Skip to main content
Top
Published in: Journal of Applied and Industrial Mathematics 2/2022

01-05-2022

Heat Convection in a Rotating Pipe

Authors: V. K. Andreev, I. V. Vakhrameev, E. P. Magdenko

Published in: Journal of Applied and Industrial Mathematics | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We study an unsteady-state boundary value problem on the motion of a fluid in a rotating cylindrical pipe. The Oberbeck–Boussinesq equations are used to describe the fluid motion. From the mathematical point of view, this is an inverse problem for the pressure gradients along the cylinder axis. Based on a priori estimates, we obtain conditions under which the solution of the steady-state inverse problem is exponentially stable. In Laplace transforms, the solution is found by quadratures. Sufficient conditions for the solution of the unsteady-state problem to reach a steady-state mode over time are given.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference V. Barcilon and J. Pedlosky, “On the steady motions produced by a stable stratification in a rapidly rotating fluid,” J. Fluid Mech. 29, 673 (1967).CrossRefMATH V. Barcilon and J. Pedlosky, “On the steady motions produced by a stable stratification in a rapidly rotating fluid,” J. Fluid Mech. 29, 673 (1967).CrossRefMATH
2.
go back to reference G. M. Homsy and J. L. Hudson, “Centrifugal convection and its effect on the asymptotic stability of a bounded rotating fluid heated from below,” J. Fluid Mech. 48, 605 (1971).CrossRefMATH G. M. Homsy and J. L. Hudson, “Centrifugal convection and its effect on the asymptotic stability of a bounded rotating fluid heated from below,” J. Fluid Mech. 48, 605 (1971).CrossRefMATH
3.
go back to reference J. E. Hart, “On the influence of centrifugal buoyancy on rotating convection,” J. Fluid. Mech. 403, 133 (2000). J. E. Hart, “On the influence of centrifugal buoyancy on rotating convection,” J. Fluid. Mech. 403, 133 (2000).
4.
go back to reference F. H. Busse, “On the influence of centrifugal buoyancy on rotating convection,” J. Fluid. Mech. 44, 441 (1970). F. H. Busse, “On the influence of centrifugal buoyancy on rotating convection,” J. Fluid. Mech. 44, 441 (1970).
5.
go back to reference J. Herrmann and F. H. Busse, “Convection in a rotating cylindrical annulus. Part 4. Modulation and transition to chaos at low Prandtl numbers,” J. Fluid. Mech. 350, 209 (1997).MathSciNetCrossRefMATH J. Herrmann and F. H. Busse, “Convection in a rotating cylindrical annulus. Part 4. Modulation and transition to chaos at low Prandtl numbers,” J. Fluid. Mech. 350, 209 (1997).MathSciNetCrossRefMATH
6.
go back to reference E. Bagheri and Bing-Chen Wang, “Direct numerical simulation of turbulent heat transfer in concentric annular pipe flows,” Phys. Fluids . 33 (5), 055131 (2021).CrossRef E. Bagheri and Bing-Chen Wang, “Direct numerical simulation of turbulent heat transfer in concentric annular pipe flows,” Phys. Fluids . 33 (5), 055131 (2021).CrossRef
7.
go back to reference A. Vjatkin, R. Siraev, and V. Kozlov, “Theoretical and experimental study of thermal convection in rotating horizontal annulus,” Microgravity Sci. Technol. 32 (6), 1–13 (2020).CrossRef A. Vjatkin, R. Siraev, and V. Kozlov, “Theoretical and experimental study of thermal convection in rotating horizontal annulus,” Microgravity Sci. Technol. 32 (6), 1–13 (2020).CrossRef
8.
go back to reference G. Z. Gershuni and E. M. Zhukhovitsky, Convective Stability of an Incompressible Fluid (Nauka, Moscow, 1972) [in Russian]. G. Z. Gershuni and E. M. Zhukhovitsky, Convective Stability of an Incompressible Fluid (Nauka, Moscow, 1972) [in Russian].
