber-reinforced composites. J Mech Sci Technol 28(10):4151–4154CrossRef Takayama T, Daigaku Y, Ito H, Takamori H (2014) Mechanical properties of bio-absorbable PLA/PGA fiber-reinforced composites. J Mech Sci Technol 28(10):4151–4154CrossRef
31.
go back to reference Gentile P, Chiono V, Carmagnola I, Hatton PV (2014) An overview of poly (lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci 15(3):3640–3659CrossRef Gentile P, Chiono V, Carmagnola I, Hatton PV (2014) An overview of poly (lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci 15(3):3640–3659CrossRef
34.
go back to reference Serrano PJM, Thüss E, Gaymans RJ (1997) Alternating polyesteramides based on 1, 4-butylene terephthalamide: 2. Alternating polyesteramides based on a single, linear diol (4NTm). Polymer 38(15):3893–3902 Serrano PJM, Thüss E, Gaymans RJ (1997) Alternating polyesteramides based on 1, 4-butylene terephthalamide: 2. Alternating polyesteramides based on a single, linear diol (4NTm). Polymer 38(15):3893–3902
35.
go back to reference Jamaluddin N, Razaina MT, Ishak ZM (2016) Mechanical and morphology behaviours of polybutylene (succinate)/thermoplastic polyurethaneblend. Procedia Chem 19:426–432CrossRef Jamaluddin N, Razaina MT, Ishak ZM (2016) Mechanical and morphology behaviours of polybutylene (succinate)/thermoplastic polyurethaneblend. Procedia Chem 19:426–432CrossRef
37.
go back to reference Jayaraman K (2003) Manufacturing sisal-polypropylene composites with minimum fibre degradation. Compos Sci Technol 63:367–374CrossRef Jayaraman K (2003) Manufacturing sisal-polypropylene composites with minimum fibre degradation. Compos Sci Technol 63:367–374CrossRef
38.
go back to reference Wang Q, Kaliaguine S, Ait‐Kadi A (1992) Catalytic grafting: a new technique for polymer–fiber composites I. Polyethylene–asbestos composites. J Appl Polym Sci 44(6):1107–1119 Wang Q, Kaliaguine S, Ait‐Kadi A (1992) Catalytic grafting: a new technique for polymer–fiber composites I. Polyethylene–asbestos composites. J Appl Polym Sci 44(6):1107–1119
39.
go back to reference Shekar HS, Ramachandra M (2018) Green composites: a review. Mater Today Proc 5(1):2518–2526CrossRef Shekar HS, Ramachandra M (2018) Green composites: a review. Mater Today Proc 5(1):2518–2526CrossRef
40.
go back to reference Jha K, Kataria R, Verma J, Pradhan S (2019) Potential biodegradable matrices and fiber treatment for green composites: a review. AIMS Mater Sci 6(1):119–138CrossRef Jha K, Kataria R, Verma J, Pradhan S (2019) Potential biodegradable matrices and fiber treatment for green composites: a review. AIMS Mater Sci 6(1):119–138CrossRef
41.
go back to reference Ramamoorthy SK, Skrifvars M, Persson A (2015) A review of natural fibers used in biocomposites: plant, animal and regenerated cellulose fibers. Polym Rev 55(1):107–162CrossRef Ramamoorthy SK, Skrifvars M, Persson A (2015) A review of natural fibers used in biocomposites: plant, animal and regenerated cellulose fibers. Polym Rev 55(1):107–162CrossRef
42.
go back to reference Sailesh A, Arunkumar R, Saravanan S (2018) Mechanical properties and wear properties of Kenaf–aloe vera–jute fiber reinforced natural fiber composites. Mater Today Proc 5(2):7184–7190CrossRef Sailesh A, Arunkumar R, Saravanan S (2018) Mechanical properties and wear properties of Kenaf–aloe vera–jute fiber reinforced natural fiber composites. Mater Today Proc 5(2):7184–7190CrossRef
43.
go back to reference Ashori A, Nourbakhsh A (2010) Bio-based composites from waste agricultural residues. J Waste Manag 30(4):680–684CrossRef Ashori A, Nourbakhsh A (2010) Bio-based composites from waste agricultural residues. J Waste Manag 30(4):680–684CrossRef
44.
