Skip to main content
Top

2012 | OriginalPaper | Chapter

Guide to Programs for Non-relativistic Quantum Chemistry Calculations

Authors : Tao Zeng, Mariusz Klobukowski

Published in: Handbook of Computational Chemistry

Publisher: Springer Netherlands

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter reviews most of the widely used non-relativistic quantum chemistry program packages. Considering that information about availability and capabilities of the free quantum chemistry programs is more limited than that of the commercial ones, the authors concentrated on the free programs. More specifically, the reviewed programs are free for the academic community. Features of these programs are described in detail. The capabilities of each free program can generally be categorized into five fields: independent electron model; electron correlation treatment; excited state calculation; nuclear dynamics including gradient and hessian; and parallel computation. Examples of input files for the Møller–Plesset calculation of formaldehyde are presented for most of the free programs to illustrate how to create the input files. The main contributors of each free program and their institutions are also introduced, with a brief history of program development if available. All the key references of the cited algorithms and the hyperlinks of the home page of each program (both free and commercial) are given in this review for the interested readers. As the most important information of every cited free program’s documentation has been extracted here, it is appropriate to consider this chapter to be the manual of manuals.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
The original 13,370 lines of Gaussian 70 code were released to general public via the now defunct Quantum Chemistry Program Exchange (QCPE). Historic information about QCPE may be found on http://​www.​ccl.​net/​ccl/​qcpe/​QCPE_​removed/​. QCPE offered as the first ab initio program Polyatom (Version 1 with 3,275 lines of code) was made available by Csizmadia et al. in 1964. It is worth mentioning in passing that the fees that QCPE charged for the programs were very modest by today’s standards: $175 for codes greater than 10,000 lines plus $35 for media and handling. The programs grew as new capabilities were added: in 1974 Polyatom (Version II for IBM 360) grew to 20,000 lines, while the 1980 release of Gaussian (IBM Version II) contained about 60,000 lines of code. The current status of QCPE was explained in a brief note saved in Computational Chemistry List http://​ccl.​net/​chemistry/​resources/​messages/​2009/​06/​04.​001-dir/​index.​html
 
Literature
go back to reference Adamovic, I., Freitag, M. A., & Gordon, M. S. (2003). Density functional theory based effective fragment potential method. The Journal of Chemical Physics, 118, 6725–6732.CrossRef Adamovic, I., Freitag, M. A., & Gordon, M. S. (2003). Density functional theory based effective fragment potential method. The Journal of Chemical Physics, 118, 6725–6732.CrossRef
go back to reference Almlöf, J. (1987). General contraction of Gaussian basis sets. I. Atomic natural orbitals for first- and second-row atoms. The Journal of Chemical Physics, 86, 4070–4077. Almlöf, J. (1987). General contraction of Gaussian basis sets. I. Atomic natural orbitals for first- and second-row atoms. The Journal of Chemical Physics, 86, 4070–4077.
go back to reference Baldridge, K., & Klamt, A. (1997). First principles implementation of solvent effects without outlying charge error. The Journal of Chemical Physics, 106, 6622–6633.CrossRef Baldridge, K., & Klamt, A. (1997). First principles implementation of solvent effects without outlying charge error. The Journal of Chemical Physics, 106, 6622–6633.CrossRef
go back to reference Bartlett, R. J. (2005). How and why coupled-cluster theory became the pre-eminent method in an ab initio quantum chemistry. In C. E. Dykstra, G. Frenking, K. S. Kim, & G. E. Scuseria (Eds.), Theory and applications of computational chemistry: The first forty years (pp. 1191–1221). Amsterdam/Boston: Elsevier.CrossRef Bartlett, R. J. (2005). How and why coupled-cluster theory became the pre-eminent method in an ab initio quantum chemistry. In C. E. Dykstra, G. Frenking, K. S. Kim, & G. E. Scuseria (Eds.), Theory and applications of computational chemistry: The first forty years (pp. 1191–1221). Amsterdam/Boston: Elsevier.CrossRef
go back to reference Bartlett, R. J., & Musiał, M. (2007). Coupled-cluster theory in quantum chemistry. Reviews of Modern Physics, 79, 291.CrossRef Bartlett, R. J., & Musiał, M. (2007). Coupled-cluster theory in quantum chemistry. Reviews of Modern Physics, 79, 291.CrossRef
go back to reference Bobrowicz, F. W., & Schaefer H. F., III. (1977). The self-consistent field equations for generalized valence bond and open-shell Hartree-Fock wave functions. In H. F. Schaefer III (Ed.), Methods of electronic structure theory (modern theoretical chemistry) (Vol. 3, pp. 79–127). New York/London: Plenum. Bobrowicz, F. W., & Schaefer H. F., III. (1977). The self-consistent field equations for generalized valence bond and open-shell Hartree-Fock wave functions. In H. F. Schaefer III (Ed.), Methods of electronic structure theory (modern theoretical chemistry) (Vol. 3, pp. 79–127). New York/London: Plenum.
go back to reference Brooks, B. R., & Schaefer, H. F., III. (1979). The graphical unitary group approach to the electron correlation problem. Methods and preliminary applications. The Journal of Chemical Physics, 70, 5092–5106. Brooks, B. R., & Schaefer, H. F., III. (1979). The graphical unitary group approach to the electron correlation problem. Methods and preliminary applications. The Journal of Chemical Physics, 70, 5092–5106.
