Skip to main content
Top
Published in: Wireless Personal Communications 2/2021

09-03-2021

HAS-MAC: A Hybrid Asynchronous and Synchronous Communication System for Energy-Harvesting Wireless Sensor Networks

Authors: Demin Gao, Shuo Zhang, Fuquan Zhang

Published in: Wireless Personal Communications | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In Energy-Harvesting Wireless Sensor Networks (EH-WSNs), sensors have to continuously adapt their duty cycle to regulate energy consumption according to available energy. Therefore, it is unpractical to preserve an invariable working-schedule for a sensor and relay on a fixed routing path for a long time. For achieving packets forwarding effectively with low transmission latency, asynchronous and synchronous Medium Access Control (MAC) protocols are adopted widely regulating energy consumption in EH-WSNs. Since they bear a clear set of advantages and disadvantages, we propose a communication scheme that hybridizes asynchronous and synchronous MAC protocols for reducing average End-to-End delay in EH-WSNs, where a sensor will switch between the asynchronous and synchronous systems according to its energy supplement and practical scenario for adapting to its duty cycle. Our algorithm is suitable for not only low traffic load, but also high/periodic traffic situation. Especially, when working-schedules of sensors are adjusted dynamically depending on the energy environment, our algorithm provides better performance in EH-WSNs. Through extensive simulation and experiments, we demonstrate that our algorithm is efficient in reducing data transmission latency in EH-WSNs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wang, S., Kim, S. M., Kong, L., et al. (2018). Concurrent transmission aware routing in wireless networks[J]. Communications, IEEE Transactions on, 66(12), 6275–6286.CrossRef Wang, S., Kim, S. M., Kong, L., et al. (2018). Concurrent transmission aware routing in wireless networks[J]. Communications, IEEE Transactions on, 66(12), 6275–6286.CrossRef
2.
go back to reference Lin, H., & Du, L. (2020). Optimization and simulation of controller area network communication model based on industrial internet of things platform[J]. Complexity. Lin, H., & Du, L. (2020). Optimization and simulation of controller area network communication model based on industrial internet of things platform[J]. Complexity.
3.
go back to reference Yi-Han, X.U,, Meng-Lian, L.I.U., Jing-Wei, X.I.E., & Jun, Z. (2019). An IEEE 802.21 MIS-based Mobility Management for D2D Communications over Heterogeneous Networks (HetNets). Concurrency and Computation: Practice and Experience. 2019:e5552. Yi-Han, X.U,, Meng-Lian, L.I.U., Jing-Wei, X.I.E., & Jun, Z. (2019). An IEEE 802.21 MIS-based Mobility Management for D2D Communications over Heterogeneous Networks (HetNets). Concurrency and Computation: Practice and Experience. 2019:e5552.
4.
go back to reference Xu, Y. H., Yang, C. C., Hua, M., et al. (2020). Deep deterministic policy gradient (DDPG)-based resource allocation scheme for NOMA vehicular communications[J]. IEEE Access, 99, 1–10. Xu, Y. H., Yang, C. C., Hua, M., et al. (2020). Deep deterministic policy gradient (DDPG)-based resource allocation scheme for NOMA vehicular communications[J]. IEEE Access, 99, 1–10.
5.
go back to reference Zheng, X., Cao, Z., Wang, J., He, Y., & Liu, Y. (2017). Interference resilient duty cycling for wireless sensor networks under co-existing environments. IEEE Transactions on Communications, 65(7), 2971–2984.CrossRef Zheng, X., Cao, Z., Wang, J., He, Y., & Liu, Y. (2017). Interference resilient duty cycling for wireless sensor networks under co-existing environments. IEEE Transactions on Communications, 65(7), 2971–2984.CrossRef
6.
go back to reference Wang, S., Basalamah, A., Kim, S. M., Guo, S., Tobe, Y., & He, T. (2015). Link-correlation-aware opportunistic routing in wireless networks. IEEE Transactions on Wireless Communications, 14(1), 47–56.CrossRef Wang, S., Basalamah, A., Kim, S. M., Guo, S., Tobe, Y., & He, T. (2015). Link-correlation-aware opportunistic routing in wireless networks. IEEE Transactions on Wireless Communications, 14(1), 47–56.CrossRef
7.