go back to reference Fávaro SL, Lopes MS, de Carvalho Neto AGV, de Santana RR, Radovanovic E (2010) Chemical, morphological, and mechanical analysis of rice husk/post-consumer polyethylene composites. Compos A 41(1):154–160CrossRef Fávaro SL, Lopes MS, de Carvalho Neto AGV, de Santana RR, Radovanovic E (2010) Chemical, morphological, and mechanical analysis of rice husk/post-consumer polyethylene composites. Compos A 41(1):154–160CrossRef
45.
go back to reference Pfister DP, Larock RC (2010) Green composites from a conjugated linseed oil-based resin and wheat straw. Compos A 41(9):1279–1288CrossRef Pfister DP, Larock RC (2010) Green composites from a conjugated linseed oil-based resin and wheat straw. Compos A 41(9):1279–1288CrossRef
46.
go back to reference Ahankari SS, Mohanty AK, Misra M (2011) Mechanical behaviour of agro-residue reinforced poly (3-hydroxybutyrate-co-3-hydroxyvalerate),(PHBV) green composites: A comparison with traditional polypropylene composites. Compos Sci Technol 71(5):653–657CrossRef Ahankari SS, Mohanty AK, Misra M (2011) Mechanical behaviour of agro-residue reinforced poly (3-hydroxybutyrate-co-3-hydroxyvalerate),(PHBV) green composites: A comparison with traditional polypropylene composites. Compos Sci Technol 71(5):653–657CrossRef
47.
go back to reference Reddy N, Yang Y (2005) Properties and potential applications of natural cellulose fibers from cornhusks. Green Chem 7(4):190–195CrossRef Reddy N, Yang Y (2005) Properties and potential applications of natural cellulose fibers from cornhusks. Green Chem 7(4):190–195CrossRef
48.
go back to reference Bajpai PK, Singh I, Madaan J (2014) Development and characterization of PLA-based green composites: a review. J Thermoplast Compos Mater 27(1):52–81CrossRef Bajpai PK, Singh I, Madaan J (2014) Development and characterization of PLA-based green composites: a review. J Thermoplast Compos Mater 27(1):52–81CrossRef
49.
go back to reference Choudhury MR, Debnath K (2020) Experimental analysis of tensile and compressive failure load in single-lap adhesive joint of green composites. Int J Adhes Adhes 99:102557CrossRef Choudhury MR, Debnath K (2020) Experimental analysis of tensile and compressive failure load in single-lap adhesive joint of green composites. Int J Adhes Adhes 99:102557CrossRef
50.
go back to reference Yu S, Hwang YH, Hwang JY, Hong SH (2019) Analytical study on the 3D-printed structure and mechanical properties of basalt fiber-reinforced PLA composites using X-ray microscopy. Compos Sci Technol 175:18–27CrossRef Yu S, Hwang YH, Hwang JY, Hong SH (2019) Analytical study on the 3D-printed structure and mechanical properties of basalt fiber-reinforced PLA composites using X-ray microscopy. Compos Sci Technol 175:18–27CrossRef
51.
go back to reference Rigolin TR, Takahashi MC, Kondo DL, Bettini SHP (2019) Compatibilizer acidity in coir-reinforced PLA composites: matrix degradation and Composite properties. J Polym Environ 27(5):1096–1104CrossRef Rigolin TR, Takahashi MC, Kondo DL, Bettini SHP (2019) Compatibilizer acidity in coir-reinforced PLA composites: matrix degradation and Composite properties. J Polym Environ 27(5):1096–1104CrossRef
52.
go back to reference Komal UK, Lila MK, Singh I (2020) PLA/banana fiber based sustainable biocomposites: a manufacturing perspective. Compos B 180:107535CrossRef Komal UK, Lila MK, Singh I (2020) PLA/banana fiber based sustainable biocomposites: a manufacturing perspective. Compos B 180:107535CrossRef
53.
go back to reference Chaitanya S, Singh I (2016) Novel Aloe Vera fiber reinforced biodegradable composites—development and characterization. J Reinf Plast Compo 35(19):1411–1423CrossRef Chaitanya S, Singh I (2016) Novel Aloe Vera fiber reinforced biodegradable composites—development and characterization. J Reinf Plast Compo 35(19):1411–1423CrossRef
54.
go back to reference Wahit MU, Akos NI, Laftah WA (2012) Influence of natural fibers on the mechanical properties and biodegradation of poly (lactic acid) and poly (ε-caprolactone) composites: a review. Polym Compos 33(7):1045–1053CrossRef Wahit MU, Akos NI, Laftah WA (2012) Influence of natural fibers on the mechanical properties and biodegradation of poly (lactic acid) and poly (ε-caprolactone) composites: a review. Polym Compos 33(7):1045–1053CrossRef
55.