go back to reference Cammi, R., & Tomasi, J. (1995). Remarks on the use of the apparent surface charges (ASC) methods in solvation problems: Iterative versus matrix-inversion procedures and the renormalization of the apparent charges. Journal of Computational Chemistry, 16, 1449–1458.CrossRef Cammi, R., & Tomasi, J. (1995). Remarks on the use of the apparent surface charges (ASC) methods in solvation problems: Iterative versus matrix-inversion procedures and the renormalization of the apparent charges. Journal of Computational Chemistry, 16, 1449–1458.CrossRef
go back to reference Cao, X., & Dolg, M. (2006). Relativistic energy-consistent ab initio pseudopotentials as tools for quantum chemical investigations of actinide systems. Coordination Chemistry Reviews, 250, 900–910.CrossRef Cao, X., & Dolg, M. (2006). Relativistic energy-consistent ab initio pseudopotentials as tools for quantum chemical investigations of actinide systems. Coordination Chemistry Reviews, 250, 900–910.CrossRef
go back to reference Cederbaum, L. S., & Domcke, W. (1977). Theoretical aspects of ionization potentials and photoelectron spectroscopy: A Green’s function approach. Advances in Chemical Physics, 36, 205–344.CrossRef Cederbaum, L. S., & Domcke, W. (1977). Theoretical aspects of ionization potentials and photoelectron spectroscopy: A Green’s function approach. Advances in Chemical Physics, 36, 205–344.CrossRef
go back to reference Chaban, G. M., Jung, J. O., & Gerber, R. B. (1999). Ab initio calculation of anharmonic vibrational states of polyatomic systems: Electronic structure combined with vibrational self-consistent field. The Journal of Chemical Physics, 111, 1823–1829.CrossRef Chaban, G. M., Jung, J. O., & Gerber, R. B. (1999). Ab initio calculation of anharmonic vibrational states of polyatomic systems: Electronic structure combined with vibrational self-consistent field. The Journal of Chemical Physics, 111, 1823–1829.CrossRef
go back to reference Chipman, D. M. (1997). Charge penetration in dielectric models of solvation. The Journal of Chemical Physics, 106, 10194–10206.CrossRef Chipman, D. M. (1997). Charge penetration in dielectric models of solvation. The Journal of Chemical Physics, 106, 10194–10206.CrossRef
go back to reference Chipman, D. M. (2000). Reaction field treatment of charge penetration. The Journal of Chemical Physics, 112, 5558–5565.CrossRef Chipman, D. M. (2000). Reaction field treatment of charge penetration. The Journal of Chemical Physics, 112, 5558–5565.CrossRef
go back to reference Chipman, D. M. (2002). Comparison of solvent reaction field representations. Theoretical Chemistry Accounts, 107, 80–89.CrossRef Chipman, D. M. (2002). Comparison of solvent reaction field representations. Theoretical Chemistry Accounts, 107, 80–89.CrossRef
go back to reference Crawford, T. D., Sherrill, C. D., Valeev, E. F., Fermann, J. T., King, R. A., Leininger, M. L., Brown, S. T., Janssen, C. L., Seidl, E. T., Kenny, J. P., & Allen, W. D. (2007). PSI3: An open-source ab initio electronic structure package. Journal of Computational Chemistry, 28, 1610–1616.CrossRef Crawford, T. D., Sherrill, C. D., Valeev, E. F., Fermann, J. T., King, R. A., Leininger, M. L., Brown, S. T., Janssen, C. L., Seidl, E. T., Kenny, J. P., & Allen, W. D. (2007). PSI3: An open-source ab initio electronic structure package. Journal of Computational Chemistry, 28, 1610–1616.CrossRef
go back to reference Csizmadia, I. G., Harrison, M. C., Moskowitz, J. W., Seung, S., Sutcliffe, B. T., & Barrett, M. P. (1964). Quantum Chemistry Program Exchange, 11, 47. Csizmadia, I. G., Harrison, M. C., Moskowitz, J. W., Seung, S., Sutcliffe, B. T., & Barrett, M. P. (1964). Quantum Chemistry Program Exchange, 11, 47.
go back to reference Cundari, T. R., & Stevens, W. J. (1993). Effective core potential methods for the lanthanides. The Journal of Chemical Physics, 98, 5555–5565.CrossRef Cundari, T. R., & Stevens, W. J. (1993). Effective core potential methods for the lanthanides. The Journal of Chemical Physics, 98, 5555–5565.CrossRef
go back to reference Day, P. N., Jensen, J. H., Gordon, M. S., Webb, S. P., Stevens, W. J., Krauss, M., Garmer, D., Basch, H., & Cohen, D. (1996). An effective fragment method for modeling solvent effects in quantum mechanical calculations. The Journal of Chemical Physics, 105, 1968–1986.CrossRef Day, P. N., Jensen, J. H., Gordon, M. S., Webb, S. P., Stevens, W. J., Krauss, M., Garmer, D., Basch, H., & Cohen, D. (1996). An effective fragment method for modeling solvent effects in quantum mechanical calculations. The Journal of Chemical Physics, 105, 1968–1986.CrossRef
go back to reference de Vries, A. H., van Duijnen, P. T., Juffer, A. H., Rullmann, J. A. C., Dijkman, J. P., Merenga, H., & Thole, B. T. (1995). Implementation of reaction field methods in quantum chemistry computer codes. Journal of Computational Chemistry, 16, 37–55.CrossRef de Vries, A. H., van Duijnen, P. T., Juffer, A. H., Rullmann, J. A. C., Dijkman, J. P., Merenga, H., & Thole, B. T. (1995). Implementation of reaction field methods in quantum chemistry computer codes. Journal of Computational Chemistry, 16, 37–55.CrossRef
go back to reference Dewar, M. J. S., & Thiel, W. (1977). Ground states of molecules. 38. The MNDO method. Approximations and parameters. Journal of the American Chemical Society, 99, 4899–4906. Dewar, M. J. S., & Thiel, W. (1977). Ground states of molecules. 38. The MNDO method. Approximations and parameters. Journal of the American Chemical Society, 99, 4899–4906.
go back to reference Dewar, M. J. S., Zoebisch, E. G., Healy, E. F., & Stewart, J. J. P. (1985). AM1: A new general purpose quantum mechanical molecular model. Journal of the American Chemical Society, 107, 3902–3909.CrossRef Dewar, M. J. S., Zoebisch, E. G., Healy, E. F., & Stewart, J. J. P. (1985). AM1: A new general purpose quantum mechanical molecular model. Journal of the American Chemical Society, 107, 3902–3909.CrossRef
go back to reference Dewar, M. J. S., Jie, C., & Yu, J. (1993). SAM1; the first of a new series of general purpose quantum mechanical molecular models. Tetrahedron, 49, 5003–5038.CrossRef Dewar, M. J. S., Jie, C., & Yu, J. (1993). SAM1; the first of a new series of general purpose quantum mechanical molecular models. Tetrahedron, 49, 5003–5038.CrossRef
go back to reference Dolg, M. (2000). Effective core potentials. In J. Grotendorst (Ed.), Modern methods and algorithms of quantum chemistry (Vol. 1, pp. 479–508). Jülich: John von Neumann Institute for Computing. Dolg, M. (2000). Effective core potentials. In J. Grotendorst (Ed.), Modern methods and algorithms of quantum chemistry (Vol. 1, pp. 479–508). Jülich: John von Neumann Institute for Computing.
