Skip to main content
Top
Published in: Medical & Biological Engineering & Computing 11/2019

07-10-2019 | Original Article

GSIAR: gene-subcategory interaction-based improved deep representation learning for breast cancer subcategorical analysis using gene expression, applicable for precision medicine

Author: Chiranjib Sur

Published in: Medical & Biological Engineering & Computing | Issue 11/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Tumor subclass detection and diagnosis is inevitable requirement for personalized medical treatment and refinement of the effects that the somatic cells show towards other clinical conditions. The genome of these somatic cells exhibits mutations and genetic variations of the breast cancer cells and helps in understanding the characteristic behavior of the cancer cells. But their analysis is limited to clustering and there is requirement to analyze what else can be done with the data for identifying the tumor subcategory and the stages of subclasses. In this work, we have extended the work with similar data (consisting of 105 breast tumor cell lines) to solve other detection and characterization problems through computation and intelligent representation learning. Most of our work comprises of systematic data cleaning, analysis, and building prediction models with deep computational architectures and establish that the transformed data can help in better distinction of the respective categories. Our main contribution is the novel gene-subcategory interaction-based regularization (GSIAR) based data selection and analysis concept, alongside the prediction, proven to enhance the performance of the classification techniques.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Mertins P, Mani DR, Ruggles KV, Gillette MA, Clauser KR, Wang P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534(7605):55–62PubMedPubMedCentralCrossRef Mertins P, Mani DR, Ruggles KV, Gillette MA, Clauser KR, Wang P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534(7605):55–62PubMedPubMedCentralCrossRef
2.
go back to reference Tyrer J, Stephen WD, Jack C (2004) A breast cancer prediction model incorporating familial and personal risk factors. Stat Med 23(7):1111–1130PubMedCrossRef Tyrer J, Stephen WD, Jack C (2004) A breast cancer prediction model incorporating familial and personal risk factors. Stat Med 23(7):1111–1130PubMedCrossRef
3.
go back to reference Baker JA, et al. (1995) Breast cancer: prediction with artificial neural network based on BI-RADS standardized lexicon. Radiology 196(3):817–822PubMedCrossRef Baker JA, et al. (1995) Breast cancer: prediction with artificial neural network based on BI-RADS standardized lexicon. Radiology 196(3):817–822PubMedCrossRef
4.
go back to reference Lakhani SR, et al. (2005) Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin Cancer Res 11(14):5175–5180PubMedCrossRef Lakhani SR, et al. (2005) Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin Cancer Res 11(14):5175–5180PubMedCrossRef
5.
go back to reference Chang JC, et al. (2003) Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. The Lancet 362(9381):362–369CrossRef Chang JC, et al. (2003) Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. The Lancet 362(9381):362–369CrossRef
6.
go back to reference Iorio MV, et al. (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65 (16):7065–7070PubMedCrossRef Iorio MV, et al. (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65 (16):7065–7070PubMedCrossRef
7.
go back to reference Bardou V, et al. (2003) Progesterone receptor status significantly improves outcome prediction over estrogen receptor status alone for adjuvant endocrine therapy in two large breast cancer databases. J Clin Oncol 21 (10):1973–1979PubMedCrossRef Bardou V, et al. (2003) Progesterone receptor status significantly improves outcome prediction over estrogen receptor status alone for adjuvant endocrine therapy in two large breast cancer databases. J Clin Oncol 21 (10):1973–1979PubMedCrossRef
9.
go back to reference Dowsett M, et al. (2010) Prediction of risk of distant recurrence using the 21-gene recurrence score in node-negative and node-positive postmenopausal patients with breast cancer treated with anastrozole or tamoxifen: a TransATAC study. J Clin Oncol 28(11):1829–1834PubMedCrossRef Dowsett M, et al. (2010) Prediction of risk of distant recurrence using the 21-gene recurrence score in node-negative and node-positive postmenopausal patients with breast cancer treated with anastrozole or tamoxifen: a TransATAC study. J Clin Oncol 28(11):1829–1834PubMedCrossRef
10.