go back to reference Choi, B. J., & Shen, X. S. (2011). Adaptive asynchronous sleep scheduling protocols for delay tolerant networks[J]. IEEE Transactions on Mobile Computing, 10(9), 1283–1296.CrossRef Choi, B. J., & Shen, X. S. (2011). Adaptive asynchronous sleep scheduling protocols for delay tolerant networks[J]. IEEE Transactions on Mobile Computing, 10(9), 1283–1296.CrossRef
8.
go back to reference Huang, P., Xiao, L., Soltani, S., Mutka, M. W., & Xi, N. (2012). The evolution of mac protocols in wireless sensor networks: A survey. IEEE Communications Surveys and Tutorials, 15(1), 101–120.CrossRef Huang, P., Xiao, L., Soltani, S., Mutka, M. W., & Xi, N. (2012). The evolution of mac protocols in wireless sensor networks: A survey. IEEE Communications Surveys and Tutorials, 15(1), 101–120.CrossRef
9.
go back to reference Sherazi, H. H. R., Grieco, L. A., & Boggia, G. (2018). A comprehensive review on energy harvesting MAC protocols in WSNs: Challenges and tradeoffs[J]. Ad Hoc Networks, 71, 117–134.CrossRef Sherazi, H. H. R., Grieco, L. A., & Boggia, G. (2018). A comprehensive review on energy harvesting MAC protocols in WSNs: Challenges and tradeoffs[J]. Ad Hoc Networks, 71, 117–134.CrossRef
10.
go back to reference Kshitij, B., Nowick, S., et al. (2018). A continuous-time replication strategy for efficient multicast in asynchronous NoCs[J]. IEEE Transactions on Very Large Scale Integration Systems, 27(2), 350–363. Kshitij, B., Nowick, S., et al. (2018). A continuous-time replication strategy for efficient multicast in asynchronous NoCs[J]. IEEE Transactions on Very Large Scale Integration Systems, 27(2), 350–363.
11.
go back to reference Ramezani, P., & Pakravan, M. R. (2015). Overview of MAC protocols for energy harvesting wireless sensor networks[C], Personal, Indoor, and Mobile Radio Communications (PIMRC). In IEEE 26th Annual international symposium on IEEE pp. 2032–2037. Ramezani, P., & Pakravan, M. R. (2015). Overview of MAC protocols for energy harvesting wireless sensor networks[C], Personal, Indoor, and Mobile Radio Communications (PIMRC). In IEEE 26th Annual international symposium on IEEE pp. 2032–2037.
12.
go back to reference Wang, X., Zhang, D., & Zhu, J. (2019). Terahertz band propagation characteristics of coupling multiconductor transmission lines in multilayer media[J]. IEEE Access, 99, 1–10.CrossRef Wang, X., Zhang, D., & Zhu, J. (2019). Terahertz band propagation characteristics of coupling multiconductor transmission lines in multilayer media[J]. IEEE Access, 99, 1–10.CrossRef
13.
go back to reference Yi-Han, X., Xie, J.-W., Zhang, Y.-G., Hua, M., & Zhou, W. (2019). Reinforcement learning (RL)-based energy efficient resource allocation for energy harvesting-powered wireless body area network. Sensors, 20(1), 44.CrossRef Yi-Han, X., Xie, J.-W., Zhang, Y.-G., Hua, M., & Zhou, W. (2019). Reinforcement learning (RL)-based energy efficient resource allocation for energy harvesting-powered wireless body area network. Sensors, 20(1), 44.CrossRef
14.
go back to reference Wu, Y., Liu, W., & Li, K. (2017). Power allocation and relay selection for energy efficient cooperation in wireless sensor networks with energy harvesting. J Wireless Com Network, 2017, 26.CrossRef Wu, Y., Liu, W., & Li, K. (2017). Power allocation and relay selection for energy efficient cooperation in wireless sensor networks with energy harvesting. J Wireless Com Network, 2017, 26.CrossRef
15.
go back to reference Demin, G., Haifeng, L., Yunfei, L., & Guoxin, W. (2016). Maximum data collection rate in rechargeable wireless sensor networks with multiple sinks. China Communications, 13(2), 95–108. Demin, G., Haifeng, L., Yunfei, L., & Guoxin, W. (2016). Maximum data collection rate in rechargeable wireless sensor networks with multiple sinks. China Communications, 13(2), 95–108.