go back to reference Douglas, M., & Kroll, N. M. (1974). Quantum electrodynamical corrections to the fine structure of helium. Annals of Physics, 82, 89–155.CrossRef Douglas, M., & Kroll, N. M. (1974). Quantum electrodynamical corrections to the fine structure of helium. Annals of Physics, 82, 89–155.CrossRef
go back to reference Dreuw, A., & Head-Gordon, M. (2005). Single-reference ab initio methods for the calculation of excited states of large molecules. Chemical Reviews, 105, 4009–4037.CrossRef Dreuw, A., & Head-Gordon, M. (2005). Single-reference ab initio methods for the calculation of excited states of large molecules. Chemical Reviews, 105, 4009–4037.CrossRef
go back to reference Duijnen, P. T. V., & de Vries, A. H. (1996). Direct reaction field force field: A consistent way to connect and combine quantum-chemical and classical descriptions of molecules. International Journal of Quantum Chemistry, 60, 1111–1132.CrossRef Duijnen, P. T. V., & de Vries, A. H. (1996). Direct reaction field force field: A consistent way to connect and combine quantum-chemical and classical descriptions of molecules. International Journal of Quantum Chemistry, 60, 1111–1132.CrossRef
go back to reference Dunning, T. H. (1989). Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. The Journal of Chemical Physics, 90, 1007–1023. Dunning, T. H. (1989). Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. The Journal of Chemical Physics, 90, 1007–1023.
go back to reference Dunning, T. H., & Hay, P. J. (1977). Gaussian basis sets for molecular calculations. In H. F. Schaefer III (Ed.), Methods of electronic structure theory (modern theoretical chemistry) (Vol. 3, pp. 1–27). New York/London: Plenum.CrossRef Dunning, T. H., & Hay, P. J. (1977). Gaussian basis sets for molecular calculations. In H. F. Schaefer III (Ed.), Methods of electronic structure theory (modern theoretical chemistry) (Vol. 3, pp. 1–27). New York/London: Plenum.CrossRef
go back to reference Dupuis, M., Spangler, D., & Wendoloski, J. (1980). NRCC software catalog (Vol. 1, Program No. QG01 GAMESS Tech. rep.) Berkeley: National Resource for Computations in Chemistry, University of California. Dupuis, M., Spangler, D., & Wendoloski, J. (1980). NRCC software catalog (Vol. 1, Program No. QG01 GAMESS Tech. rep.) Berkeley: National Resource for Computations in Chemistry, University of California.
go back to reference Dyall, K. G. (2002). A systematic sequence of relativistic approximations. Journal of Computational Chemistry, 23, 786–793.CrossRef Dyall, K. G. (2002). A systematic sequence of relativistic approximations. Journal of Computational Chemistry, 23, 786–793.CrossRef
go back to reference Dyall, K. G., & van Lenthe, E. (1999). Relativistic regular approximations revisited: An infinite-order relativistic approximation. The Journal of Chemical Physics, 111, 1366–1372.CrossRef Dyall, K. G., & van Lenthe, E. (1999). Relativistic regular approximations revisited: An infinite-order relativistic approximation. The Journal of Chemical Physics, 111, 1366–1372.CrossRef
go back to reference Elliott, P., Furche, F., & Burke, K. (2009). Excited states from time-dependent density functional theory. Reviews in Computational Chemistry, 26, 91–166. Elliott, P., Furche, F., & Burke, K. (2009). Excited states from time-dependent density functional theory. Reviews in Computational Chemistry, 26, 91–166.
go back to reference Faas, S., Snijders, J. G., van Lenthe, J. H., van Lenthe, E., & Baerends, E. J. (1995). The ZORA formalism applied to the Dirac-Fock equation. Chemical Physics Letters, 246, 632–640.CrossRef Faas, S., Snijders, J. G., van Lenthe, J. H., van Lenthe, E., & Baerends, E. J. (1995). The ZORA formalism applied to the Dirac-Fock equation. Chemical Physics Letters, 246, 632–640.CrossRef
go back to reference Fedorov, D. G., & Kitaura, K. (2007). Extending the power of quantum chemistry to large systems with the fragment molecular orbital method. The Journal of Physical Chemistry A, 111, 6904–6914.CrossRef Fedorov, D. G., & Kitaura, K. (2007). Extending the power of quantum chemistry to large systems with the fragment molecular orbital method. The Journal of Physical Chemistry A, 111, 6904–6914.CrossRef
go back to reference Fedorov, D. G., & Kitaura, K. (2009). The fragment molecular orbital method: Practical applications to large molecular systems. Boca Raton: CRC Press. Fedorov, D. G., & Kitaura, K. (2009). The fragment molecular orbital method: Practical applications to large molecular systems. Boca Raton: CRC Press.
go back to reference Fock, V. A. (1930). Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperpro- blems. Zeitschrift für Physik, 61, 126–148.CrossRef Fock, V. A. (1930). Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperpro- blems. Zeitschrift für Physik, 61, 126–148.CrossRef
go back to reference Foresman, J. B., Head-Gordon, M., Pople, J. A., & Frisch, M. J. (1992). Toward a systematic molecular orbital theory for excited states. The Journal of Physical Chemistry, 96, 135–149.CrossRef Foresman, J. B., Head-Gordon, M., Pople, J. A., & Frisch, M. J. (1992). Toward a systematic molecular orbital theory for excited states. The Journal of Physical Chemistry, 96, 135–149.CrossRef
go back to reference Fuchs, C., Bonačić-Koutecký, V., & Koutecký, J. (1993). Compact formulation of multiconfigurational response theory. Applications to small alkali metal clusters. The Journal of Chemical Physics, 98, 3121–3140. Fuchs, C., Bonačić-Koutecký, V., & Koutecký, J. (1993). Compact formulation of multiconfigurational response theory. Applications to small alkali metal clusters. The Journal of Chemical Physics, 98, 3121–3140.
go back to reference Gordon, M. S., & Schmidt, M. W. (2005). Advances in electronic structure theory: GAMESS a decade later. In C. E. Dykstra, G. Frenking, K. S. Kim, & Scuseria, G. E. (Eds), Theory and applications of computational chemistry: The first forty years (pp. 1167–1189). Amsterdam: Elsevier. Gordon, M. S., & Schmidt, M. W. (2005). Advances in electronic structure theory: GAMESS a decade later. In C. E. Dykstra, G. Frenking, K. S. Kim, & Scuseria, G. E. (Eds), Theory and applications of computational chemistry: The first forty years (pp. 1167–1189). Amsterdam: Elsevier.
go back to reference Gordon, M. S., Slipchenko, L. V., Li, H., & Jensen, J. H. (2007). The effective fragment potential: A general method for predicting intermolecular interactions. In D. Spellmeyer & R. Wheeler (Eds.), Annual reports in computational chemistry (Vol. 3, pp. 177–193). Amsterdam: Elsevier.CrossRef Gordon, M. S., Slipchenko, L. V., Li, H., & Jensen, J. H. (2007). The effective fragment potential: A general method for predicting intermolecular interactions. In D. Spellmeyer & R. Wheeler (Eds.), Annual reports in computational chemistry (Vol. 3, pp. 177–193). Amsterdam: Elsevier.CrossRef
go back to reference Guest, M. F., Bush, I. J., van Dam, H. J. J., Sherwood, P., Thomas, J. M. H., van Lenthe, J. H., Havenith, R. W. A., & Kendrick, J. (2005). The GAMESS-UK electronic structure package: algorithms, developments and applications. Molecular Physics, 103, 719–747.CrossRef Guest, M. F., Bush, I. J., van Dam, H. J. J., Sherwood, P., Thomas, J. M. H., van Lenthe, J. H., Havenith, R. W. A., & Kendrick, J. (2005). The GAMESS-UK electronic structure package: algorithms, developments and applications. Molecular Physics, 103, 719–747.CrossRef
go back to reference Hall, G. G., & Lennard-Jones, J. (1951). The molecular orbital theory of chemical valency. III. Properties of molecular orbitals. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 202, 155–165. Hall, G. G., & Lennard-Jones, J. (1951). The molecular orbital theory of chemical valency. III. Properties of molecular orbitals. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 202, 155–165.
