Skip to main content
Top
Published in: Experiments in Fluids 4/2015

01-04-2015 | Research Article

Height-resolved velocity measurement of the boundary flow during liquid impact on dry and wetted solid substrates

Authors: Philipp Erhard Frommhold, Robert Mettin, Claus-Dieter Ohl

Published in: Experiments in Fluids | Issue 4/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The impact of a droplet onto a dry or wet surface leads to a rapid formation of a shear flow at the boundary. We present a novel method to experimentally resolve this flow in time at different heights above the solid. The radial flow field close to the substrate is reconstructed by evaluation of streak images of fluorescent tracer particles in the liquid. By using a microscope objective with a narrow depth of field, it is possible to scan through the flow in thin horizontal layers of 5 μm thickness. We focus on the flow close (≤40 μm) to the boundary during the impact of elongated drops with diameters of 0.3–0.4 mm and speeds in the range of 2–3 m s−1. The spatial resolution is obtained from several individual events of the repeatable impact process and varying the focal plane. Fluorescent streaks formed by the suspended particles are recorded with high-speed photography at up to 20,000 frames per second. The impact of water and of ethanol is investigated both on dry glass and on glass covered with a thin film of the same liquid. Results are given as spatio-temporal maps of radial flow velocity at different heights, and the maximum shear stress at the substrate is evaluated. The implications of the results are discussed with respect to cleaning applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
The parameters chosen lead to reproducible timing and shape of the impacting drops for all four cases (water and ethanol; dry and impact onto a liquid film). Faster drops tended to disintegrate frequently and were less reproducible.
 
Literature
go back to reference Andreas MT, Wostyn K, Wada M, Janssens T, Kenis K, Bearda T, Mertens PW (2009) High velocity aerosol cleaning with organic solvents: particle removal and substrate damage. Solid State Phenom 145–146:39–42CrossRef Andreas MT, Wostyn K, Wada M, Janssens T, Kenis K, Bearda T, Mertens PW (2009) High velocity aerosol cleaning with organic solvents: particle removal and substrate damage. Solid State Phenom 145–146:39–42CrossRef
go back to reference Berberović E, van Hinsberg NP, Jakirlić S, Roisman IV, Tropea C (2009) Drop impact onto a liquid layer of finite thickness: dynamics of the cavity evolution. Phys Rev E 79:036,306CrossRef Berberović E, van Hinsberg NP, Jakirlić S, Roisman IV, Tropea C (2009) Drop impact onto a liquid layer of finite thickness: dynamics of the cavity evolution. Phys Rev E 79:036,306CrossRef
go back to reference Bouwhuis W, van der Veen RCA, Tran T, Keij DL, Winkels KG, Peters IR, van der Meer D, Sun C, Snoeijer JH, Lohse D (2012) Maximal air bubble entrainment at liquid-drop impact. Phys Rev Lett 109:264,501CrossRef Bouwhuis W, van der Veen RCA, Tran T, Keij DL, Winkels KG, Peters IR, van der Meer D, Sun C, Snoeijer JH, Lohse D (2012) Maximal air bubble entrainment at liquid-drop impact. Phys Rev Lett 109:264,501CrossRef
go back to reference Castrejón JR, Betton ES, Kubiak KJ, Wilson MCT, Hutchings IM (2011) The dynamics of the impact and coalescence of droplets on a solid surface. Biomicrofluidics 5(1):014112CrossRef Castrejón JR, Betton ES, Kubiak KJ, Wilson MCT, Hutchings IM (2011) The dynamics of the impact and coalescence of droplets on a solid surface. Biomicrofluidics 5(1):014112CrossRef
go back to reference Chandra S, Avedisian CT (1991) On the collision of a droplet with a solid surface. Proc R Soc Lond Ser A 432(1884):13–41CrossRef Chandra S, Avedisian CT (1991) On the collision of a droplet with a solid surface. Proc R Soc Lond Ser A 432(1884):13–41CrossRef