go back to reference Gruvberger S, et al. (2001) Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. Cancer Res 61(16):5979–5984PubMed Gruvberger S, et al. (2001) Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. Cancer Res 61(16):5979–5984PubMed
11.
go back to reference Reis-Filho J, Lajos P (2011) Gene expression profiling in breast cancer: classification, prognostication, and prediction. The Lancet 378(9805):1812–1823CrossRef Reis-Filho J, Lajos P (2011) Gene expression profiling in breast cancer: classification, prognostication, and prediction. The Lancet 378(9805):1812–1823CrossRef
12.
go back to reference Mangasarian O, Street W, Wolberg W (1995) Breast cancer diagnosis and prognosis via linear programming. Oper Res 43(4):570–577CrossRef Mangasarian O, Street W, Wolberg W (1995) Breast cancer diagnosis and prognosis via linear programming. Oper Res 43(4):570–577CrossRef
13.
14.
go back to reference Wooster R, et al. (1995) Identification of the breast cancer susceptibility gene BRCA2. Nature 6559(789):378 Wooster R, et al. (1995) Identification of the breast cancer susceptibility gene BRCA2. Nature 6559(789):378
15.
go back to reference Van V, Marc J, et al. (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347(25):1999–2009CrossRef Van V, Marc J, et al. (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347(25):1999–2009CrossRef
17.
go back to reference Paik S, et al. (2006) Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor–positive breast cancer. J Clin Oncol 24(23):3726–3734PubMedCrossRef Paik S, et al. (2006) Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor–positive breast cancer. J Clin Oncol 24(23):3726–3734PubMedCrossRef
18.
go back to reference Huang E, et al. (2003) Gene expression predictors of breast cancer outcomes. The Lancet 361(9369):1590–1596CrossRef Huang E, et al. (2003) Gene expression predictors of breast cancer outcomes. The Lancet 361(9369):1590–1596CrossRef
19.
go back to reference Weigelt B, Frederick B, Jorge R (2010) The contribution of gene expression profiling to breast cancer classification, prognostication and prediction: a retrospective of the last decade. J Pathol 220(2):263–280PubMedCrossRef Weigelt B, Frederick B, Jorge R (2010) The contribution of gene expression profiling to breast cancer classification, prognostication and prediction: a retrospective of the last decade. J Pathol 220(2):263–280PubMedCrossRef
20.
go back to reference Weigelt B, et al. (2008) Refinement of breast cancer classification by molecular characterization of histological special types. J Pathol 21(2):141–150CrossRef Weigelt B, et al. (2008) Refinement of breast cancer classification by molecular characterization of histological special types. J Pathol 21(2):141–150CrossRef
21.
go back to reference Sotiriou C, et al. (2003) Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci 100(18):10393–10398PubMedPubMedCentralCrossRef Sotiriou C, et al. (2003) Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci 100(18):10393–10398PubMedPubMedCentralCrossRef
22.
go back to reference Axelsson C, et al. (1992) Axillary dissection of level I and II lymph nodes is important in breast cancer classification. Eur J Cancer 28(8-9):1415–1418CrossRef Axelsson C, et al. (1992) Axillary dissection of level I and II lymph nodes is important in breast cancer classification. Eur J Cancer 28(8-9):1415–1418CrossRef
23.
go back to reference Chuang H, et al. (2007) Network-based classification of breast cancer metastasis. Mol Syst Biol 1(140):3 Chuang H, et al. (2007) Network-based classification of breast cancer metastasis. Mol Syst Biol 1(140):3
24.
go back to reference Brenton J, et al. (2005) Molecular classification and molecular forecasting of breast cancer: ready for clinical application?. J Clin Oncol 23(29):7350–7360PubMedCrossRef Brenton J, et al. (2005) Molecular classification and molecular forecasting of breast cancer: ready for clinical application?. J Clin Oncol 23(29):7350–7360PubMedCrossRef
25.