go back to reference Hartree, D. R. (1928). The wave mechanics of an atom with a non-coulomb central field. Part I. Theory and methods. Mathematical Proceedings of the Cambridge Philosophical Society, 24, 89–110. Hartree, D. R. (1928). The wave mechanics of an atom with a non-coulomb central field. Part I. Theory and methods. Mathematical Proceedings of the Cambridge Philosophical Society, 24, 89–110.
go back to reference Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. The Journal of Chemical Physics, 82, 299–310. Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. The Journal of Chemical Physics, 82, 299–310.
go back to reference Hess, B. A. (1986). Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. Physical Review A, 33, 3742–3748.CrossRef Hess, B. A. (1986). Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. Physical Review A, 33, 3742–3748.CrossRef
go back to reference Hess, B. A. (1989). Revision of the Douglas-Kroll transformation. Physical Review A, 39, 6016–6017.CrossRef Hess, B. A. (1989). Revision of the Douglas-Kroll transformation. Physical Review A, 39, 6016–6017.CrossRef
go back to reference Hsu, H., Davidson, E. R., & Pitzer, R. M. (1976). An SCF method for hole states. The Journal of Chemical Physics, 65, 609–613.CrossRef Hsu, H., Davidson, E. R., & Pitzer, R. M. (1976). An SCF method for hole states. The Journal of Chemical Physics, 65, 609–613.CrossRef
go back to reference Hurley, M. M., Pacios, L. F., Christiansen, P. A., Ross, R. B., & Ermler, W. C. (1986). Ab initio relativistic effective core potentials with spin-orbit operators. II. K through Kr. The Journal of Chemical Physics, 84, 6840–6853. Hurley, M. M., Pacios, L. F., Christiansen, P. A., Ross, R. B., & Ermler, W. C. (1986). Ab initio relativistic effective core potentials with spin-orbit operators. II. K through Kr. The Journal of Chemical Physics, 84, 6840–6853.
go back to reference Huzinaga, S., Seijo, L., Barandiarán, Z., & Klobukowski, M. (1987). The ab initio model potential method. Main group elements. The Journal of Chemical Physics, 86, 2132–2145. Huzinaga, S., Seijo, L., Barandiarán, Z., & Klobukowski, M. (1987). The ab initio model potential method. Main group elements. The Journal of Chemical Physics, 86, 2132–2145.
go back to reference Ivanic, J. (2003a). Direct configuration interaction and multiconfigurational self-consistent-field method for multiple active spaces with variable occupations. I. Method. The Journal of Chemical Physics, 119, 9364–9376. Ivanic, J. (2003a). Direct configuration interaction and multiconfigurational self-consistent-field method for multiple active spaces with variable occupations. I. Method. The Journal of Chemical Physics, 119, 9364–9376.
go back to reference Ivanic, J. (2003b). Direct configuration interaction and multiconfigurational self-consistent-field method for multiple active spaces with variable occupations. II. Application to oxoMn(salen) and N2O4. The Journal of Chemical Physics, 119, 9377–9385. Ivanic, J. (2003b). Direct configuration interaction and multiconfigurational self-consistent-field method for multiple active spaces with variable occupations. II. Application to oxoMn(salen) and N2O4. The Journal of Chemical Physics, 119, 9377–9385.
go back to reference Ivanic, J., & Ruedenberg, K. (2001). Identification of deadwood in configuration spaces through general direct configuration interaction. Theoretical Chemistry Accounts, 106, 339–351.CrossRef Ivanic, J., & Ruedenberg, K. (2001). Identification of deadwood in configuration spaces through general direct configuration interaction. Theoretical Chemistry Accounts, 106, 339–351.CrossRef
go back to reference Jensen, J. H., Day, P. N., Gordon, M. S., Basch, H., Cohen, D., Garmer, D. R., Krauss, M., & Stevens, W. J. (1984). An effective fragment method for modeling intermolecular hydrogen bonding-effects on quantum mechanical calculations. In D. A. Smith (Ed.), Modeling the hydrogen bond, ACS symposium (Vol. 569, pp. 139–151). New York: ACS. Jensen, J. H., Day, P. N., Gordon, M. S., Basch, H., Cohen, D., Garmer, D. R., Krauss, M., & Stevens, W. J. (1984). An effective fragment method for modeling intermolecular hydrogen bonding-effects on quantum mechanical calculations. In D. A. Smith (Ed.), Modeling the hydrogen bond, ACS symposium (Vol. 569, pp. 139–151). New York: ACS.