go back to reference Cyras VP, Iannace S, Kenny JM, Vázquez A (2001) Relationship between processing and properties of biodegradable composites based on PCL/starch matrix and sisal fibers. Polym Compos 22(1):104–110CrossRef Cyras VP, Iannace S, Kenny JM, Vázquez A (2001) Relationship between processing and properties of biodegradable composites based on PCL/starch matrix and sisal fibers. Polym Compos 22(1):104–110CrossRef
56.
go back to reference Chen B, Sun K, Ren T (2005) Mechanical and viscoelastic properties of chitin fiber reinforced poly (ε-caprolactone). Eur Polym J 41(3):453–457CrossRef Chen B, Sun K, Ren T (2005) Mechanical and viscoelastic properties of chitin fiber reinforced poly (ε-caprolactone). Eur Polym J 41(3):453–457CrossRef
57.
go back to reference Xu H, Wang L, Teng C, Yu M (2008) Biodegradable composites: Ramie fibre reinforced PLLA-PCL composite prepared by in situ polymerization process. Polym Bulletin 61(5):663–670CrossRef Xu H, Wang L, Teng C, Yu M (2008) Biodegradable composites: Ramie fibre reinforced PLLA-PCL composite prepared by in situ polymerization process. Polym Bulletin 61(5):663–670CrossRef
58.
go back to reference Hamid MZA, Ibrahim NA, Yunus WMZW, Zaman K, Dahlan M (2010) Effect of grafting on properties of oil palm empty fruit bunch fiber reinforced polycaprolactone biocomposites. J Reinf Plast Comp 29(18):2723–2731CrossRef Hamid MZA, Ibrahim NA, Yunus WMZW, Zaman K, Dahlan M (2010) Effect of grafting on properties of oil palm empty fruit bunch fiber reinforced polycaprolactone biocomposites. J Reinf Plast Comp 29(18):2723–2731CrossRef
59.
go back to reference Cao Y, Goda K, Shibata S (2007) Development and mechanical properties of bagasse fiber reinforced composites. Adv Compos Mater 16(4):283–298CrossRef Cao Y, Goda K, Shibata S (2007) Development and mechanical properties of bagasse fiber reinforced composites. Adv Compos Mater 16(4):283–298CrossRef
60.
go back to reference Yang A, Wu R (2002) Enhancement of the mechanical properties and interfacial interaction of a novel chitin-fiber-reinforced poly (ϵ-caprolactone) composite by irradiation treatment. J Appl Poly Sci 84(3):486–492CrossRef Yang A, Wu R (2002) Enhancement of the mechanical properties and interfacial interaction of a novel chitin-fiber-reinforced poly (ϵ-caprolactone) composite by irradiation treatment. J Appl Poly Sci 84(3):486–492CrossRef
61.
go back to reference Misra R, Kumar S, Sandeep K, Misra A (2008) Dynamic analysis of banana fiber reinforced high-density polyethylene/poly (ε-caprolactone) composites. J Mech Mater Struct 3(1):107–125CrossRef Misra R, Kumar S, Sandeep K, Misra A (2008) Dynamic analysis of banana fiber reinforced high-density polyethylene/poly (ε-caprolactone) composites. J Mech Mater Struct 3(1):107–125CrossRef
62.
go back to reference Lee SH, Ohkita T (2003) Mechanical and thermal flow properties of wood flour–biodegradable polymer composites. J Appl Poly Sci 90(7):1900–1905CrossRef Lee SH, Ohkita T (2003) Mechanical and thermal flow properties of wood flour–biodegradable polymer composites. J Appl Poly Sci 90(7):1900–1905CrossRef
63.
go back to reference Goriparthi BK, Suman KNS, Nalluri MR (2012) Processing and characterization of jute fiber reinforced hybrid biocomposites based on polylactide/polycaprolactone blends. Polym Compos 33(2):237–244CrossRef Goriparthi BK, Suman KNS, Nalluri MR (2012) Processing and characterization of jute fiber reinforced hybrid biocomposites based on polylactide/polycaprolactone blends. Polym Compos 33(2):237–244CrossRef
64.