go back to reference Clanet C, Béguin C, Richard D, Quére D (2004) Maximal deformation of an impacting drop. J Fluid Mech 517:199–208CrossRefMATH Clanet C, Béguin C, Richard D, Quére D (2004) Maximal deformation of an impacting drop. J Fluid Mech 517:199–208CrossRefMATH
go back to reference Cossali G, Coghe A, Marengo M (1997) The impact of a single drop on a wetted solid surface. Exp Fluids 22(6):463–472CrossRef Cossali G, Coghe A, Marengo M (1997) The impact of a single drop on a wetted solid surface. Exp Fluids 22(6):463–472CrossRef
go back to reference de Ruiter J, Oh JM, van den Ende D, Mugele F (2012) Dynamics of collapse of air films in drop impact. Phys Rev Lett 108:074,505CrossRef de Ruiter J, Oh JM, van den Ende D, Mugele F (2012) Dynamics of collapse of air films in drop impact. Phys Rev Lett 108:074,505CrossRef
go back to reference Dear JP, Field JE (1988) Highspeed photography of surface geometry effects in liquid/solid impact. J Appl Phys 63(4):1015–1021CrossRef Dear JP, Field JE (1988) Highspeed photography of surface geometry effects in liquid/solid impact. J Appl Phys 63(4):1015–1021CrossRef
go back to reference Dimotakis PE, Debussy FD, Koochesfahani MM (1981) Particle streak velocity field measurements in a two-dimensional mixing layer. Phys Fluids 24(6):995–999CrossRef Dimotakis PE, Debussy FD, Koochesfahani MM (1981) Particle streak velocity field measurements in a two-dimensional mixing layer. Phys Fluids 24(6):995–999CrossRef
go back to reference Driscoll MM, Nagel SR (2011) Ultrafast interference imaging of air in splashing dynamics. Phys Rev Lett 107:154,502CrossRef Driscoll MM, Nagel SR (2011) Ultrafast interference imaging of air in splashing dynamics. Phys Rev Lett 107:154,502CrossRef
go back to reference Erkan N, Okamoto K (2014) Full-field spreading velocity measurement inside droplets impinging on a dry solid surface. Exp Fluids 55(11):1845CrossRef Erkan N, Okamoto K (2014) Full-field spreading velocity measurement inside droplets impinging on a dry solid surface. Exp Fluids 55(11):1845CrossRef
go back to reference Frommhold PE, Lippert A, Holsteyns FL, Mettin R (2014) High-speed monodisperse droplet generation by ultrasonically controlled micro-jet breakup. Exp Fluids 55(4):1716CrossRef Frommhold PE, Lippert A, Holsteyns FL, Mettin R (2014) High-speed monodisperse droplet generation by ultrasonically controlled micro-jet breakup. Exp Fluids 55(4):1716CrossRef
go back to reference Haller KK, Ventikos Y, Poulikakos D (2002) Computational study of high-speed liquid droplet impact. J Appl Phys 92(5):2821–2828CrossRef Haller KK, Ventikos Y, Poulikakos D (2002) Computational study of high-speed liquid droplet impact. J Appl Phys 92(5):2821–2828CrossRef
go back to reference Haller KK, Poulikakos D, Ventikos Y, Monkewitz P (2003a) Shock wave formation in droplet impact on a rigid surface: lateral liquid motion and multiple wave structure in the contact line region. J Fluid Mech 490:1–14CrossRefMATH Haller KK, Poulikakos D, Ventikos Y, Monkewitz P (2003a) Shock wave formation in droplet impact on a rigid surface: lateral liquid motion and multiple wave structure in the contact line region. J Fluid Mech 490:1–14CrossRefMATH
go back to reference Haller KK, Ventikos Y, Poulikakos D (2003b) Wave structure in the contact line region during high speed droplet impact on a surface: solution of the riemann problem for the stiffened gas equation of state. J Appl Phys 93(5):3090–3097CrossRef Haller KK, Ventikos Y, Poulikakos D (2003b) Wave structure in the contact line region during high speed droplet impact on a surface: solution of the riemann problem for the stiffened gas equation of state. J Appl Phys 93(5):3090–3097CrossRef
