Skip to main content
Top

2020 | OriginalPaper | Chapter

Heat Transfer Analysis of CNT-Nanofluid Between Two Rotating Plates in the Presence of Viscous Dissipation Effect

Authors : A. Kumar, R. Singh, R. Tripathi

Published in: Mathematical Modelling and Scientific Computing with Applications

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this research study, an investigation of three-dimensional (3D) CNT based nanofluid flow through a horizontal rotating channel under the influence of viscous dissipation, is carried out. We have considered that the upper sheet of the channel is permeable and fixed while the lower sheet is impermeable and the sole reason for fluid flow initiation is the stretching of the lower sheet. The mathematical model of the problem is developed and is presented in the form of a system of nonlinear partial differential equations. Suitable similarity technique is employed to transform these governing partial differential equations into the set of ordinary differential equations which are nonlinear. The transformed equations are then solved numerically by the bvp4c routine of MATLAB. Computations for the nanofluid velocity and nanofluid temperature along with skin friction coefficient and Nusselt number are, carried out for relevant flow parameters. A comparative analysis of single-wall carbon nanotubes as well as multiwall carbon nanotubes on temperature and velocity distribution is carried out. Three dimensional flow of CNT-based nanofluid inside a horizontal channel whose one wall is permeable and the other is not, has not been considered before. Although up to some extent, such an analysis has practical bearings in the industries related with lubrication under the influence of magnetic field. The temperature of the fluid is getting increased with growing values of Eckert number and rotation parameter while a completely opposite trend is found for suction/injection and Reynolds number.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wen, D., Ding, Y.: Effective thermal conductivity of aqueous suspensions of carbon nanotubes. J. Thermophys. Heat Transfer 18(4), 481–485 (2004)CrossRef Wen, D., Ding, Y.: Effective thermal conductivity of aqueous suspensions of carbon nanotubes. J. Thermophys. Heat Transfer 18(4), 481–485 (2004)CrossRef
2.
go back to reference Liu, M., Lin, M.C.-C., Huang, I.-T., Wang, C.-C.: Enhancement of thermal conductivity with carbon nanotube for nanofluids. Int. Commun. Heat Mass Transfer 32, 1202–1210 (2005)CrossRef Liu, M., Lin, M.C.-C., Huang, I.-T., Wang, C.-C.: Enhancement of thermal conductivity with carbon nanotube for nanofluids. Int. Commun. Heat Mass Transfer 32, 1202–1210 (2005)CrossRef
3.
go back to reference Xue, Q.Z.: Model for thermal conductivity of carbon nanotube-based composites. Phys. B 368, 302–307 (2005)CrossRef Xue, Q.Z.: Model for thermal conductivity of carbon nanotube-based composites. Phys. B 368, 302–307 (2005)CrossRef
4.
go back to reference Kamali, R., Binesh, A.: Numerical investigation of heat transfer enhancement using carbon nanotube based non-Newtonian nanofluids. Int. Commun. Heat Mass Transfer 37, 1153–1157 (2010)CrossRef Kamali, R., Binesh, A.: Numerical investigation of heat transfer enhancement using carbon nanotube based non-Newtonian nanofluids. Int. Commun. Heat Mass Transfer 37, 1153–1157 (2010)CrossRef
5.
go back to reference Sheikholeslami, M., Ganji, D.D.: Magnetohydrodynamic flow in a permeable channel filled with nanofluid. Sci. Iranica B 21(1), 203–212 (2014) Sheikholeslami, M., Ganji, D.D.: Magnetohydrodynamic flow in a permeable channel filled with nanofluid. Sci. Iranica B 21(1), 203–212 (2014)
6.
go back to reference Kumaresan, V., Velraj, R., Das, S.K.: Convective heat transfer characteristics of secondary refrigerant based CNT nanofluids in a tubular heat exchanger. Int. J. Refrig 35(2012), 2287–2296 (2012)CrossRef Kumaresan, V., Velraj, R., Das, S.K.: Convective heat transfer characteristics of secondary refrigerant based CNT nanofluids in a tubular heat exchanger. Int. J. Refrig 35(2012), 2287–2296 (2012)CrossRef
7.
go back to reference Hussain, S.T., Ul-Haq, R., Khan, Z.H., Nadeem, S.: Water driven flow of carbon nanotubes in a rotating channel. J. Mol. Liq. 214, 136–144 (2016)CrossRef Hussain, S.T., Ul-Haq, R., Khan, Z.H., Nadeem, S.: Water driven flow of carbon nanotubes in a rotating channel. J. Mol. Liq. 214, 136–144 (2016)CrossRef
8.