go back to reference Qiao X, Li W, Sun K, Xu S, Chen X (2009) Nonisothermal crystallization behaviors of silk-fibroin-fiber-reinforced poly (ϵ-caprolactone) biocomposites. J Appl Poly Sci 111(6):2908–2916CrossRef Qiao X, Li W, Sun K, Xu S, Chen X (2009) Nonisothermal crystallization behaviors of silk-fibroin-fiber-reinforced poly (ϵ-caprolactone) biocomposites. J Appl Poly Sci 111(6):2908–2916CrossRef
65.
go back to reference Dhakal HN, Ismail SO, Beaugrand J, Zhang Z, Zekonyte J (2020) Characterization of nano-mechanical, surface and thermal properties of hemp fiber-reinforced polycaprolactone (HF/PCL) biocomposites. Appl Sci 10(7):2636CrossRef Dhakal HN, Ismail SO, Beaugrand J, Zhang Z, Zekonyte J (2020) Characterization of nano-mechanical, surface and thermal properties of hemp fiber-reinforced polycaprolactone (HF/PCL) biocomposites. Appl Sci 10(7):2636CrossRef
66.
go back to reference Mina JH, González AV, Muñoz-Vélez MF (2020) Micro-and macromechanical properties of a composite with a ternary PLA–PCL–TPS matrix reinforced with short Fique fibers. Polymers 12(1):58CrossRef Mina JH, González AV, Muñoz-Vélez MF (2020) Micro-and macromechanical properties of a composite with a ternary PLA–PCL–TPS matrix reinforced with short Fique fibers. Polymers 12(1):58CrossRef
67.
go back to reference Siqueira DD, Luna CBB, Araújo EM, Ferreira ESB, Wellen RMR (2019) Biocomposites based on PCL and macaiba fiber. Detailed characterization of main properties. Mater Res Express 6(9):095335 Siqueira DD, Luna CBB, Araújo EM, Ferreira ESB, Wellen RMR (2019) Biocomposites based on PCL and macaiba fiber. Detailed characterization of main properties. Mater Res Express 6(9):095335
68.
go back to reference Guo Y, Wang L, Chen Y, Luo P, Chen T (2019) Properties of Luffa fiber reinforced PHBV biodegradable composites. Polymers 11(11):1765CrossRef Guo Y, Wang L, Chen Y, Luo P, Chen T (2019) Properties of Luffa fiber reinforced PHBV biodegradable composites. Polymers 11(11):1765CrossRef
69.
go back to reference Panaitescu DM, Nicolae CA, Gabor AR, Trusca R (2020) Thermal and mechanical properties of poly (3-hydroxybutyrate) reinforced with cellulose fibers from wood waste. Ind Crops Prod 145:112071CrossRef Panaitescu DM, Nicolae CA, Gabor AR, Trusca R (2020) Thermal and mechanical properties of poly (3-hydroxybutyrate) reinforced with cellulose fibers from wood waste. Ind Crops Prod 145:112071CrossRef
70.
go back to reference Muniyasamy S, Ofosu O, Thulasinathan B, Rajan AST, Ramu SM, Soorangkattan et al (2019) Thermal-chemical and biodegradation behaviour of alginic acid treated flax fibres/poly (hydroxybutyrate-co-valerate) PHBV green composites in compost medium. Biocatal Agric Biotechnol 22:101394 Muniyasamy S, Ofosu O, Thulasinathan B, Rajan AST, Ramu SM, Soorangkattan et al (2019) Thermal-chemical and biodegradation behaviour of alginic acid treated flax fibres/poly (hydroxybutyrate-co-valerate) PHBV green composites in compost medium. Biocatal Agric Biotechnol 22:101394
71.
go back to reference Jiang L, Huang J, Qian J, Chen F, Zhang J, Wolcott MP, Zhu Y (2008) Study of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV)/bamboo pulp fiber composites: Effects of nucleation agent and compatibilizer. J Polym Environ 16(2):83–93CrossRef Jiang L, Huang J, Qian J, Chen F, Zhang J, Wolcott MP, Zhu Y (2008) Study of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV)/bamboo pulp fiber composites: Effects of nucleation agent and compatibilizer. J Polym Environ 16(2):83–93CrossRef
72.