go back to reference Joukowsky N (1900) Über den hydraulischen Stoß in Wasserleitungsröhren. Mémoires de l’Académie Impériale des Sciences de St-Pétersbourg 8(9):1–71 Joukowsky N (1900) Über den hydraulischen Stoß in Wasserleitungsröhren. Mémoires de l’Académie Impériale des Sciences de St-Pétersbourg 8(9):1–71
go back to reference Kanno I, Yokoi N, Sato K (1997) Wafer cleaning by water and gas mixture with high velocity. Electrochem Soc Proc 98:54–61 Kanno I, Yokoi N, Sato K (1997) Wafer cleaning by water and gas mixture with high velocity. Electrochem Soc Proc 98:54–61
go back to reference Kennedy C, Field J (2000) Damage threshold velocities for liquid impact. J Mater Sci 35(21):5331–5339CrossRef Kennedy C, Field J (2000) Damage threshold velocities for liquid impact. J Mater Sci 35(21):5331–5339CrossRef
go back to reference Lindken R, Rossi M, Große S, Westerweel J (2009) Micro-particle image velocimetry (PIV): recent developments, applications, and guidelines. Lab Chip 9:2551–2567CrossRef Lindken R, Rossi M, Große S, Westerweel J (2009) Micro-particle image velocimetry (PIV): recent developments, applications, and guidelines. Lab Chip 9:2551–2567CrossRef
go back to reference Mandre S, Mani M, Brenner MP (2009) Precursors to splashing of liquid droplets on a solid surface. Phys Rev Lett 102:134,502CrossRef Mandre S, Mani M, Brenner MP (2009) Precursors to splashing of liquid droplets on a solid surface. Phys Rev Lett 102:134,502CrossRef
go back to reference Mehdizadeh NZ, Chandra S, Mostahhimi J (2004) Formation of fingers around the edges of a drop hitting a metal plate with high velocity. J Fluid Mech 510:353–373CrossRefMATH Mehdizadeh NZ, Chandra S, Mostahhimi J (2004) Formation of fingers around the edges of a drop hitting a metal plate with high velocity. J Fluid Mech 510:353–373CrossRefMATH
go back to reference Meinhart CD, Wereley ST, Santiago JG (1999) Piv measurements of a microchannel flow. Exp Fluids 27(5):414–419CrossRef Meinhart CD, Wereley ST, Santiago JG (1999) Piv measurements of a microchannel flow. Exp Fluids 27(5):414–419CrossRef
go back to reference Ohl CD, Arora M, Dijkink R, Janve V, Lohse D (2006) Surface cleaning from laser-induced cavitation bubbles. Appl Phys Lett 89:074,102–1–074,102–3CrossRef Ohl CD, Arora M, Dijkink R, Janve V, Lohse D (2006) Surface cleaning from laser-induced cavitation bubbles. Appl Phys Lett 89:074,102–1–074,102–3CrossRef
go back to reference Okorn-Schmidt HF, Holsteyns F, Lippert A, Mui D, Kawaguchi M, Lechner C, Frommhold PE, Nowak T, Reuter F, Piqué MB et al (2014) Particle cleaning technologies to meet advanced semiconductor device process requirements. ECS J Solid State Sci Technol 3(1):N3069–N3080CrossRef Okorn-Schmidt HF, Holsteyns F, Lippert A, Mui D, Kawaguchi M, Lechner C, Frommhold PE, Nowak T, Reuter F, Piqué MB et al (2014) Particle cleaning technologies to meet advanced semiconductor device process requirements. ECS J Solid State Sci Technol 3(1):N3069–N3080CrossRef
go back to reference Pan KL, Tseng KC, Wang CH (2010) Breakup of a droplet at high velocity impacting a solid surface. Exp Fluids 48(1):143–156CrossRef Pan KL, Tseng KC, Wang CH (2010) Breakup of a droplet at high velocity impacting a solid surface. Exp Fluids 48(1):143–156CrossRef
go back to reference Pumphrey HC, Crum LA, Bjørnø L (1989) Underwater sound produced by individual drop impacts and rainfall. J Acoust Soc Am 85(4):1518–1526CrossRef Pumphrey HC, Crum LA, Bjørnø L (1989) Underwater sound produced by individual drop impacts and rainfall. J Acoust Soc Am 85(4):1518–1526CrossRef
go back to reference Rein M (1993) Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn Res 12(2):61CrossRef Rein M (1993) Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn Res 12(2):61CrossRef