16.
go back to reference Yin, W., Bowen, L., Yongjun, Z., & Wenbo, L. (2018). Energy-neutral communication protocol for living-tree bioenergy powered wireless sensor network, mobile information systems, Article ID 5294026, p. 15. Yin, W., Bowen, L., Yongjun, Z., & Wenbo, L. (2018). Energy-neutral communication protocol for living-tree bioenergy powered wireless sensor network, mobile information systems, Article ID 5294026, p. 15.
17.
go back to reference Lin, H., Bai, D., & Liu, Y. (2019). Maximum data collection rate routing for data gather trees with data aggregation in rechargeable wireless sensor networks. Cluster Computing, 22(1), 597–607.CrossRef Lin, H., Bai, D., & Liu, Y. (2019). Maximum data collection rate routing for data gather trees with data aggregation in rechargeable wireless sensor networks. Cluster Computing, 22(1), 597–607.CrossRef
18.
go back to reference Dong, Y., Zhang, F., Joe, I., Lin, H., Jiao, W., & Zhang, Y. (2020). Learning for multiple-relay selection in a vehicular delay tolerant network. IEEE Access, 8, 175602–175611.CrossRef Dong, Y., Zhang, F., Joe, I., Lin, H., Jiao, W., & Zhang, Y. (2020). Learning for multiple-relay selection in a vehicular delay tolerant network. IEEE Access, 8, 175602–175611.CrossRef
19.
go back to reference Zhao, P., Wu, L., Hong, Z., et al. (2019). Research on multicloud access control policy integration framework. China Communications, 16(9), 222–234.CrossRef Zhao, P., Wu, L., Hong, Z., et al. (2019). Research on multicloud access control policy integration framework. China Communications, 16(9), 222–234.CrossRef
20.
go back to reference Yan, X., Cao, J., Sun, L., Zhou, J., Wang, S., & Song, A. (2020). Accurate analytical-based multi-hop localization with low energy consumption for irregular networks. IEEE Transactions on Vehicular Technology, 69(2), 2021–2033.CrossRef Yan, X., Cao, J., Sun, L., Zhou, J., Wang, S., & Song, A. (2020). Accurate analytical-based multi-hop localization with low energy consumption for irregular networks. IEEE Transactions on Vehicular Technology, 69(2), 2021–2033.CrossRef
21.
go back to reference Polastre Hill, J., & Culler, J. (2004). D. Versatile low power media access for wireless sensor networks[C]. In International conference on embedded networked sensor systems. ACM, pp. 95–107. Polastre Hill, J., & Culler, J. (2004). D. Versatile low power media access for wireless sensor networks[C]. In International conference on embedded networked sensor systems. ACM, pp. 95–107.
22.
go back to reference Buettner, M., Yee, G. V., Anderson, E., et al. (2006). X-MAC: A short preamble MAC protocol for duty-cycled wireless sensor networks[J]. Acm Sensys, 14(4), 307–320. Buettner, M., Yee, G. V., Anderson, E., et al. (2006). X-MAC: A short preamble MAC protocol for duty-cycled wireless sensor networks[J]. Acm Sensys, 14(4), 307–320.
23.
go back to reference Bernardo, L., Oliveira, R., Pereira, M., et al. (2007). A wireless sensor MAC protocol for bursty data traffic[C]. In IEEE International symposium on personal. Indoor and Mobile Radio Communications pp. 1–5. Bernardo, L., Oliveira, R., Pereira, M., et al. (2007). A wireless sensor MAC protocol for bursty data traffic[C]. In IEEE International symposium on personal. Indoor and Mobile Radio Communications pp. 1–5.
24.
go back to reference Wang, H., Zhang, & X., Khokhar, A. (2007). DPS-MAC: an asynchronous MAC protocol for wireless sensor networks[C]. In International conference on high performance computing. pp. 393-404. Springer-Verlag, Berlin Wang, H., Zhang, & X., Khokhar, A. (2007). DPS-MAC: an asynchronous MAC protocol for wireless sensor networks[C]. In International conference on high performance computing. pp. 393-404. Springer-Verlag, Berlin
25.
go back to reference Huang, P., Wang, C., Xiao, L., et al. (2010). RC-MAC: A receiver-centric medium access control protocol for wireless sensor networks[C]. In International workshop on quality of service. IEEE pp. 1–9. Huang, P., Wang, C., Xiao, L., et al. (2010). RC-MAC: A receiver-centric medium access control protocol for wireless sensor networks[C]. In International workshop on quality of service. IEEE pp. 1–9.