go back to reference Luo S, Netravali AN (1999) Interfacial and mechanical properties of environment-friendly “green” composites made from pineapple fibers and poly (hydroxybutyrate-co-valerate) resin. J Mater Sci 34(15):3709–3719CrossRef Luo S, Netravali AN (1999) Interfacial and mechanical properties of environment-friendly “green” composites made from pineapple fibers and poly (hydroxybutyrate-co-valerate) resin. J Mater Sci 34(15):3709–3719CrossRef
73.
go back to reference Berthet MA, Angellier-Coussy H, Chea V, Guillard V, Gastaldi E, Gontard N (2015) Sustainable food packaging: valorising wheat straw fibres for tuning PHBV-based composites properties. Compos a 72:139–147CrossRef Berthet MA, Angellier-Coussy H, Chea V, Guillard V, Gastaldi E, Gontard N (2015) Sustainable food packaging: valorising wheat straw fibres for tuning PHBV-based composites properties. Compos a 72:139–147CrossRef
74.
go back to reference Javadi A, Srithep Y, Pilla S, Lee J, Gong S, Turng LS (2010) Processing and characterization of solid and microcellular PHBV/coir fiber composites. Mater Sci Eng C 30(5):749–757CrossRef Javadi A, Srithep Y, Pilla S, Lee J, Gong S, Turng LS (2010) Processing and characterization of solid and microcellular PHBV/coir fiber composites. Mater Sci Eng C 30(5):749–757CrossRef
75.
go back to reference Buzarovska A, Bogoeva-Gaceva G, Grozdanov A, Avella M, Gentile G, Errico M (2007) Crystallization behavior of poly (hydroxybytyrate-co-valerate) in model and bulk PHBV/kenaf fiber composites. J Mater Sci 42(16):6501–6509CrossRef Buzarovska A, Bogoeva-Gaceva G, Grozdanov A, Avella M, Gentile G, Errico M (2007) Crystallization behavior of poly (hydroxybytyrate-co-valerate) in model and bulk PHBV/kenaf fiber composites. J Mater Sci 42(16):6501–6509CrossRef
76.
go back to reference Zhang Y, Yu C, Chu PK, Lv F, Zhang C, Ji J et al (2012) Mechanical and thermal properties of basalt fiber reinforced poly (butylene succinate) composites. Mater Chem Phy 133(2–3):845–849CrossRef Zhang Y, Yu C, Chu PK, Lv F, Zhang C, Ji J et al (2012) Mechanical and thermal properties of basalt fiber reinforced poly (butylene succinate) composites. Mater Chem Phy 133(2–3):845–849CrossRef
77.
go back to reference Nam TH, Ogihara S, Tung NH, Kobayashi S (2011) Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly (butylene succinate) biodegradable composites. Compos B 42(6):1648–1656CrossRef Nam TH, Ogihara S, Tung NH, Kobayashi S (2011) Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly (butylene succinate) biodegradable composites. Compos B 42(6):1648–1656CrossRef
78.
go back to reference Bin T, Qu JP, Liu LM, Feng YH, Hu SX, Yin XC (2011) Non-isothermal crystallization kinetics and dynamic mechanical thermal properties of poly (butylene succinate) composites reinforced with cotton stalk bast fibers. Thermochim Acta 525(1–2):141–149CrossRef Bin T, Qu JP, Liu LM, Feng YH, Hu SX, Yin XC (2011) Non-isothermal crystallization kinetics and dynamic mechanical thermal properties of poly (butylene succinate) composites reinforced with cotton stalk bast fibers. Thermochim Acta 525(1–2):141–149CrossRef
79.
go back to reference Ohkita K, Takagi H (2010) Flexural properties of injection-molded bamboo/PBS composites. Int J Mod Phys B 24:2838–2843CrossRef Ohkita K, Takagi H (2010) Flexural properties of injection-molded bamboo/PBS composites. Int J Mod Phys B 24:2838–2843CrossRef
80.
go back to reference Zhang M, Ding F, Li C, Ge Z, Tian Y (2011) Effect of different treatment and modifiers on the straw fiber/PBS composites property. Acta Materiae Compositae Sinica 28(1):56–60 Zhang M, Ding F, Li C, Ge Z, Tian Y (2011) Effect of different treatment and modifiers on the straw fiber/PBS composites property. Acta Materiae Compositae Sinica 28(1):56–60
81.
go back to reference Huang Z, Qian L, Yin Q, Yu N, Liu T, Tian D (2018) Biodegradability studies of poly (butylene succinate) composites filled with sugarcane rind fiber. Polym Test 66:319–326CrossRef Huang Z, Qian L, Yin Q, Yu N, Liu T, Tian D (2018) Biodegradability studies of poly (butylene succinate) composites filled with sugarcane rind fiber. Polym Test 66:319–326CrossRef
82.