go back to reference Rein M, Delplanque JP (2008) The role of air entrainment on the outcome of drop impact on a solid surface. Act Mech 201(1–4):105–118CrossRefMATH Rein M, Delplanque JP (2008) The role of air entrainment on the outcome of drop impact on a solid surface. Act Mech 201(1–4):105–118CrossRefMATH
go back to reference Rioboo R, Marengo M, Tropea C (2002) Time evolution of liquid drop impact onto solid, dry surfaces. Exp Fluids 33(1):112–124CrossRef Rioboo R, Marengo M, Tropea C (2002) Time evolution of liquid drop impact onto solid, dry surfaces. Exp Fluids 33(1):112–124CrossRef
go back to reference Roisman IV, Rioboo R, Tropea C (2002) Normal impact of a liquid drop on a dry surface: model for spreading and receding. Proc R Soc Lond A 458(2022):1411–1430CrossRefMATH Roisman IV, Rioboo R, Tropea C (2002) Normal impact of a liquid drop on a dry surface: model for spreading and receding. Proc R Soc Lond A 458(2022):1411–1430CrossRefMATH
go back to reference Roisman IV, Berberovic E, Tropea C (2009) Inertia dominated drop collisions. I. on the universal flow in the lamella. Phys Fluids 21:052103-1–052103-10 Roisman IV, Berberovic E, Tropea C (2009) Inertia dominated drop collisions. I. on the universal flow in the lamella. Phys Fluids 21:052103-1–052103-10
go back to reference Smith M, Bertola V (2011) Particle velocimetry inside newtonian and non-newtonian droplets impacting a hydrophobic surface. Exp Fluids 50(5):1385–1391CrossRef Smith M, Bertola V (2011) Particle velocimetry inside newtonian and non-newtonian droplets impacting a hydrophobic surface. Exp Fluids 50(5):1385–1391CrossRef
go back to reference Srikar R, Gambaryan-Roisman T, Steffes C, Stephan P, Tropea C, Yarin AL (2009) Nanofiber cating of surfaces for intensification of drop or spray impact cooling. Int J Heat Mass Transf 52:5812–5826CrossRef Srikar R, Gambaryan-Roisman T, Steffes C, Stephan P, Tropea C, Yarin AL (2009) Nanofiber cating of surfaces for intensification of drop or spray impact cooling. Int J Heat Mass Transf 52:5812–5826CrossRef
go back to reference Streule W, Lindemann T, Birkle G, Zengerle R, Koltay P (2004) Pipejet: a simple disposable dispenser for the nano- and microliter range. J Assoc Lab Autom 9(5):300–306CrossRef Streule W, Lindemann T, Birkle G, Zengerle R, Koltay P (2004) Pipejet: a simple disposable dispenser for the nano- and microliter range. J Assoc Lab Autom 9(5):300–306CrossRef
go back to reference Thoraval MJ, Takehara K, Etoh TG, Thoroddsen ST (2013) Drop impact entrapment of bubble rings. J Fluid Mech 724:234–258CrossRefMATH Thoraval MJ, Takehara K, Etoh TG, Thoroddsen ST (2013) Drop impact entrapment of bubble rings. J Fluid Mech 724:234–258CrossRefMATH
go back to reference Thoroddsen ST, Sakakibara J (1998) Evolution of the fingering pattern of an impacting drop. Phys Fluids 10(6):1359–1374CrossRef Thoroddsen ST, Sakakibara J (1998) Evolution of the fingering pattern of an impacting drop. Phys Fluids 10(6):1359–1374CrossRef
go back to reference Thoroddsen ST, Thoraval MJ, Takehara K, Etoh TG (2011) Droplet splashing by a slingshot mechanism. Phys Rev Lett 106:034,501CrossRef Thoroddsen ST, Thoraval MJ, Takehara K, Etoh TG (2011) Droplet splashing by a slingshot mechanism. Phys Rev Lett 106:034,501CrossRef
go back to reference van Dam DB, Clerc CL (2004) Experimental study of the impact of an ink-jet printed droplet on a solid substrate. Phys Fluids 16(9):3403–3414CrossRef van Dam DB, Clerc CL (2004) Experimental study of the impact of an ink-jet printed droplet on a solid substrate. Phys Fluids 16(9):3403–3414CrossRef
go back to reference van der Veen RCA, Tran T, Lohse D, Sun C (2012) Direct measurements of air layer profiles under impacting droplets using high-speed color interferometry. Phys Rev E 85:026,315-1–026,315-6 van der Veen RCA, Tran T, Lohse D, Sun C (2012) Direct measurements of air layer profiles under impacting droplets using high-speed color interferometry. Phys Rev E 85:026,315-1–026,315-6
