Skip to main content
Top

2019 | OriginalPaper | Chapter

Group Signatures Without NIZK: From Lattices in the Standard Model

Authors : Shuichi Katsumata, Shota Yamada

Published in: Advances in Cryptology – EUROCRYPT 2019

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In a group signature scheme, users can anonymously sign messages on behalf of the group they belong to, yet it is possible to trace the signer when needed. Since the first proposal of lattice-based group signatures in the random oracle model by Gordon, Katz, and Vaikuntanathan (ASIACRYPT 2010), the realization of them in the standard model from lattices has attracted much research interest, however, it has remained unsolved. In this paper, we make progress on this problem by giving the first such construction. Our schemes satisfy CCA-selfless anonymity and full traceability, which are the standard security requirements for group signatures proposed by Bellare, Micciancio, and Warinschi (EUROCRYPT 2003) with a slight relaxation in the anonymity requirement suggested by Camenisch and Groth (SCN 2004). We emphasize that even with this relaxed anonymity requirement, all previous group signature constructions rely on random oracles or NIZKs, where currently NIZKs are not known to be implied from lattice-based assumptions. We propose two constructions that provide tradeoffs regarding the security assumption and efficiency:
  • Our first construction is proven secure assuming the standard LWE and the SIS assumption. The sizes of the public parameters and the signatures grow linearly in the number of users in the system.
  • Our second construction is proven secure assuming the standard LWE and the subexponential hardness of the SIS problem. The sizes of the public parameters and the signatures are independent of the number of users in the system.
Technically, we obtain the above schemes by combining a secret key encryption scheme with additional properties and a special type of attribute-based signature (ABS) scheme, thus bypassing the utilization of NIZKs. More specifically, we introduce the notion of indexed ABS, which is a relaxation of standard ABS. The above two schemes are obtained by instantiating the indexed ABS with different constructions. One is a direct construction we propose and the other is based on previous work.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
By LWE and SIS problems with polynomial approximation factors, we mean they are problems which are as hard as certain worst case lattice problems with polynomial approximation factor.
 
2
As mentioned in Sect. 4 of [KW18], their scheme is only publicly verifiable when considering a slightly weaker notion of zero-knowledge than the standard notion of zero-knowledge for preprocessing NIZKs. In our work, the weaker notion suffices.
 
3
Our core idea of fixing the witness can also be realized by instead embedding \(i \in I\) and a (weak) PRF seed into the ABS signing key, and using a public key encryption scheme. We provide detailed discussions on our choice of using SKEs in the full version.
 
4
Actually, the paper proposes constructions of constrained signature (CS), which is a slightly different primitive from ABS. However, this primitive readily implies ABS.
 
5
More specifically, the first scheme only achieves a so-called weakly-hiding property, where the key attribute is not leaked from a signature, but two signatures that are signed by the same user can be linked. Translated into the setting of group signature, this allows an adversary to link two different signatures by the same user, which trivially breaks anonymity.
 
6
During construction, we fix n and consider this very weak bound for one-dimensional discrete Gaussian samples for simplicity of analysis.
 
Literature
[BCH86]
go back to reference Beame, P., Cook, S.A., Hoover, H.J.: Log depth circuits for division and related problems. SIAM J. Comput. 15(4), 994–1003 (1986)MathSciNetCrossRef Beame, P., Cook, S.A., Hoover, H.J.: Log depth circuits for division and related problems. SIAM J. Comput. 15(4), 994–1003 (1986)MathSciNetCrossRef
[BLP+13]
go back to reference Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: STOC, pp. 575–584 (2013) Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: STOC, pp. 575–584 (2013)
[BMW03]
[BS04]
go back to reference Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: ACM CCS, pp. 168–177 (2004) Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: ACM CCS, pp. 168–177 (2004)
[BV15]
[FLS90]
go back to reference Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs based on a single random string (extended abstract). In: FOCS, pp. 308–317 (1990) Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs based on a single random string (extended abstract). In: FOCS, pp. 308–317 (1990)
[Gol04]
go back to reference Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University Press, Cambridge (2004)CrossRef Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University Press, Cambridge (2004)CrossRef
[Gol08]
go back to reference Goldreich, O.: Computational Complexity - A Conceptual Perspective. Cambridge University Press, Cambridge (2008)CrossRef Goldreich, O.: Computational Complexity - A Conceptual Perspective. Cambridge University Press, Cambridge (2008)CrossRef
[GPV08]
go back to reference Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC, pp. 197–206 (2008) Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC, pp. 197–206 (2008)
[GVW15]
go back to reference Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signatures from standard lattices. In: STOC, pp. 469–477 (2015) Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signatures from standard lattices. In: STOC, pp. 469–477 (2015)
[KY06]
go back to reference Kiayias, A., Yung, M.: Secure scalable group signature with dynamic joins and separable authorities. IJSN 1(1/2), 24–45 (2006)CrossRef Kiayias, A., Yung, M.: Secure scalable group signature with dynamic joins and separable authorities. IJSN 1(1/2), 24–45 (2006)CrossRef
[LLM+16a]
[LLM+16b]
[LLNW16]
go back to reference Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-based accumulators: logarithmic-size ring signatures and group signatures without trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_1CrossRef Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-based accumulators: logarithmic-size ring signatures and group signatures without trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 1–31. Springer, Heidelberg (2016). https://​doi.​org/​10.​1007/​978-3-662-49896-5_​1CrossRef
[MR04]
go back to reference Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. In: FOCS, pp. 372–381 (2004) Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. In: FOCS, pp. 372–381 (2004)
[Nao91]
go back to reference Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151–158 (1991)CrossRef Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151–158 (1991)CrossRef
[Pei09]
go back to reference Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: STOC, pp. 333–342 (2009) Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: STOC, pp. 333–342 (2009)
[PLS18]
go back to reference del Pino, R., Lyubashevsky, V., Seiler, G.: Lattice-based group signatures and zero-knowledge proofs of automorphism stability. ACM-CCS (2018, to appear) del Pino, R., Lyubashevsky, V., Seiler, G.: Lattice-based group signatures and zero-knowledge proofs of automorphism stability. ACM-CCS (2018, to appear)
[Reg05]
go back to reference Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC, pp. 84–93 (2005) Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC, pp. 84–93 (2005)
[Rom90]
go back to reference Rompel, J.: One-way functions are necessary and sufficient for secure signatures. In: STOC, pp. 387–394 (1990) Rompel, J.: One-way functions are necessary and sufficient for secure signatures. In: STOC, pp. 387–394 (1990)
[SSE+12]
Metadata
Title
Group Signatures Without NIZK: From Lattices in the Standard Model
Authors
Shuichi Katsumata
Shota Yamada
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-17659-4_11

Premium Partner