go back to reference Frollini E, Bartolucci N, Sisti L, Celli A (2013) Poly (butylene succinate) reinforced with different lignocellulosic fibers. Ind Crop Prod 45:160–169CrossRef Frollini E, Bartolucci N, Sisti L, Celli A (2013) Poly (butylene succinate) reinforced with different lignocellulosic fibers. Ind Crop Prod 45:160–169CrossRef
83.
go back to reference Nam TH, Ogihara S, Kobayashi S, Goto K (2015) Effects of surface treatment on mechanical and thermal properties of jute fabric-reinforced poly (butylene succinate) biodegradable composites. Adv Compos Mater 24(2):161–178 Nam TH, Ogihara S, Kobayashi S, Goto K (2015) Effects of surface treatment on mechanical and thermal properties of jute fabric-reinforced poly (butylene succinate) biodegradable composites. Adv Compos Mater 24(2):161–178
84.
go back to reference Song R, Kimura T (2011) Mechanical properties of silk/bamboo hybrid paper reinforced PBS green composite. J Tex Eng 57(1):1–7CrossRef Song R, Kimura T (2011) Mechanical properties of silk/bamboo hybrid paper reinforced PBS green composite. J Tex Eng 57(1):1–7CrossRef
85.
go back to reference Li J, Ben G, Yang J (2014) Fabrication of hemp fiber-reinforced green composites with organoclay-filled poly (butylene succinate) matrix by pultrusion process. Sci Eng Compos Mater 21(2):289–294CrossRef Li J, Ben G, Yang J (2014) Fabrication of hemp fiber-reinforced green composites with organoclay-filled poly (butylene succinate) matrix by pultrusion process. Sci Eng Compos Mater 21(2):289–294CrossRef
86.
go back to reference Azhar SW, Xu F, Zhang Y, Qiu Y (2019) Fabrication and mechanical properties of flaxseed fiber bundle-reinforced polybutylene succinate composites. J Ind Text, 1–16 Azhar SW, Xu F, Zhang Y, Qiu Y (2019) Fabrication and mechanical properties of flaxseed fiber bundle-reinforced polybutylene succinate composites. J Ind Text, 1–16
87.
88.
go back to reference Subash T, Pillai SN (2015) Bast fibers reinforced green composites for aircraft indoor structures applications: Review. J Chem Pharm Sci 7:305–307 Subash T, Pillai SN (2015) Bast fibers reinforced green composites for aircraft indoor structures applications: Review. J Chem Pharm Sci 7:305–307
89.
go back to reference Dittenber DB, GangaRao HV (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos A 43(8):1419–1429CrossRef Dittenber DB, GangaRao HV (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos A 43(8):1419–1429CrossRef
93.
go back to reference Le Duigou A, Davies P, Baley C (2009) Seawater ageing of flax/poly (lactic acid) biocomposites. Polym Degrad Stabil 94(7):1151–1162CrossRef Le Duigou A, Davies P, Baley C (2009) Seawater ageing of flax/poly (lactic acid) biocomposites. Polym Degrad Stabil 94(7):1151–1162CrossRef
94.
go back to reference Mohanty AK, Misra MA, Hinrichsen GI (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromole Mater Eng 276(1):1–24 Mohanty AK, Misra MA, Hinrichsen GI (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromole Mater Eng 276(1):1–24
101.
go back to reference Dai W, Kawazoe N, Lin X, Dong J et al (2010) The influence of structural design of PLGA/collagen hybrid scaffolds in cartilage tissue engineering. Biomaterials 31(8):2141–2152CrossRef Dai W, Kawazoe N, Lin X, Dong J et al (2010) The influence of structural design of PLGA/collagen hybrid scaffolds in cartilage tissue engineering. Biomaterials 31(8):2141–2152CrossRef
102.
go back to reference Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA et al (2008) Clinical transplantation of a tissue-engineered airway. The Lancet 372(9655):2023–2030CrossRef Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA et al (2008) Clinical transplantation of a tissue-engineered airway. The Lancet 372(9655):2023–2030CrossRef
103.