26.
go back to reference Yun, D., Yoo, S., & Kim, D., et al. (2008). OD-MAC: An on-demand MAC protocol for body sensor networks based on IEEE 802.15.4[C]. In IEEE international conference on embedded and real-time computing systems and applications. IEEE, pp. 413-420. Yun, D., Yoo, S., & Kim, D., et al. (2008). OD-MAC: An on-demand MAC protocol for body sensor networks based on IEEE 802.15.4[C]. In IEEE international conference on embedded and real-time computing systems and applications. IEEE, pp. 413-420.
27.
go back to reference Nguyen, K., Nguyen, V. H., Le, D. D., et al. (2014). ERI-MAC: An energy-harvested receiver-initiated mac protocol for wireless sensor networks[J]. International Journal of Distributed Sensor Networks, 2014(10), 1–8. Nguyen, K., Nguyen, V. H., Le, D. D., et al. (2014). ERI-MAC: An energy-harvested receiver-initiated mac protocol for wireless sensor networks[J]. International Journal of Distributed Sensor Networks, 2014(10), 1–8.
28.
go back to reference Liu, H. I., He, W. J., & Seah, W. K. (2015). LEB-MAC: Load and energy balancing MAC protocol for energy harvesting powered wireless sensor networks[C]. In IEEE international conference on parallel and distributed systems. IEEE pp. 584-591. Liu, H. I., He, W. J., & Seah, W. K. (2015). LEB-MAC: Load and energy balancing MAC protocol for energy harvesting powered wireless sensor networks[C]. In IEEE international conference on parallel and distributed systems. IEEE pp. 584-591.
29.
go back to reference Pang, B. M., Shi, H. S., & Li, Y. X. (2002). An energy-efficient MAC protocol for wireless sensor network[J]. Electronic Measurement Technology, 3(10), 1567–1576. Pang, B. M., Shi, H. S., & Li, Y. X. (2002). An energy-efficient MAC protocol for wireless sensor network[J]. Electronic Measurement Technology, 3(10), 1567–1576.
30.
go back to reference Du, S., Saha, A. K., & Johnson, D. B. (2007). RMAC: A routing-enhanced duty-cycle MAC protocol for wireless sensor networks[C]. INFOCOM 2007. IEEE International conference on computer communications. IEEE, pp. 1478–1486. Du, S., Saha, A. K., & Johnson, D. B. (2007). RMAC: A routing-enhanced duty-cycle MAC protocol for wireless sensor networks[C]. INFOCOM 2007. IEEE International conference on computer communications. IEEE, pp. 1478–1486.
31.
go back to reference Vasanthi, N. A., & Annadurai, S. (2006). Energy efficient sleep schedule for achieving minimum latency in query based sensor networks[C]. IEEE International conference on sensor networks, ubiquitous, and trustworthy computing. IEEE Computer Society, pp. 214–219. Vasanthi, N. A., & Annadurai, S. (2006). Energy efficient sleep schedule for achieving minimum latency in query based sensor networks[C]. IEEE International conference on sensor networks, ubiquitous, and trustworthy computing. IEEE Computer Society, pp. 214–219.
32.
go back to reference Wei, Y., Silva, F., & Heidemann, J. (2006). Ultra-low duty cycle MAC with scheduled channel polling[C]. International conference on embedded networked sensor systems. ACM, pp. 321–334. Wei, Y., Silva, F., & Heidemann, J. (2006). Ultra-low duty cycle MAC with scheduled channel polling[C]. International conference on embedded networked sensor systems. ACM, pp. 321–334.