go back to reference van Hinsberg NP, Budakli M, Göhler S, Berberović E, Roisman IV, Gambaryan-Roisman T, Tropea C, Stephan P (2010) Dynamics of the cavity and the surface film for impingements of single drops on liquid films of various thicknesses. J Colloid Interface Sci 350(1):336–343CrossRef van Hinsberg NP, Budakli M, Göhler S, Berberović E, Roisman IV, Gambaryan-Roisman T, Tropea C, Stephan P (2010) Dynamics of the cavity and the surface film for impingements of single drops on liquid films of various thicknesses. J Colloid Interface Sci 350(1):336–343CrossRef
go back to reference Visser CW, Tagawa Y, Sun C, Lohse D (2012) Microdroplet impact at very high velocity. Soft Matter 8:10,732–10,737CrossRef Visser CW, Tagawa Y, Sun C, Lohse D (2012) Microdroplet impact at very high velocity. Soft Matter 8:10,732–10,737CrossRef
go back to reference Visser CW, Frommhold PE, Wildeman S, Mettin R, Lohse D, Sun C (2015) Dynamics of high-speed micro-drop impact: numerical simulations and experiments at frame-to-frame times below 100 ns. Soft Matter 11:1708–1722CrossRef Visser CW, Frommhold PE, Wildeman S, Mettin R, Lohse D, Sun C (2015) Dynamics of high-speed micro-drop impact: numerical simulations and experiments at frame-to-frame times below 100 ns. Soft Matter 11:1708–1722CrossRef
go back to reference Watanabe M, Sanada T, Hayashida A, Isago Y (2009) Cleaning technique using high-speed steam-water mixed spray. Solid State Phenom 145–146:43–46CrossRef Watanabe M, Sanada T, Hayashida A, Isago Y (2009) Cleaning technique using high-speed steam-water mixed spray. Solid State Phenom 145–146:43–46CrossRef
go back to reference Weiss DA, Yarin AL (1999) Single drop impact onto liquid films: neck distortion, jetting, tiny bubble entrainment, and crown formation. J Fluid Mech 385:229–254CrossRefMATH Weiss DA, Yarin AL (1999) Single drop impact onto liquid films: neck distortion, jetting, tiny bubble entrainment, and crown formation. J Fluid Mech 385:229–254CrossRefMATH
go back to reference Worthington AM (1908) A study of splashes. Longmans, Green, New York Worthington AM (1908) A study of splashes. Longmans, Green, New York
go back to reference Xu L, Zhang WW, Nagel SR (2005) Drop splashing on a dry smooth surface. Phys Rev Lett 94:184,505CrossRef Xu L, Zhang WW, Nagel SR (2005) Drop splashing on a dry smooth surface. Phys Rev Lett 94:184,505CrossRef
go back to reference Xu K, Pichler S, Wostyn K, Cado G, Springer C, Gale GW, Dalmer M, Mertens PW, Bearda T, Gaulhofer E, Podlesnik D (2009) Removal of nano-particles by aerosol spray: effect of droplet size and velocity on cleaning performance. Solid State Phenom 145:31–34CrossRef Xu K, Pichler S, Wostyn K, Cado G, Springer C, Gale GW, Dalmer M, Mertens PW, Bearda T, Gaulhofer E, Podlesnik D (2009) Removal of nano-particles by aerosol spray: effect of droplet size and velocity on cleaning performance. Solid State Phenom 145:31–34CrossRef
go back to reference Yarin AL, Weiss DA (1995) Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity. J Fluid Mech 283:141–173CrossRef Yarin AL, Weiss DA (1995) Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity. J Fluid Mech 283:141–173CrossRef
Metadata
Title
Height-resolved velocity measurement of the boundary flow during liquid impact on dry and wetted solid substrates
Authors
Philipp Erhard Frommhold
Robert Mettin
Claus-Dieter Ohl
Publication date
01-04-2015
Publisher
Springer Berlin Heidelberg
Published in
Experiments in Fluids / Issue 4/2015
Print ISSN: 0723-4864
Electronic ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-015-1944-4

Other articles of this Issue 4/2015

Experiments in Fluids 4/2015 Go to the issue

Premium Partners