go back to reference Wang Y, et al. (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. The Lancet 365(9460):671–679CrossRef Wang Y, et al. (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. The Lancet 365(9460):671–679CrossRef
26.
go back to reference Viale G (2012) The current state of breast cancer classification. Ann Oncol 23(suppl_10):207–210CrossRef Viale G (2012) The current state of breast cancer classification. Ann Oncol 23(suppl_10):207–210CrossRef
27.
go back to reference Colombo P, et al. (2011) Microarrays in the 2010s: the contribution of microarray-based gene expression profiling to breast cancer classification, prognostication and prediction. Breast Cancer Res 3(212):13 Colombo P, et al. (2011) Microarrays in the 2010s: the contribution of microarray-based gene expression profiling to breast cancer classification, prognostication and prediction. Breast Cancer Res 3(212):13
28.
go back to reference Rakha A, et al. (2010) Breast cancer prognostic classification in the molecular era: the role of histological grade. Breast Cancer Res 4(207):12 Rakha A, et al. (2010) Breast cancer prognostic classification in the molecular era: the role of histological grade. Breast Cancer Res 4(207):12
29.
go back to reference Tan A, Gilbert D (2003) Ensemble machine learning on gene expression data for cancer classification Tan A, Gilbert D (2003) Ensemble machine learning on gene expression data for cancer classification
30.
go back to reference Guyon I, et al. (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46(1):389–422CrossRef Guyon I, et al. (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46(1):389–422CrossRef
31.
go back to reference Akay M (2009) Support vector machines combined with feature selection for breast cancer diagnosis. Expert systems with applications 36(2):3240–3247CrossRef Akay M (2009) Support vector machines combined with feature selection for breast cancer diagnosis. Expert systems with applications 36(2):3240–3247CrossRef
32.
go back to reference Polat K, Gunes S (2007) Breast cancer diagnosis using least square support vector machine. Digital Signal Process 17(4):694–701CrossRef Polat K, Gunes S (2007) Breast cancer diagnosis using least square support vector machine. Digital Signal Process 17(4):694–701CrossRef
33.
go back to reference Statnikov A, Wang L, Constantin A (2008) A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinf 9(1):319CrossRef Statnikov A, Wang L, Constantin A (2008) A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinf 9(1):319CrossRef
34.
go back to reference Cruz A, David W (2006) Applications of machine learning in cancer prediction and prognosis. Cancer Informat 2:59CrossRef Cruz A, David W (2006) Applications of machine learning in cancer prediction and prognosis. Cancer Informat 2:59CrossRef
35.
go back to reference Xin J et al (2006) Machine learning techniques and chi-square feature selection for cancer classification using SAGE gene expression profiles. International Workshop on Data Mining for Biomedical Applications Xin J et al (2006) Machine learning techniques and chi-square feature selection for cancer classification using SAGE gene expression profiles. International Workshop on Data Mining for Biomedical Applications
36.
go back to reference Wolberg W, Street W, Mangasarian O (1995) Image analysis and machine learning applied to breast cancer diagnosis and prognosis. Anal Quant Cytol Histol 17(2):77–87PubMed Wolberg W, Street W, Mangasarian O (1995) Image analysis and machine learning applied to breast cancer diagnosis and prognosis. Anal Quant Cytol Histol 17(2):77–87PubMed
37.
go back to reference Wei L, et al. (2005) A study on several machine-learning methods for classification of malignant and benign clustered microcalcifications. IEEE Trans Med Imaging 24(3):371–380PubMedCrossRef Wei L, et al. (2005) A study on several machine-learning methods for classification of malignant and benign clustered microcalcifications. IEEE Trans Med Imaging 24(3):371–380PubMedCrossRef
38.
go back to reference Murphy K (2006) Naive bayes classifiers. University of British Columbia Murphy K (2006) Naive bayes classifiers. University of British Columbia
39.