go back to reference Kahn, L. R., Baybutt, P., & Truhlar, D. G. (1976). Ab initio effective core potentials: Reduction of all-electron molecular structure calculations to calculations involving only valence electrons. The Journal of Chemical Physics, 65, 3826–3853.CrossRef Kahn, L. R., Baybutt, P., & Truhlar, D. G. (1976). Ab initio effective core potentials: Reduction of all-electron molecular structure calculations to calculations involving only valence electrons. The Journal of Chemical Physics, 65, 3826–3853.CrossRef
go back to reference Karelson, M. M., Katritzky, A. R., & Zerner, M. C. (1986). Reaction field effects on the electron distribution and chemical reactivity of molecules. International Journal of Quantum Chemistry, 30, 521–527.CrossRef Karelson, M. M., Katritzky, A. R., & Zerner, M. C. (1986). Reaction field effects on the electron distribution and chemical reactivity of molecules. International Journal of Quantum Chemistry, 30, 521–527.CrossRef
go back to reference Karelson, M., Tamm, T., & Zerner, M. C. (1993). Multicavity reaction field method for the solvent effect description in flexible molecular systems. The Journal of Physical Chemistry, 97, 11901–11907.CrossRef Karelson, M., Tamm, T., & Zerner, M. C. (1993). Multicavity reaction field method for the solvent effect description in flexible molecular systems. The Journal of Physical Chemistry, 97, 11901–11907.CrossRef
go back to reference Kendall, R. A., Aprà, E., Bernholdt, D. E., Bylaska, E. J., Dupuis, M., Fann, G. I., Harrison, R. J., Ju, J., Nichols, J. A., Nieplocha, J., Straatsma, T. P., Windus, T. L., & Wong, A. T. (2000). High performance computational chemistry: An overview of NWChem a distributed parallel application. Computer Physics Communications, 128, 260–283.CrossRef Kendall, R. A., Aprà, E., Bernholdt, D. E., Bylaska, E. J., Dupuis, M., Fann, G. I., Harrison, R. J., Ju, J., Nichols, J. A., Nieplocha, J., Straatsma, T. P., Windus, T. L., & Wong, A. T. (2000). High performance computational chemistry: An overview of NWChem a distributed parallel application. Computer Physics Communications, 128, 260–283.CrossRef
go back to reference Kirkwood, J. G. (1934). Theory of solutions of molecules containing widely separated charges with special application to zwitterions. The Journal of Chemical Physics, 2, 351–361.CrossRef Kirkwood, J. G. (1934). Theory of solutions of molecules containing widely separated charges with special application to zwitterions. The Journal of Chemical Physics, 2, 351–361.CrossRef
go back to reference Klamt, A. (1995). Conductor-like screening model for real solvents: A new approach to the quantitative calculation of solvation phenomena. The Journal of Physical Chemistry, 99, 2224–2235.CrossRef Klamt, A. (1995). Conductor-like screening model for real solvents: A new approach to the quantitative calculation of solvation phenomena. The Journal of Physical Chemistry, 99, 2224–2235.CrossRef
go back to reference Klamt, A., & Schüürmann, G. (1993). COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. Journal of the Chemical Society, Perkin Transactions, 2, 799–805.CrossRef Klamt, A., & Schüürmann, G. (1993). COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. Journal of the Chemical Society, Perkin Transactions, 2, 799–805.CrossRef
go back to reference Klobukowski, M., Huzinaga, S., & Sakai, Y. (1999). Model core potentials: Theory and applications. In J. Leszczynski (Ed.), Computational chemistry: Reviews of current trends (Vol. 3, pp. 49–74). Singapore: World Scientific. Klobukowski, M., Huzinaga, S., & Sakai, Y. (1999). Model core potentials: Theory and applications. In J. Leszczynski (Ed.), Computational chemistry: Reviews of current trends (Vol. 3, pp. 49–74). Singapore: World Scientific.
go back to reference Knowles, P. J., Andrews, J. S., Amos, R. D., Handy, N. C., & Pople, J. A. (1980). Restricted Møller-Plesset theory for open-shell molecules. Chemical Physics Letters, 186, 130–136.CrossRef Knowles, P. J., Andrews, J. S., Amos, R. D., Handy, N. C., & Pople, J. A. (1980). Restricted Møller-Plesset theory for open-shell molecules. Chemical Physics Letters, 186, 130–136.CrossRef
go back to reference Kowalski, K., & Piecuch, P. (2004). New coupled-cluster methods with singles, doubles, and noniterative triples for high accuracy calculations of excited electronic states. The Journal of Chemical Physics, 120, 1715–1738.CrossRef Kowalski, K., & Piecuch, P. (2004). New coupled-cluster methods with singles, doubles, and noniterative triples for high accuracy calculations of excited electronic states. The Journal of Chemical Physics, 120, 1715–1738.CrossRef
go back to reference LaJohn, L. A., Christiansen, P. A., Ross, R. B., Atashroo, T., & Ermler, W. C. (1987). Ab initio relativistic effective core potentials with spin-orbit operators. III. Rb through Xe. The Journal of Chemical Physics, 87, 2812–2824. LaJohn, L. A., Christiansen, P. A., Ross, R. B., Atashroo, T., & Ermler, W. C. (1987). Ab initio relativistic effective core potentials with spin-orbit operators. III. Rb through Xe. The Journal of Chemical Physics, 87, 2812–2824.
go back to reference Lauderdale, W. J., Stanton, J. F., Gauss, J., D., W. J., & Bartlett, R. J. (1991). Many-body perturbation theory with a restricted open-shell Hartree-Fock reference. Chemical Physics Letters, 187, 21–28. Lauderdale, W. J., Stanton, J. F., Gauss, J., D., W. J., & Bartlett, R. J. (1991). Many-body perturbation theory with a restricted open-shell Hartree-Fock reference. Chemical Physics Letters, 187, 21–28.
go back to reference Lee, T. J., & Jayatilaka, D. (1993). An open-shell restricted Hartree-Fock perturbation theory based on symmetric spin orbitals. Chemical Physics Letters, 201, 1–10.CrossRef Lee, T. J., & Jayatilaka, D. (1993). An open-shell restricted Hartree-Fock perturbation theory based on symmetric spin orbitals. Chemical Physics Letters, 201, 1–10.CrossRef
go back to reference Lee, T. J., Rendell, A. P., Dyall, K. G., & Jayatilaka, D. (1994). Open-shell restricted Hartree-Fock perturbation theory: Some considerations and comparisons. The Journal of Chemical Physics, 100, 7400–7409.CrossRef Lee, T. J., Rendell, A. P., Dyall, K. G., & Jayatilaka, D. (1994). Open-shell restricted Hartree-Fock perturbation theory: Some considerations and comparisons. The Journal of Chemical Physics, 100, 7400–7409.CrossRef
go back to reference Lischka, H., Shepard, R., Shavitt, I., Pitzer, R. M., Dallos, M., Müller, Th., Szalay, P. G., Brown, F. B., Ahlrichs, R., Böhm, H. J., Chang, A., Comeau, D. C., Gdanitz, R., Dachsel, H., Ehrhardt, C., Ernzerhof, M., Höchtl, P., Irle, S., Kedziora, G., Kovar, T., Parasuk, V., Pepper, M. J. M., Scharf, P., Schiffer, H., Schindler, M., Schüler, M., Seth, M., Stahlberg, E. A., Zhao, J.-G., Yabushita, S., Zhang, Z., Barbatti, M., Matsika, S., Schuurmann, M., Yarkony, D. R., Brozell, S. R., Beck, E. V., & Blaudeau, J.-P. (2006). COLUMBUS, an ab initio electronic structure program, release 5.9.1. Lischka, H., Shepard, R., Shavitt, I., Pitzer, R. M., Dallos, M., Müller, Th., Szalay, P. G., Brown, F. B., Ahlrichs, R., Böhm, H. J., Chang, A., Comeau, D. C., Gdanitz, R., Dachsel, H., Ehrhardt, C., Ernzerhof, M., Höchtl, P., Irle, S., Kedziora, G., Kovar, T., Parasuk, V., Pepper, M. J. M., Scharf, P., Schiffer, H., Schindler, M., Schüler, M., Seth, M., Stahlberg, E. A., Zhao, J.-G., Yabushita, S., Zhang, Z., Barbatti, M., Matsika, S., Schuurmann, M., Yarkony, D. R., Brozell, S. R., Beck, E. V., & Blaudeau, J.-P. (2006). COLUMBUS, an ab initio electronic structure program, release 5.9.1.