33.
go back to reference Zareei, M., Taghizadeh, A., Budiarto, R., et al. (2011). EMS-MAC: Energy efficient contention-based medium access control protocol for mobile sensor networks[J]. Computer Journal, 54(12), 1963–1972.CrossRef Zareei, M., Taghizadeh, A., Budiarto, R., et al. (2011). EMS-MAC: Energy efficient contention-based medium access control protocol for mobile sensor networks[J]. Computer Journal, 54(12), 1963–1972.CrossRef
34.
go back to reference Liu, C. J., Huang, P., & Xiao, L. (2016). TAS-MAC: A traffic-adaptive synchronous MAC protocol for wireless sensor networks[J]. ACM Transactions on Sensor Networks (TOSN), 12(1), 1.CrossRef Liu, C. J., Huang, P., & Xiao, L. (2016). TAS-MAC: A traffic-adaptive synchronous MAC protocol for wireless sensor networks[J]. ACM Transactions on Sensor Networks (TOSN), 12(1), 1.CrossRef
35.
go back to reference Haifeng, L., & Fuquan, Z. (2020). A scheme for stimulating message relaying cooperation. International Journal of Distributed Sensor Network, 16(2), 108–118. Haifeng, L., & Fuquan, Z. (2020). A scheme for stimulating message relaying cooperation. International Journal of Distributed Sensor Network, 16(2), 108–118.
36.
go back to reference Huang, Z., Huang, X., Fan, J., et al. (2020). Retrieval of aerodynamic parameters in rubber tree forests based on the computer simulation technique and terrestrial laser scanning data[J]. Remote Sensing, 12(8), 1318.CrossRef Huang, Z., Huang, X., Fan, J., et al. (2020). Retrieval of aerodynamic parameters in rubber tree forests based on the computer simulation technique and terrestrial laser scanning data[J]. Remote Sensing, 12(8), 1318.CrossRef
37.
go back to reference Sankpal, S. V., & Bapat, V. (2011). Performance evaluation of proposed SEHEE-MAC for wireless sensor network in habitat monitoring[J]. International Journal of Scientific Engineering and Research, 2(10), 1–6. Sankpal, S. V., & Bapat, V. (2011). Performance evaluation of proposed SEHEE-MAC for wireless sensor network in habitat monitoring[J]. International Journal of Scientific Engineering and Research, 2(10), 1–6.
38.
go back to reference Nguyen, K., Nguyen, V. H., Le, D. D., et al. (2014). ERI-MAC: An energy-harvested receiver-initiated MAC protocol for wireless sensor networks[J]. International Journal of Distributed Sensor Networks, 10, 1–8.CrossRef Nguyen, K., Nguyen, V. H., Le, D. D., et al. (2014). ERI-MAC: An energy-harvested receiver-initiated MAC protocol for wireless sensor networks[J]. International Journal of Distributed Sensor Networks, 10, 1–8.CrossRef
39.
go back to reference Naderi, M. Y., Nintanavongsa, P., & Chowdhury, K. R. (2014). RF-MAC: A medium access control protocol for re-chargeable sensor networks powered by wireless energy harvesting[J]. IEEE Transactions on Wireless Communications, 13(7), 3926–3937.CrossRef Naderi, M. Y., Nintanavongsa, P., & Chowdhury, K. R. (2014). RF-MAC: A medium access control protocol for re-chargeable sensor networks powered by wireless energy harvesting[J]. IEEE Transactions on Wireless Communications, 13(7), 3926–3937.CrossRef
40.
go back to reference Gu, Y., Zhu, T., & He, T. (2009). ESC: Energy synchronized communication in sustainable sensor networks[C] . Network Protocols, 2009. ICNP 2009. 17th IEEE International Conference on. IEEE, pp. 52–62. Gu, Y., Zhu, T., & He, T. (2009). ESC: Energy synchronized communication in sustainable sensor networks[C] . Network Protocols, 2009. ICNP 2009. 17th IEEE International Conference on. IEEE, pp. 52–62.
41.
go back to reference Chen, H., & Cui, L. (2016). DS-MMAC: A delay-sensitive multi-channel mac protocol for ambient assistant living systems[J]. China Communications, 13(5), 38–46.CrossRef Chen, H., & Cui, L. (2016). DS-MMAC: A delay-sensitive multi-channel mac protocol for ambient assistant living systems[J]. China Communications, 13(5), 38–46.CrossRef
42.
go back to reference Akande, D. O., & Salleh, M. F. M. (2020). A multi-objective target-oriented cooperative MAC protocol for wireless ad-hoc networks with energy harvesting[J]. IEEE Access, 8, 25310–2532.CrossRef Akande, D. O., & Salleh, M. F. M. (2020). A multi-objective target-oriented cooperative MAC protocol for wireless ad-hoc networks with energy harvesting[J]. IEEE Access, 8, 25310–2532.CrossRef
43.