go back to reference Mohanty AK, Misra M, Drzal TL, Selke SE, Harte BR, Hinrichsen G (2005) Natural fibers, biopolymers, and biocomposites: an introduction. In: Natural fibers, biopolymers, and biocomposites. CRC Press-Taylor & Francis Group, Boca Raton, USA, pp 1–36 Mohanty AK, Misra M, Drzal TL, Selke SE, Harte BR, Hinrichsen G (2005) Natural fibers, biopolymers, and biocomposites: an introduction. In: Natural fibers, biopolymers, and biocomposites. CRC Press-Taylor & Francis Group, Boca Raton, USA, pp 1–36
107.
go back to reference Stewart R (2010) Automotive composites offer lighter solutions. Reif Plast 54(2):22–28CrossRef Stewart R (2010) Automotive composites offer lighter solutions. Reif Plast 54(2):22–28CrossRef
109.
go back to reference Anonymous (2000) Daimler Chrysler turns to natural fibres. Reinf Plast 44:21CrossRef Anonymous (2000) Daimler Chrysler turns to natural fibres. Reinf Plast 44:21CrossRef
111.
go back to reference Ghavami K (2005) Bamboo as reinforcement in structural concrete elements. Cement Concrete Compos 27:637–649CrossRef Ghavami K (2005) Bamboo as reinforcement in structural concrete elements. Cement Concrete Compos 27:637–649CrossRef
112.
go back to reference Ochi S (2006) Development of high strength biodegradable composites using Manila hemp fiber and starch-based biodegradable resin. Compos Part a 37:1879–1883CrossRef Ochi S (2006) Development of high strength biodegradable composites using Manila hemp fiber and starch-based biodegradable resin. Compos Part a 37:1879–1883CrossRef
113.
go back to reference Lee JT, Kim MW, Song YS, Kang TJ, Youn JR (2010) Mechanical properties of denim fabric reinforced poly(lactic acid). Fibers Polym 11:60–66CrossRef Lee JT, Kim MW, Song YS, Kang TJ, Youn JR (2010) Mechanical properties of denim fabric reinforced poly(lactic acid). Fibers Polym 11:60–66CrossRef
114.
go back to reference Shi QF, Mou HY, Li QY, Wang JK, Guo WH (2012) Influence of heat treatment on the heat distortion temperature of poly(lactic acid)/bamboo fiber/talc hybrid biocomposites. J Appl Polym Sci 123:2828–2836CrossRef Shi QF, Mou HY, Li QY, Wang JK, Guo WH (2012) Influence of heat treatment on the heat distortion temperature of poly(lactic acid)/bamboo fiber/talc hybrid biocomposites. J Appl Polym Sci 123:2828–2836CrossRef
115.
go back to reference Annicchiarico D, Alcock JR (2014) Review of factors that affect shrinkage of molded part in injection molding. Mater Manuf Process 29(6):662–682CrossRef Annicchiarico D, Alcock JR (2014) Review of factors that affect shrinkage of molded part in injection molding. Mater Manuf Process 29(6):662–682CrossRef
116.
go back to reference Tokiwa Y, Calabia B (2006) Biodegradability and biodegradation of poly(lactide). Appl Microbiol Biotechnol 72:244–251CrossRef Tokiwa Y, Calabia B (2006) Biodegradability and biodegradation of poly(lactide). Appl Microbiol Biotechnol 72:244–251CrossRef
117.
go back to reference Shi B, Palfery D (2012) Temperature-dependent polylactic acid (PLA) anaerobic biodegradablity. Int J Environ Waste Manag 10:297–306CrossRef Shi B, Palfery D (2012) Temperature-dependent polylactic acid (PLA) anaerobic biodegradablity. Int J Environ Waste Manag 10:297–306CrossRef
118.
go back to reference Yussuf A, Massoumi I, Hassan A (2010) Comparison of polylactic acid/kenaf and polylactic acid/rise husk composites: the influence of the natural fibers on the mechanical, thermal and biodegradability properties. J Polym Environ 18:422–429CrossRef Yussuf A, Massoumi I, Hassan A (2010) Comparison of polylactic acid/kenaf and polylactic acid/rise husk composites: the influence of the natural fibers on the mechanical, thermal and biodegradability properties. J Polym Environ 18:422–429CrossRef
119.
go back to reference Liu W, Misra M, Askeland P, Drzal LT, Mohanty AK (2005) ‘Green’ composites from soy based plastic and pineapple leaf fiber: fabrication and properties evaluation. Polymer 46(8):2710–2721CrossRef Liu W, Misra M, Askeland P, Drzal LT, Mohanty AK (2005) ‘Green’ composites from soy based plastic and pineapple leaf fiber: fabrication and properties evaluation. Polymer 46(8):2710–2721CrossRef
120.