go back to reference Hayat, T., Haider, F., Muhammad, T., Alsaedi, A.: On Darcy-Forchheimer flow of carbon nanotubes due to a rotating disk. Int. J. Heat Mass Transfer. 112, 248–254 (2017)CrossRef Hayat, T., Haider, F., Muhammad, T., Alsaedi, A.: On Darcy-Forchheimer flow of carbon nanotubes due to a rotating disk. Int. J. Heat Mass Transfer. 112, 248–254 (2017)CrossRef
10.
go back to reference Anoop, K.B., Kabelac, S., Sundrarajan, T., Das, S.K.: Rheological and flow characteristics of nanofluids: influence of electro-viscous effects and particle agglomeration. J. Appl. Phys. 106, Article id: 034909 (2009) Anoop, K.B., Kabelac, S., Sundrarajan, T., Das, S.K.: Rheological and flow characteristics of nanofluids: influence of electro-viscous effects and particle agglomeration. J. Appl. Phys. 106, Article id: 034909 (2009)
11.
go back to reference Mah, W.H., Hung, M., Guo, N.: Entropy generation of viscous dissipative nanofluid flow in microchannels. Int. J. Heat Mass Transf. 55, 4169–4182 (2012)CrossRef Mah, W.H., Hung, M., Guo, N.: Entropy generation of viscous dissipative nanofluid flow in microchannels. Int. J. Heat Mass Transf. 55, 4169–4182 (2012)CrossRef
12.
go back to reference Sheikholeslami, M., Ganji, D.D.: Heat transfer of Cu-water nanofluid flow between parallel plates. Powder Technol. 235, 873–879 (2013)CrossRef Sheikholeslami, M., Ganji, D.D.: Heat transfer of Cu-water nanofluid flow between parallel plates. Powder Technol. 235, 873–879 (2013)CrossRef
13.
go back to reference Chen, C.K., Chen, B.S., Liu, C.C.: Heat transfer and entropy generation in fully-developed mixed convection nanofluid flow in vertical channel. Int. J. Heat Mass Transf. 79, 750–758 (2014)CrossRef Chen, C.K., Chen, B.S., Liu, C.C.: Heat transfer and entropy generation in fully-developed mixed convection nanofluid flow in vertical channel. Int. J. Heat Mass Transf. 79, 750–758 (2014)CrossRef
14.
go back to reference Khan, U., Ahmed, N., Asadullah, M., Mohyud-din, S.T.: Effects of viscous dissipation and slip velocity on two-dimensional and axisymmetric squeezing flow of Cu-water and Cu-kerosene nanofluids. Propul. Power Res. 4(1), 40–49 (2015)CrossRef Khan, U., Ahmed, N., Asadullah, M., Mohyud-din, S.T.: Effects of viscous dissipation and slip velocity on two-dimensional and axisymmetric squeezing flow of Cu-water and Cu-kerosene nanofluids. Propul. Power Res. 4(1), 40–49 (2015)CrossRef
17.
go back to reference Kumar, R., Kumar, R., Shehzad, S.A., Sheikholeslami, M.: Rotating frame analysis of radiating and reacting ferro-nanofluid considering Joule heating and viscous dissipation. Int. J. Heat Mass Transf. 120, 540–551 (2018)CrossRef Kumar, R., Kumar, R., Shehzad, S.A., Sheikholeslami, M.: Rotating frame analysis of radiating and reacting ferro-nanofluid considering Joule heating and viscous dissipation. Int. J. Heat Mass Transf. 120, 540–551 (2018)CrossRef
18.
go back to reference Sithole, H., Mondal, H., Sibanda, P.: Entropy generation in a second grade magnetohydrodynamic nanofluid flow over a convectively heated stretching sheet with nonlinear thermal radiation and viscous dissipation. Res. Phys. 9, 1077–1085 (2018) Sithole, H., Mondal, H., Sibanda, P.: Entropy generation in a second grade magnetohydrodynamic nanofluid flow over a convectively heated stretching sheet with nonlinear thermal radiation and viscous dissipation. Res. Phys. 9, 1077–1085 (2018)
19.
go back to reference Hussain, A., Malik, M.Y., Salahuddin, T., Bilal, S., Awais, M.: Combined effects of viscous dissipation and Joule heating on MHD Sisko nanofluid over a stretching cylinder. J. Mol. Liq. 231, 341–352 (2017)CrossRef Hussain, A., Malik, M.Y., Salahuddin, T., Bilal, S., Awais, M.: Combined effects of viscous dissipation and Joule heating on MHD Sisko nanofluid over a stretching cylinder. J. Mol. Liq. 231, 341–352 (2017)CrossRef
20.
go back to reference Khan, W.A., Khan, Z.H., Rahi, M.: Fluid flow and heat transfer of carbon nanotubes along a plate with Navier slip boundary. Appl. Nanosci. 4, 633–641 (2014)CrossRef Khan, W.A., Khan, Z.H., Rahi, M.: Fluid flow and heat transfer of carbon nanotubes along a plate with Navier slip boundary. Appl. Nanosci. 4, 633–641 (2014)CrossRef
Metadata
Title
Heat Transfer Analysis of CNT-Nanofluid Between Two Rotating Plates in the Presence of Viscous Dissipation Effect
Authors
A. Kumar
R. Singh
R. Tripathi
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-1338-1_21

Premium Partners