go back to reference Lotrich, V., Flocke, N., Ponton, M., Yau, A. D., Perera, A., Deumens, E., & Bartlett, R. J. (2008). Parallel implementation of electronic structure energy, gradient, and hessian calculations. The Journal of Chemical Physics, 128, 194104/1–15. Lotrich, V., Flocke, N., Ponton, M., Yau, A. D., Perera, A., Deumens, E., & Bartlett, R. J. (2008). Parallel implementation of electronic structure energy, gradient, and hessian calculations. The Journal of Chemical Physics, 128, 194104/1–15.
go back to reference McWeeny, R., & Diercksen, G. H. F. (1968). Self-consistent perturbation theory. II. Extension to open shells. The Journal of Chemical Physics, 49, 4852–4856. McWeeny, R., & Diercksen, G. H. F. (1968). Self-consistent perturbation theory. II. Extension to open shells. The Journal of Chemical Physics, 49, 4852–4856.
go back to reference Miertuš, S., Scrocco, E., & Tomasi, J. (1981). Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chemical Physics, 55, 117–129. Miertuš, S., Scrocco, E., & Tomasi, J. (1981). Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chemical Physics, 55, 117–129.
go back to reference Møller, Ch., & Plesset, M. S. (1934). Note on an approximation treatment for many-electron systems. Physical Review, 46, 618–622.CrossRef Møller, Ch., & Plesset, M. S. (1934). Note on an approximation treatment for many-electron systems. Physical Review, 46, 618–622.CrossRef
go back to reference Nakajima, T., & Hirao, K. (1999). A new relativistic theory: a relativistic scheme by eliminating small components (RESC). Chemical Physics Letters, 302, 383–391.CrossRef Nakajima, T., & Hirao, K. (1999). A new relativistic theory: a relativistic scheme by eliminating small components (RESC). Chemical Physics Letters, 302, 383–391.CrossRef
go back to reference Nakano, H. (1993a). MCSCF reference quasidegenerate perturbation theory with Epstein-Nesbet partitioning. The Journal of Chemical Physics, 99, 7983–7992.CrossRef Nakano, H. (1993a). MCSCF reference quasidegenerate perturbation theory with Epstein-Nesbet partitioning. The Journal of Chemical Physics, 99, 7983–7992.CrossRef
go back to reference Nakano, H. (1993b). Quasidegenerate perturbation theory with multiconfigurational self-consistent-field reference functions. Chemical Physics Letters, 207, 372–378.CrossRef Nakano, H. (1993b). Quasidegenerate perturbation theory with multiconfigurational self-consistent-field reference functions. Chemical Physics Letters, 207, 372–378.CrossRef
go back to reference Nielsen, E. S., Jørgensen, P., & Oddershede, J. (1980). Transition moments and dynamic polarizabilities in a second order polarization propagator approach. The Journal of Chemical Physics, 73, 6238–6246.CrossRef Nielsen, E. S., Jørgensen, P., & Oddershede, J. (1980). Transition moments and dynamic polarizabilities in a second order polarization propagator approach. The Journal of Chemical Physics, 73, 6238–6246.CrossRef
go back to reference Olsen, J., Yeager, D. L., & Jørgensen, P. (1983). Optimization and characterization of a multiconfigurational self-consistent field (MCSCF) state. Advances in Chemical Physics, 54, 1–176. Olsen, J., Yeager, D. L., & Jørgensen, P. (1983). Optimization and characterization of a multiconfigurational self-consistent field (MCSCF) state. Advances in Chemical Physics, 54, 1–176.
go back to reference Pacios, L. F., & Christiansen, P. A. (1985). Ab initio relativistic effective potentials with spin-orbit operators. I. Li through Ar. The Journal of Chemical Physics, 82, 2664–2671. Pacios, L. F., & Christiansen, P. A. (1985). Ab initio relativistic effective potentials with spin-orbit operators. I. Li through Ar. The Journal of Chemical Physics, 82, 2664–2671.
go back to reference Paldus, J. (2005). The beginnings of coupled-cluster theory: an eyewitness account. In C. E. Dykstra, G. Frenking, K. S. Kim, & G. E. Scuseria (Eds.), Theory and applications of computational chemistry: The first forty years (pp. 115–147). Amsterdam: Elsevier.CrossRef Paldus, J. (2005). The beginnings of coupled-cluster theory: an eyewitness account. In C. E. Dykstra, G. Frenking, K. S. Kim, & G. E. Scuseria (Eds.), Theory and applications of computational chemistry: The first forty years (pp. 115–147). Amsterdam: Elsevier.CrossRef
go back to reference Peterson, K. A. (2003). Systematically convergent basis sets with relativistic pseudopotentials. I. Correlation consistent basis sets for the post-d Group 13 – 15 elements. The Journal of Chemical Physics, 119, 11099–11112. Peterson, K. A. (2003). Systematically convergent basis sets with relativistic pseudopotentials. I. Correlation consistent basis sets for the post-d Group 13 – 15 elements. The Journal of Chemical Physics, 119, 11099–11112.
go back to reference Peterson, K. A., Figgen, D., Goll, E., Stoll, H., & Dolg, M. (2003). Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d Group 16 – 18 elements. The Journal of Chemical Physics, 119, 11113–11123. Peterson, K. A., Figgen, D., Goll, E., Stoll, H., & Dolg, M. (2003). Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d Group 16 – 18 elements. The Journal of Chemical Physics, 119, 11113–11123.
go back to reference Piecuch, P., & Włoch, M. (2005).Renormalized coupled-cluster methods exploiting left eigenstates of the similarity-transformed Hamiltonian. The Journal of Chemical Physics, 123, 224105/1–10. Piecuch, P., & Włoch, M. (2005).Renormalized coupled-cluster methods exploiting left eigenstates of the similarity-transformed Hamiltonian. The Journal of Chemical Physics, 123, 224105/1–10.