9.
go back to reference V. K. Andreev, Y. A. Gaponenko, O. N. Goncharova, and V. V. Pukhnachev, Mathematical Models of Convection (Walter de Gruyter, Berlin–Boston, 2020).CrossRefMATH V. K. Andreev, Y. A. Gaponenko, O. N. Goncharova, and V. V. Pukhnachev, Mathematical Models of Convection (Walter de Gruyter, Berlin–Boston, 2020).CrossRefMATH
10.
go back to reference I. M. Yavorskaya and Yu. M. Belyaev, “Convective flows in rotating cavities,” Itogi Nauki Tekh. Ser. Mekh. Zhidk. Gaza 17 (VINITI, Moscow, 1982). I. M. Yavorskaya and Yu. M. Belyaev, “Convective flows in rotating cavities,” Itogi Nauki Tekh. Ser. Mekh. Zhidk. Gaza 17 (VINITI, Moscow, 1982).
11.
go back to reference M. Lappa, Rotating Thermal Flows in Natural and Industrial Processes (John Wiley & Sons, Chichester, 2012). M. Lappa, Rotating Thermal Flows in Natural and Industrial Processes (John Wiley & Sons, Chichester, 2012).
12.
go back to reference A. A. Vyatkin, A. A. Ivanova, and V. G. Kozlov, “Convective stability of a nonisothermal fluid in a rotating horizontal coaxial gap,” Fluid Dyn. 45 (1), 10–18 (2010).CrossRefMATH A. A. Vyatkin, A. A. Ivanova, and V. G. Kozlov, “Convective stability of a nonisothermal fluid in a rotating horizontal coaxial gap,” Fluid Dyn. 45 (1), 10–18 (2010).CrossRefMATH
13.
go back to reference A. A. Vyatkin, A. A. Ivanova, V. G. Kozlov, and R. R. Sabirov, “Convection of a heat-generating fluid in a rotating horizontal cylinder,” Fluid Dyn. 49 (1), 17–25 (2014).CrossRefMATH A. A. Vyatkin, A. A. Ivanova, V. G. Kozlov, and R. R. Sabirov, “Convection of a heat-generating fluid in a rotating horizontal cylinder,” Fluid Dyn. 49 (1), 17–25 (2014).CrossRefMATH
14.
go back to reference L. V. Ovsyannikov, Group Analysis of Differential Equations (Nauka, Moscow, 1978) [in Russian].MATH L. V. Ovsyannikov, Group Analysis of Differential Equations (Nauka, Moscow, 1978) [in Russian].MATH
15.
go back to reference V. K. Andreev, “On the Friedrichs inequality for composite domains,” J. Sib. Fed. Univ. Math. Phys. 2 (2), 146–157 (2009).MATH V. K. Andreev, “On the Friedrichs inequality for composite domains,” J. Sib. Fed. Univ. Math. Phys. 2 (2), 146–157 (2009).MATH
16.
go back to reference M. A. Lavrentiev and B. V. Shabat, Methods of the Theory of Functions of a Complex Variable (Nauka, Moscow, 1972) [in Russian]. M. A. Lavrentiev and B. V. Shabat, Methods of the Theory of Functions of a Complex Variable (Nauka, Moscow, 1972) [in Russian].
17.
go back to reference V. I. Krylov and N. S. Skoblya, Approximate Fourier Transform and Laplace Transform Inversion Methods (Nauka, Moscow, 1974) [in Russian]. V. I. Krylov and N. S. Skoblya, Approximate Fourier Transform and Laplace Transform Inversion Methods (Nauka, Moscow, 1974) [in Russian].
18.
go back to reference V. I. Krylov and N. S. Skoblya, Reference Book on the Numerical Inversion of the Laplace Transform (Nauka Tekh., Minsk, 1968) [in Russian]. V. I. Krylov and N. S. Skoblya, Reference Book on the Numerical Inversion of the Laplace Transform (Nauka Tekh., Minsk, 1968) [in Russian].
Metadata
Title
Heat Convection in a Rotating Pipe
Authors
V. K. Andreev
I. V. Vakhrameev
E. P. Magdenko
Publication date
01-05-2022
Publisher
Pleiades Publishing
Published in
Journal of Applied and Industrial Mathematics / Issue 2/2022
Print ISSN: 1990-4789
Electronic ISSN: 1990-4797
DOI
https://doi.org/10.1134/S1990478922020016

Other articles of this Issue 2/2022

Journal of Applied and Industrial Mathematics 2/2022 Go to the issue

Premium Partners