go back to reference Oksman K, Skrifvars M, Selin JF (2003) Natural fibers as reinforcement in polylacticacid (PLA) composites. Compos Sci Technol 63:1317–1324CrossRef Oksman K, Skrifvars M, Selin JF (2003) Natural fibers as reinforcement in polylacticacid (PLA) composites. Compos Sci Technol 63:1317–1324CrossRef
121.
go back to reference Aluigi A, Vineis C, Ceria A, Tonin C (2008) Composite biomaterials from fibre wastes: characterization of wool–cellulose acetate blends. Composite Part A 39:126–132CrossRef Aluigi A, Vineis C, Ceria A, Tonin C (2008) Composite biomaterials from fibre wastes: characterization of wool–cellulose acetate blends. Composite Part A 39:126–132CrossRef
122.
go back to reference Morreale M, Scaffaro R, Maio A, La MFP (2008) Effect of adding wood flour to the physical properties of a biodegradable polymer. Composite Part A 39(3):503–513CrossRef Morreale M, Scaffaro R, Maio A, La MFP (2008) Effect of adding wood flour to the physical properties of a biodegradable polymer. Composite Part A 39(3):503–513CrossRef
123.
go back to reference Nishino T, Hirao K, Kotera M, Nakamae K, Inagaki H (2003) Kenaf reinforced biodegradable composite. Compos Sci Technol 63:1281–1286CrossRef Nishino T, Hirao K, Kotera M, Nakamae K, Inagaki H (2003) Kenaf reinforced biodegradable composite. Compos Sci Technol 63:1281–1286CrossRef
124.
go back to reference Murariu M, Dechief AL, Bonnaud L, Paint Y, Gallos A, Fontaine G et al (2010) The production and properties of polylactide composites filled with expanded graphite. Polym Degrad Stabil 95:889–900CrossRef Murariu M, Dechief AL, Bonnaud L, Paint Y, Gallos A, Fontaine G et al (2010) The production and properties of polylactide composites filled with expanded graphite. Polym Degrad Stabil 95:889–900CrossRef
125.
go back to reference Choudhury MR, Srinivas MS, Debnath K (2018) Experimental investigations on drilling of lignocellulosic fiber reinforced composite laminates. J Manuf Process 34:51–61CrossRef Choudhury MR, Srinivas MS, Debnath K (2018) Experimental investigations on drilling of lignocellulosic fiber reinforced composite laminates. J Manuf Process 34:51–61CrossRef
126.
go back to reference Piquet R, Ferret B, Lachaud F, Swider P (2000) Experimental analysis of drilling damage in thin carbon/epoxy plate using special drills. Compos A 31:1107–1115CrossRef Piquet R, Ferret B, Lachaud F, Swider P (2000) Experimental analysis of drilling damage in thin carbon/epoxy plate using special drills. Compos A 31:1107–1115CrossRef
127.
go back to reference Davim JP, Reis P (2005) Damage and dimensional precision on milling carbon fiber-reinforced plastics using design experiments. J Mater Process Tech 160(2):160–167CrossRef Davim JP, Reis P (2005) Damage and dimensional precision on milling carbon fiber-reinforced plastics using design experiments. J Mater Process Tech 160(2):160–167CrossRef
128.
go back to reference Palanikumar K, Karunamoorthy L, Karthikeyan R (2006) Assessment of factors influencing surface roughness on the machining of glass fiber-reinforced polymer composites. Mater Des 27(10):862–871CrossRef Palanikumar K, Karunamoorthy L, Karthikeyan R (2006) Assessment of factors influencing surface roughness on the machining of glass fiber-reinforced polymer composites. Mater Des 27(10):862–871CrossRef
129.
go back to reference Choudhury MR, Debnath K (2020) Analysis of tensile failure load of single-lap green composite specimen welded by high-frequency ultrasonic vibration. Mater Today Proc Choudhury MR, Debnath K (2020) Analysis of tensile failure load of single-lap green composite specimen welded by high-frequency ultrasonic vibration. Mater Today Proc
Metadata
Title
Green Composites: Introductory Overview
Authors
M. Roy Choudhury
K. Debnath
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-9643-8_1

Premium Partners