go back to reference Scott M (2002) Applied logistic regression analysis. Vol. 106. Sage Scott M (2002) Applied logistic regression analysis. Vol. 106. Sage
40.
go back to reference Liaw A, Wiener M (2002) Classification and regression by random forest. R news 2(3):18–22 Liaw A, Wiener M (2002) Classification and regression by random forest. R news 2(3):18–22
41.
go back to reference Suykens J, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9 (3):293–300CrossRef Suykens J, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9 (3):293–300CrossRef
43.
go back to reference Ross E, et al. (2019) Online accounts of gene expression profiling in early-stage breast cancer: interpreting genomic testing for chemotherapy decision making. Health Expect 22(1):74–82PubMedCrossRef Ross E, et al. (2019) Online accounts of gene expression profiling in early-stage breast cancer: interpreting genomic testing for chemotherapy decision making. Health Expect 22(1):74–82PubMedCrossRef
44.
go back to reference Srour MK et al (2019) Gene expression comparison between primary triple-negative breast cancer and matched axillary lymph node metastasis: 565-565 Srour MK et al (2019) Gene expression comparison between primary triple-negative breast cancer and matched axillary lymph node metastasis: 565-565
45.
go back to reference Nakshatri Harikrishna, et al. (2019) Genetic ancestry–dependent differences in breast cancer–induced field defects in the tumor-adjacent normal breast. Clin Cancer Res 25(9):2848–2859PubMedCrossRef Nakshatri Harikrishna, et al. (2019) Genetic ancestry–dependent differences in breast cancer–induced field defects in the tumor-adjacent normal breast. Clin Cancer Res 25(9):2848–2859PubMedCrossRef
47.
go back to reference Ishay-Ronen D, et al. (2019) Gain fat—lose metastasis: converting invasive breast cancer cells into adipocytes inhibits cancer metastasis. Cancer Cell 35(1):17–32PubMedCrossRef Ishay-Ronen D, et al. (2019) Gain fat—lose metastasis: converting invasive breast cancer cells into adipocytes inhibits cancer metastasis. Cancer Cell 35(1):17–32PubMedCrossRef
48.
go back to reference Mechera R, et al. (2019) Expression of RET is associated with Oestrogen receptor expression but lacks prognostic significance in breast cancer. BMC Cancer 19(1):41PubMedPubMedCentralCrossRef Mechera R, et al. (2019) Expression of RET is associated with Oestrogen receptor expression but lacks prognostic significance in breast cancer. BMC Cancer 19(1):41PubMedPubMedCentralCrossRef
49.
go back to reference Liedtke C, Pusztai L (2019) Gene expression profiling as an emerging diagnostic tool to personalize chemotherapy selection for early stage breast cancer. Pharmacogenetics of Breast Cancer. CRC Press, pp 87–106 Liedtke C, Pusztai L (2019) Gene expression profiling as an emerging diagnostic tool to personalize chemotherapy selection for early stage breast cancer. Pharmacogenetics of Breast Cancer. CRC Press, pp 87–106
50.
go back to reference Paroni G, et al. (2675) HER2-positive breast-cancer cell lines are sensitive to KDM5 inhibition: definition of a gene-expression model for the selection of sensitive cases. Oncogene 15(2019):38 Paroni G, et al. (2675) HER2-positive breast-cancer cell lines are sensitive to KDM5 inhibition: definition of a gene-expression model for the selection of sensitive cases. Oncogene 15(2019):38
51.
go back to reference Chang JC, Hilsenbeck SG, Fuqua AW (2019) Pharmacogenetics of breast cancer: toward the individualization of therapy. Pharmacogenetics of Breast Cancer. CRC Press, pp 15–23 Chang JC, Hilsenbeck SG, Fuqua AW (2019) Pharmacogenetics of breast cancer: toward the individualization of therapy. Pharmacogenetics of Breast Cancer. CRC Press, pp 15–23
52.