go back to reference Piecuch, P., Kucharski, S. A., Kowalski, K., & Musiał, M. (2002). Efficient computer implementation of the renormalized coupled-cluster methods: The R-CCSD[T], R-CCSD(T), CR-CCSD[T], and CR-CCSD(T) approaches. Computer Physics Communications, 149, 7196.CrossRef Piecuch, P., Kucharski, S. A., Kowalski, K., & Musiał, M. (2002). Efficient computer implementation of the renormalized coupled-cluster methods: The R-CCSD[T], R-CCSD(T), CR-CCSD[T], and CR-CCSD(T) approaches. Computer Physics Communications, 149, 7196.CrossRef
go back to reference Pople, J. A., & Nesbet, R. K. (1954). Self-consistent orbitals for radicals. The Journal of Chemical Physics, 22, 571–572.CrossRef Pople, J. A., & Nesbet, R. K. (1954). Self-consistent orbitals for radicals. The Journal of Chemical Physics, 22, 571–572.CrossRef
go back to reference Pople, J. A., Binkley, J. S., & Seeger, R. (1976). Theoretical models incorporating electron correlation. International Journal of Quantum Chemistry, S10, 1–19. Pople, J. A., Binkley, J. S., & Seeger, R. (1976). Theoretical models incorporating electron correlation. International Journal of Quantum Chemistry, S10, 1–19.
go back to reference Raffenetti, R. C. (1973). General contraction of Gaussian atomic orbitals: Core, valence, polarization, and diffuse basis sets; Molecular integral evaluation. The Journal of Chemical Physics, 58, 4452–4458.CrossRef Raffenetti, R. C. (1973). General contraction of Gaussian atomic orbitals: Core, valence, polarization, and diffuse basis sets; Molecular integral evaluation. The Journal of Chemical Physics, 58, 4452–4458.CrossRef
go back to reference Read, A. E., & Weinhold, F. (1983). Natural bond orbital analysis of near-Hartree-Fock water dimer. The Journal of Chemical Physics, 78, 4066–4073.CrossRef Read, A. E., & Weinhold, F. (1983). Natural bond orbital analysis of near-Hartree-Fock water dimer. The Journal of Chemical Physics, 78, 4066–4073.CrossRef
go back to reference Read, A. E., Weinstock, R. B., & Weinhold, F. (1985). Natural population analysis. The Journal of Chemical Physics, 83, 735–746.CrossRef Read, A. E., Weinstock, R. B., & Weinhold, F. (1985). Natural population analysis. The Journal of Chemical Physics, 83, 735–746.CrossRef
go back to reference Ridley, J. E., & Zerner, M. C. (1973). Intermediate neglect of differential overlap techniques for spectroscopy: pyrrole and the azines. Theoretical Chemistry Accounts: Theory, Computation, and Modeling, 32, 111–134.CrossRef Ridley, J. E., & Zerner, M. C. (1973). Intermediate neglect of differential overlap techniques for spectroscopy: pyrrole and the azines. Theoretical Chemistry Accounts: Theory, Computation, and Modeling, 32, 111–134.CrossRef
go back to reference Roos, B. O. (1983). The multiconfiguration SCF method. In G. H. F. Diercksen & S. Wilson (Eds.), Methods in computational molecular physics (pp. 161–187). Dordrecht: D. Reidel.CrossRef Roos, B. O. (1983). The multiconfiguration SCF method. In G. H. F. Diercksen & S. Wilson (Eds.), Methods in computational molecular physics (pp. 161–187). Dordrecht: D. Reidel.CrossRef
go back to reference Roos, B. O. (1987). The CASSCF method and its application in electronic structure calculations. Advances in Chemical Physics, 69, 339–445. Roos, B. O. (1987). The CASSCF method and its application in electronic structure calculations. Advances in Chemical Physics, 69, 339–445.
go back to reference Roos, B. O. (1994). The multiconfiguration SCF theory. In B. O. Roos (Ed.), Lecture notes in quantum chemistry (Vol. 58, pp. 177–254). Berlin: Springer.CrossRef Roos, B. O. (1994). The multiconfiguration SCF theory. In B. O. Roos (Ed.), Lecture notes in quantum chemistry (Vol. 58, pp. 177–254). Berlin: Springer.CrossRef
go back to reference Roothaan, C. C. J. (1951). New developments in molecular orbital theory. Reviews of Modern Physics, 23, 69–89.CrossRef Roothaan, C. C. J. (1951). New developments in molecular orbital theory. Reviews of Modern Physics, 23, 69–89.CrossRef
go back to reference Ross, R. B., Powers, J. M., Atashroo, T., Ermler, W. C., LaJohn, L. A., & Christiansen, P. A. (1990). Ab initio relativistic effective core potentials with spin-orbit operators. IV. Cs through Rn. The Journal of Chemical Physics, 93, 6654–6670. Ross, R. B., Powers, J. M., Atashroo, T., Ermler, W. C., LaJohn, L. A., & Christiansen, P. A. (1990). Ab initio relativistic effective core potentials with spin-orbit operators. IV. Cs through Rn. The Journal of Chemical Physics, 93, 6654–6670.
go back to reference Roy, L. E., Hay, P. J., & Martin, R. L. (2008). Revised basis sets for the LANL effective core potentials. Journal of Chemical Theory and Computation, 4, 1029–1031.CrossRef Roy, L. E., Hay, P. J., & Martin, R. L. (2008). Revised basis sets for the LANL effective core potentials. Journal of Chemical Theory and Computation, 4, 1029–1031.CrossRef
go back to reference Ruedenberg, K., Schmidt, M. W., Gilbert, M. M., & Elbert, S. T. (1982a). Are atoms intrinsic to molecular electronic wavefunctions? I. The FORS model. Chemical Physics, 71, 41–49. Ruedenberg, K., Schmidt, M. W., Gilbert, M. M., & Elbert, S. T. (1982a). Are atoms intrinsic to molecular electronic wavefunctions? I. The FORS model. Chemical Physics, 71, 41–49.
go back to reference Ruedenberg, K., Schmidt, M. W., Gilbert, M. M., & Elbert, S. T. (1982b). Are atoms intrinsic to molecular electronic wavefunctions? II. Analysis of FORS orbitals. Chemical Physics, 71, 51–64. Ruedenberg, K., Schmidt, M. W., Gilbert, M. M., & Elbert, S. T. (1982b). Are atoms intrinsic to molecular electronic wavefunctions? II. Analysis of FORS orbitals. Chemical Physics, 71, 51–64.
go back to reference Ruedenberg, K., Schmidt, M. W., Gilbert, M. M., & Elbert, S. T. (1982c). Are atoms intrinsic to molecular electronic wavefunctions? III. Analysis of FORS configurations. Chemical Physics, 71, 65–78. Ruedenberg, K., Schmidt, M. W., Gilbert, M. M., & Elbert, S. T. (1982c). Are atoms intrinsic to molecular electronic wavefunctions? III. Analysis of FORS configurations. Chemical Physics, 71, 65–78.