go back to reference Kochhar, A., Kaur, P., Singh, P., et al. (2020). MLMAC-HEAP: A multi-layer MAC protocol for wireless sensor networks powered by ambient energy harvesting[J]. Wireless Personal Communications, 110(3), 893–911.CrossRef Kochhar, A., Kaur, P., Singh, P., et al. (2020). MLMAC-HEAP: A multi-layer MAC protocol for wireless sensor networks powered by ambient energy harvesting[J]. Wireless Personal Communications, 110(3), 893–911.CrossRef
44.
go back to reference Qiu, K., Jao, N., & Zhao, M., et al. (2020). ResiRCA: A resilient energy harvesting ReRAM crossbar-based accelerator for intelligent embedded processors[C]. In 2020 IEEE international symposium on high performance computer architecture (HPCA). IEEE. Qiu, K., Jao, N., & Zhao, M., et al. (2020). ResiRCA: A resilient energy harvesting ReRAM crossbar-based accelerator for intelligent embedded processors[C]. In 2020 IEEE international symposium on high performance computer architecture (HPCA). IEEE.
45.
go back to reference Verma, V. K., & Kumar, V. (2020). Review of MAC Protocols for energy harvesting wireless sensor network (EH-WSN)[M]. Internet of Things and Big Data Applications. Cham: Springer.CrossRef Verma, V. K., & Kumar, V. (2020). Review of MAC Protocols for energy harvesting wireless sensor network (EH-WSN)[M]. Internet of Things and Big Data Applications. Cham: Springer.CrossRef
46.
go back to reference Kaur, P., Sohi, B. S., & Singh, P. (2018). Recent advances in mac protocols for the energy harvesting based WSN: A comprehensive review[J]. Wireless Personal Communications, 104(2), 423–440. Kaur, P., Sohi, B. S., & Singh, P. (2018). Recent advances in mac protocols for the energy harvesting based WSN: A comprehensive review[J]. Wireless Personal Communications, 104(2), 423–440.
47.
go back to reference Qiu, Y., Li, S., Xu, X., et al. (2016). Talk more listen less: Energy-efficient neighbor discovery in wireless sensor networks[C], INFOCOM, the. IEEE International Conference on Computer Communications, IEEE, 2016, 1–9. Qiu, Y., Li, S., Xu, X., et al. (2016). Talk more listen less: Energy-efficient neighbor discovery in wireless sensor networks[C], INFOCOM, the. IEEE International Conference on Computer Communications, IEEE, 2016, 1–9.
48.
go back to reference Lenzen, C., Sommer, P., & Wattenhofer, R. (2009). Optimal clock synchronization in networks. In 7th ACM conference on embedded networked sensor systems, SenSys, pp. 225-238. Lenzen, C., Sommer, P., & Wattenhofer, R. (2009). Optimal clock synchronization in networks. In 7th ACM conference on embedded networked sensor systems, SenSys, pp. 225-238.
49.
go back to reference Dutta, P., & Culler, D. (2008). Practical asynchronous neighbor discovery and rendezvous for mobile sensing applications[C]. In Proceedings of the 6th ACM conference on Embedded network sensor systems. ACM pp. 71–84. Dutta, P., & Culler, D. (2008). Practical asynchronous neighbor discovery and rendezvous for mobile sensing applications[C]. In Proceedings of the 6th ACM conference on Embedded network sensor systems. ACM pp. 71–84.
50.
go back to reference Zhang, D., He, T., & Liu, Y., et al. (2012). Acc: Generic on-demand accelerations for neighbor discovery in mobile applications[C]. In Proceedings of the 10th ACM conference on embedded network sensor systems. ACM, pp. 169–182. Zhang, D., He, T., & Liu, Y., et al. (2012). Acc: Generic on-demand accelerations for neighbor discovery in mobile applications[C]. In Proceedings of the 10th ACM conference on embedded network sensor systems. ACM, pp. 169–182.
Metadata
Title
HAS-MAC: A Hybrid Asynchronous and Synchronous Communication System for Energy-Harvesting Wireless Sensor Networks
Authors
Demin Gao
Shuo Zhang
Fuquan Zhang
Publication date
09-03-2021
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 2/2021
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08304-7

Other articles of this Issue 2/2021

Wireless Personal Communications 2/2021 Go to the issue