go back to reference Dworkin AM, Huang TH-M, Toland AE (2019) The role of epigenetics in breast cancer: implications for diagnosis, prognosis, and treatment. Pharmacogenetics of breast cancer. CRC Press, pp 57–71 Dworkin AM, Huang TH-M, Toland AE (2019) The role of epigenetics in breast cancer: implications for diagnosis, prognosis, and treatment. Pharmacogenetics of breast cancer. CRC Press, pp 57–71
53.
go back to reference Asano Yuka, et al. (2018) Expression and clinical significance of androgen receptor in triple-negative breast cancer. AR Signaling in Human Malignancies: Prostate Cancer and Beyond, pp 197 Asano Yuka, et al. (2018) Expression and clinical significance of androgen receptor in triple-negative breast cancer. AR Signaling in Human Malignancies: Prostate Cancer and Beyond, pp 197
54.
go back to reference Franco HL, et al. (2018) Enhancer transcription reveals subtype-specific gene expression programs controlling breast cancer pathogenesis. Genome Res 28(2):159–170PubMedPubMedCentralCrossRef Franco HL, et al. (2018) Enhancer transcription reveals subtype-specific gene expression programs controlling breast cancer pathogenesis. Genome Res 28(2):159–170PubMedPubMedCentralCrossRef
55.
go back to reference Gyorffy B, et al. (1107) An integrative bioinformatics approach reveals coding and non-coding gene variants associated with gene expression profiles and outcome in breast cancer molecular subtypes. Br J Cancer 118(8):2018 Gyorffy B, et al. (1107) An integrative bioinformatics approach reveals coding and non-coding gene variants associated with gene expression profiles and outcome in breast cancer molecular subtypes. Br J Cancer 118(8):2018
56.
go back to reference Kwa M, Makris A, Esteva FJ (2017) Clinical utility of gene-expression signatures in early stage breast cancer. Nat Rev Clin Oncol 14(10):595PubMedCrossRef Kwa M, Makris A, Esteva FJ (2017) Clinical utility of gene-expression signatures in early stage breast cancer. Nat Rev Clin Oncol 14(10):595PubMedCrossRef
57.
58.
59.
go back to reference Bozovic-Spasojevic I, et al. (2017) The prognostic role of androgen receptor in patients with early-stage breast cancer: a meta-analysis of clinical and gene expression data. Clin Cancer Res 23(11):2702–2712PubMedCrossRef Bozovic-Spasojevic I, et al. (2017) The prognostic role of androgen receptor in patients with early-stage breast cancer: a meta-analysis of clinical and gene expression data. Clin Cancer Res 23(11):2702–2712PubMedCrossRef
60.
go back to reference Casciello F, et al. (2017) G9a drives hypoxia-mediated gene repression for breast cancer cell survival and tumorigenesis. Proc Natl Acad Sci 114(27):7077–7082PubMedPubMedCentralCrossRef Casciello F, et al. (2017) G9a drives hypoxia-mediated gene repression for breast cancer cell survival and tumorigenesis. Proc Natl Acad Sci 114(27):7077–7082PubMedPubMedCentralCrossRef
61.
go back to reference Denkert C, et al. (2017) Molecular alterations in triple-negative breast cancer—the road to new treatment strategies. The Lancet 389(10087):2430–2442CrossRef Denkert C, et al. (2017) Molecular alterations in triple-negative breast cancer—the road to new treatment strategies. The Lancet 389(10087):2430–2442CrossRef
Metadata
Title
GSIAR: gene-subcategory interaction-based improved deep representation learning for breast cancer subcategorical analysis using gene expression, applicable for precision medicine
Author
Chiranjib Sur
Publication date
07-10-2019
Publisher
Springer Berlin Heidelberg
Published in
Medical & Biological Engineering & Computing / Issue 11/2019
Print ISSN: 0140-0118
Electronic ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-019-02038-2

Other articles of this Issue 11/2019

Medical & Biological Engineering & Computing 11/2019 Go to the issue

Premium Partner