go back to reference Schirmer, J., & Cederbaum, L. S. (1978). The two-particle-hole Tamm-Dancoff approximation (2ph-TDA) equations for closed-shell atoms and molecules. Journal of Physics B: Atomic and Molecular Physics, 11, 1889–1900.CrossRef Schirmer, J., & Cederbaum, L. S. (1978). The two-particle-hole Tamm-Dancoff approximation (2ph-TDA) equations for closed-shell atoms and molecules. Journal of Physics B: Atomic and Molecular Physics, 11, 1889–1900.CrossRef
go back to reference Schmidt, M. W., & Gordon, M. S. (1998). The construction and interpretation of MCSCF wavefunctions. Annual Review of Physical Chemistry, 49, 233–266.CrossRef Schmidt, M. W., & Gordon, M. S. (1998). The construction and interpretation of MCSCF wavefunctions. Annual Review of Physical Chemistry, 49, 233–266.CrossRef
go back to reference Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S., Windus, T. L., Dupuis, M., & Montgomery, J. J. A. (1993). General atomic and molecular electronic structure system. Journal of Computational Chemistry, 14, 1347–1363.CrossRef Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S., Windus, T. L., Dupuis, M., & Montgomery, J. J. A. (1993). General atomic and molecular electronic structure system. Journal of Computational Chemistry, 14, 1347–1363.CrossRef
go back to reference Shavitt, I., & Bartlett, R. J. (2009). Many-body methods in chemistry and physics: MBPT and coupled-cluster theory. Cambridge, UK: Cambridge University Press.CrossRef Shavitt, I., & Bartlett, R. J. (2009). Many-body methods in chemistry and physics: MBPT and coupled-cluster theory. Cambridge, UK: Cambridge University Press.CrossRef
go back to reference Shepard, R. (1987). The MCSCF method. Advances in Chemical Physics, 69, 63–200. Shepard, R. (1987). The MCSCF method. Advances in Chemical Physics, 69, 63–200.
go back to reference Stevens, W. J., Basch, H., & Krauss, M. (1984). Compact effective potentials and efficient shared-exponent basis sets for the first- and second-row atoms. The Journal of Chemical Physics, 81, 6026–6033.CrossRef Stevens, W. J., Basch, H., & Krauss, M. (1984). Compact effective potentials and efficient shared-exponent basis sets for the first- and second-row atoms. The Journal of Chemical Physics, 81, 6026–6033.CrossRef
go back to reference Stewart, J. J. P. (1989). Optimization of parameters for semiempirical methods.I. Method. Journal of Computational Chemistry, 10, 209–220. Stewart, J. J. P. (1989). Optimization of parameters for semiempirical methods.I. Method. Journal of Computational Chemistry, 10, 209–220.
go back to reference Stewart, J. J. P. (1990). MOPAC: A semiempirical molecular orbital program. Journal of Computer-Aided Molecular Design, 4, 1–103.CrossRef Stewart, J. J. P. (1990). MOPAC: A semiempirical molecular orbital program. Journal of Computer-Aided Molecular Design, 4, 1–103.CrossRef
go back to reference Stewart, J. J. P. (2007). Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. Journal of Molecular Modeling, 13, 1173–1213.CrossRef Stewart, J. J. P. (2007). Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. Journal of Molecular Modeling, 13, 1173–1213.CrossRef
go back to reference Tapia, O., & Goscinski, O. (1975). Self-consistent reaction field-theory of solvent effects. Molecular Physics, 29, 1653.CrossRef Tapia, O., & Goscinski, O. (1975). Self-consistent reaction field-theory of solvent effects. Molecular Physics, 29, 1653.CrossRef
go back to reference Tomasi, J., & Persico, M. (1994). Molecular interactions in solution: An overview of methods based on continuous distributions of the solvent. Chemical Reviews, 94, 2027–2094.CrossRef Tomasi, J., & Persico, M. (1994). Molecular interactions in solution: An overview of methods based on continuous distributions of the solvent. Chemical Reviews, 94, 2027–2094.CrossRef
go back to reference Tomasi, J., Mennucci, B., & Cammi, R. (2005). Quantum mechanical continuum solvation models. Chemical Reviews, 105, 2999–3093.CrossRef Tomasi, J., Mennucci, B., & Cammi, R. (2005). Quantum mechanical continuum solvation models. Chemical Reviews, 105, 2999–3093.CrossRef
go back to reference Werner, H. (1987). Matrix formulated direct MCSCF and multiconfiguration reference CI methods. Advances in Chemical Physics, 69, 1–62. Werner, H. (1987). Matrix formulated direct MCSCF and multiconfiguration reference CI methods. Advances in Chemical Physics, 69, 1–62.
go back to reference Włoch, M., Gour, J. R., Kowalski, K., & Piecuch, P. (2005). Extension of renormalized coupled-cluster methods including triple excitations to excited electronic states of open-shell molecules. The Journal of Chemical Physics, 122, 214107/ 1–15. Włoch, M., Gour, J. R., Kowalski, K., & Piecuch, P. (2005). Extension of renormalized coupled-cluster methods including triple excitations to excited electronic states of open-shell molecules. The Journal of Chemical Physics, 122, 214107/ 1–15.
go back to reference Yabushita, S., Zhang, Z., & Pitzer, R. M. (1999). Spin-orbit configuration interaction using the graphical unitary group approach and relativistic core potential and spin-orbit operators. The Journal of Physical Chemistry, 103, 5791–5800.CrossRef Yabushita, S., Zhang, Z., & Pitzer, R. M. (1999). Spin-orbit configuration interaction using the graphical unitary group approach and relativistic core potential and spin-orbit operators. The Journal of Physical Chemistry, 103, 5791–5800.CrossRef
go back to reference Zeng, T., Fedorov, D. G., Schmidt, M. W., & Klobukowski, M. (2011a). The Journal of Chemical Physics, 134, 214107-1–214107-9. Zeng, T., Fedorov, D. G., Schmidt, M. W., & Klobukowski, M. (2011a). The Journal of Chemical Physics, 134, 214107-1–214107-9.
go back to reference Zeng, T., Fedorov, D. G., Schmidt, M. W., & Klobukowski, M. (2011b). The Journal of Chemical Theory and Computation, 7, 2864–2875.CrossRef Zeng, T., Fedorov, D. G., Schmidt, M. W., & Klobukowski, M. (2011b). The Journal of Chemical Theory and Computation, 7, 2864–2875.CrossRef
go back to reference Zerner, M. C. (1991). Semiempirical molecular orbitals methods. In K. B. Lipkowitz & D. B. Boyd (Eds.), Reviews in computational chemistry (Vol. 2, pp. 313–365). New York: VCH Publishers.CrossRef Zerner, M. C. (1991). Semiempirical molecular orbitals methods. In K. B. Lipkowitz & D. B. Boyd (Eds.), Reviews in computational chemistry (Vol. 2, pp. 313–365). New York: VCH Publishers.CrossRef
Metadata
Title
Guide to Programs for Non-relativistic Quantum Chemistry Calculations
Authors
Tao Zeng
Mariusz Klobukowski
Copyright Year
2012
Publisher
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-0711-5_17

Premium Partner